
Hardware Design and Analysis of Block Cipher

Components∗

Lu Xiao and Howard M. Heys
Electrical and Computer Engineering

Faculty of Engineering and Applied Science
Memorial University of Newfoundland

St. John’s, NF, Canada A1B 3X5
{xiao,howard}@engr.mun.ca

Abstract

This paper describes the efficient implementation of Maximum Distance Separable
(MDS) mappings and Substitution-boxes (S-boxes) in gate-level hardware for applica-
tion to Substitution-Permutation Network (SPN) block cipher design. Different im-
plementations of parameterized MDS mappings and S-boxes are evaluated using gate
count as the space complexity measure and gate levels traversed as the time complexity
measure. On this basis, a method to optimize MDS codes for hardware is introduced
by considering the complexity analysis of bit parallel multipliers. We also provide a
general architecture to implement any invertible S-box which has low space and time
complexities. As an example, two efficient implementations of Rijndael, the Advanced
Encryption Standard (AES), are considered to examine the different tradeoffs between
speed and time.

1 Introduction

In a product cipher, confusion and diffusion are both important to the security [1]. One
architecture to achieve this is the Substitution-Permutation Network (SPN). In such a cipher,
a Substitution-box (S-box) achieves confusion by performing substitution on a small sub-
block. An n×m S-box refers to a mapping from an input of n bits to an output of m bits. An
S-box is expected to be nonlinear and resistant to cryptanalyses such as differential attacks [2]
and linear attacks [3]. In recently proposed SPN-based block ciphers (e.g., Rijndael [4],
Hierocrypt [5], Anubis [6], and Khazad [7]), permutations between layers of S-boxes have
been replaced by linear transformations in the form of mappings based on Maximum Distance
Separable (MDS) codes to achieve diffusion.

∗Presented at the 5th International Conference on Information Security and Cryptology - ICISC 2002,
Seoul, LNCS 2587, Springer-Verlag.

1

Round 2~n-2

⋅ ⋅ • • • ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ • • • ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
• • •

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

• • •

⋅ ⋅ ⋅ ⋅

Ciphertext

S-box

MDS mapping

Key Mixture

S-box S-box

S-box

Key Mixture

Key Mixture

S-box S-box

• • •

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
• • •

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
S-box

⋅ ⋅ • • • ⋅ ⋅ ⋅ ⋅

MDS mapping

Plaintext

Key Mixture

S-box S-box Round 1

Round n-1

Round n • • •

• • • • • •

Figure 1: An SPN with MDS Mappings as Linear Transformation

During encryption, as Figure 1 illustrates, typically the input data of each round is
mixed with round key bits before entering the S-boxes. Key mixing typically consists of the
Exclusive-OR (XOR) of key and data bits. The decryption is composed of the inverse S-
boxes, the inverse MDS mappings, and the key mixtures in reverse order. To maintain similar
dataflow in encryption and decryption, SPNs omit the linear transformation in the last round
of encryption. Instead, one additional key mixture is appended at the end of the cipher for
security considerations. If the S-box and the MDS mappings are both involutions [8] (i.e.,
for any input x, f(f(x)) = x where f(·) represents a layer of S-boxes or the MDS layer),
both the encryption and decryption operations can be performed by the same SPN except
for small changes in the round key schedule in the case of XOR key mixing. We refer to such
a cipher as an involution SPN, of which Anubis and Khazad are examples.

An MDS mapping can be performed through multiplications and additions over a finite
field. In Galois field arithmetic, additions over a finite field are bit-wise XORs, and multipli-
cations can be calculated as polynomial multiplications modulo an irreducible polynomial.
The MDS mapping used in Rijndael is implemented efficiently by several applications of
“xtime” [4] (i.e., one-bit left shifting followed by addition with the irreducible polynomial).
However, this method only suits the case that all entries in the generation matrix have both
low Hamming weights and small magnitudes.

As typically the only nonlinear components in a block cipher, S-boxes must be designed
to promote high security. As a result, each bit of an S-box output is a complicated Boolean
function of input bits with a high algebraic order, which makes it difficult to optimize or

2

evaluate the complexity of S-boxes generally in hardware1. In Section 4, we propose an
efficient hardware model of invertible S-boxes through the logic minimization of a decoder-
switch-encoder circuit. By use of this model, a good upper bound of the minimum hardware
complexity can be deduced for the S-boxes used in SPNs and some Feistel networks (e.g.,
Camellia [9]). The model can be used as a technique for the construction of S-boxes in
hardware so that the space and time complexities are low.

In our work, we take the conventional approach that the space complexity of a hardware
implementation is evaluated by the number of 2-input gates and bit-wise inverters; the time
complexity is evaluated by the gate delay as measured by the number of traversed layers in
the gate network. These measures are not exactly proportional to the real area and delay in a
synthesized VLSI design because logic synthesis involves technology-dependent optimization
and maps a general design to different sets of cells based on targeted technologies. For
example, a 2-input XOR gate is typically larger in area and delay than a 2-input AND
gate in most technologies. As well, it is assumed in this paper that the overhead caused by
routing after logic minimization can be ignored. Although routing affects the performance
in a place-and-routed implementation, it is difficult to estimate its complexity accurately
before synthesis into the targeted technology.

From previous FPGA and ASIC implementations of block ciphers such as listed in [10],
it is well established that S-boxes normally comprise most of a cipher’s area requirement
and delay. Although linear components such as MDS mappings are known to be much more
efficient than S-boxes, it is important for cipher designers to characterize hardware properties
of both S-boxes and MDS mappings on the same basis as is done through the analysis in
this paper.

2 Background

2.1 MDS Mappings

A linear code over Galois field GF(2n) is denoted as an (l, k, d)-code, where l is the symbol
length of the encoded message, k is the symbol length of the original message, and d is the
minimal symbol distance between any two encoded messages. An (l, k, d)-code is MDS if
d = l−k+1. A (2k, k, k+1)-code with generation matrix G = [I|C], where C is a k×k matrix
and I is an identity matrix, determines an MDS mapping from the input X to the output
Y through matrix multiplication over a Galois field as follows:

fM : X 7→ Y = C · X (1)

where

X =









Xk−1
...

X0









, Y =









Yk−1
...

Y0









, C =









Ck−1,k−1 . . . Ck−1,0
...

. . .
...

C0,k−1 . . . C0,0









.

1Some special cases with algebraic structure such as the Rijndael S-box can be efficiently optimized.

3

Each entry in X ,Y , and C is an element in GF(2n).

For a linear transformation, the branch number is defined as the minimum number of
nonzero elements in the input and output when the input elements are not all zero [11]. It
is desirable that a linear transformation has a high branch number when it is used after a
layer of S-boxes in a block cipher, in order for there to be low probabilities for differential
and linear characteristics [2, 3]. A mapping based on a (2k, k, k+1)-code has an optimal
branch number of k+1.

2.2 Bit-Parallel Multipliers

An MDS mapping can be regarded as matrix multiplication in a Galois field. Since the
generation matrix is constant, each element in the encoded message is the XOR of several
outputs of constant multipliers. As basic operators, bit-parallel multipliers given in standard
base [12, 13] are selected in this paper. A constant multiplier can be written as a function
from element A to element B over GF(2n) as follows:

fC : A 7→ B = C · A (2)

where C is the constant element in GF(2n). The expression in binary polynomial form is
given as

bn−1x
n−1 + · · ·+ b0 = (cn−1x

n−1 + · · ·+ c0)(an−1x
n−1 + · · ·+ a0) mod P (x) (3)

where P (x) is denoted as the irreducible polynomial of degree n. An n×n binary matrix FC

is associated with this constant multiplier such that:













bn−1

bn−2
...
b0













= FC ×













an−1

an−2
...
a0













(4)

where

FC =









fn−1,n−1 . . . fn−1,0
...

. . .
...

f0,n−1 . . . f0,0









and fi,j ∈ {0, 1}, 0 ≤ i, j ≤ n−1. The entries in each column of FC are determined by

fn−1,jx
n−1 + · · ·+ f0,j = xj(cn−1x

n−1 + · · ·+ c0) mod P (x). (5)

Since FC is constant, it is trivial to implement a constant bit-parallel multiplier by
bit-wise XOR operations. For example, considering a constant multiplier to perform B =
19H×A over GF(28) where “H” indicates hexadecimal format and P (x) = x8+x4+x3+x+1,

4

we get the binary product matrix F19H and the corresponding Boolean expressions for all
bit outputs as the following:

F19H =































0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
1 0 0 0 0 1 1 0
1 1 0 0 0 0 1 1
0 1 1 1 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 1 0 0 0 1































⇒



























































b7 = a4
⊕

a3

b6 = a3
⊕

a2

b5 = a7
⊕

a2
⊕

a1

b4 = a7
⊕

a6
⊕

a1
⊕

a0

b3 = a6
⊕

a5
⊕

a4
⊕

a3
⊕

a0

b2 = a7
⊕

a5
⊕

a2

b1 = a6
⊕

a4
⊕

a1

b0 = a5
⊕

a4
⊕

a0

.

If we define w(FC) as the count of nonzero entries in FC and wi(FC) as the count of
nonzero entries in the i-th row of FC , the number of 2-input XOR gates used for the multiplier
is upper bounded by w(FC)− n and the delay of gate levels is max{dlog2 wi(FC)e}.

2.3 Three Types of Matrices

In the search of optimized MDS mappings in the next section, we will use three types of
matrices which suit different applications. When an exhaustive matrix search is impractical,
we will limit the search scope to one of the following three matrix types.

• Circulant matrices : Given k elements α0, . . . , αk−1, a circulant matrix A is constructed
with each entry Ai,j = α(i+j) mod k. The probability that a circulant matrix is suitable
for an MDS mapping C is much higher than that of a normal square matrix [14].

• Hadamard matrices : Given k elements α0, . . . , αk−1, a Hadamard matrix A is con-
structed with each entry Ai,j = αi⊕j. Each Hadamard matrix A over a finite field has
the following properties: A2 = γ · I where γ is a constant. When γ = 1, A is an
involution matrix. An involution MDS mapping is required by an involution SPN.

• Cauchy matrices : Given 2k elements α0, . . . , αk−1, β0, . . . , βk−1, a Cauchy matrix A
is constructed with each entry Ai,j = 1/(αi⊕βj). Any Cauchy matrix is MDS when
α0, . . . , αk−1 are distinct, β0, . . . , βk−1 are distinct, and αi 6= βj for all i, j [15]. Although
a Cauchy matrix can be conveniently used as matrix C for an MDS mapping, the
relation between selected coefficients (i.e., α0, . . . , αk−1, β0, . . . , βk−1) and corresponding
MDS complexity is not as straightforward as in the former two matrix types. Hence,
it is difficult to select coefficients to construct a Cauchy matrix that can be efficiently
implemented in hardware.

2.4 A Method to Simplify S-box Circuits

In [16], a method of generating a Boolean function through nested multiplexing is introduced
to optimize gate circuits for the 6×4 S-boxes in DES implementations. Consider that a

5

Boolean function f(a, b, c) with three input bits a, b, and c can be written as

f(a, b, c) = f1(a, b) · c + f2(a, b) · c

where f1(a, b) and f2(a, b) are two Boolean functions and “+” denotes OR. If f3(a, b) =
f1(a, b)⊕ f2(a, b), then

f(a, b, c) = f2(a, b)⊕ (f3(a, b) · c) .

Similarly, a Boolean function with an input of 4 bits can be regarded as a multiplexor using
one input bit to select two boolean functions determined by the other three input bits. This
procedure is repeated until a Boolean function has 6 input bits. A 6×4 DES S-box contains
four of these 6-bit Boolean functions. This general approach can be taken for any size S-box
and works well for optimization of small S-boxes such as the 4×4 S-boxes in Serpent [17].
However, in the case of general invertible 8×8 S-boxes used by many ciphers, this method
can be improved upon, as we shall see.

3 Optimized MDS Mappings for Hardware

3.1 Complexity of MDS Mappings

An MDS mapping has been defined in (1) where each entry Ci,j of matrix C is associated
with a product matrix FCi,j

. Replacing each Ci,j in matrix C with FCi,j
as a submatrix, we

get an nk×nk binary matrix FC as the following:

FC =









FCk−1,k−1
. . . FCk−1,0

...
. . .

...
FC0,k−1

. . . FC0,0









.

Because Y is the matrix product of FC and X , the MDS mapping can be straightforwardly
implemented by a number of XOR gates. The gate count of 2-input XORs is upper bounded
by

GMDS = w(FC)− nk (6)

and the delay is upper bounded by

DMDS = max{dlog2 wi(FC)e} (7)

where 0 ≤ i ≤ n−1.

3.2 The Optimization Method

The hardware complexity of an MDS mapping is determined directly by matrix C. In order
to improve hardware performance, matrix C should be designed to produce low hardware
complexity. However, not every matrix with low complexity is suitable as an MDS mapping.
The mapping associated with matrix C can be tested using the following theorem:

6

Table 1: Four Choices for MDS Search

Search Options # of Candidates Applicable Cases

Exhaustive 2k
2
n small k, n

Circulant Matrices 2kn large k, n

Hadamard Matrices 2kn large k, n as well as involution
Cauchy Matrices 22kn no MDS mappings found

in other matrix categories

Theorem 1 [15]: An (l, k, d)-code with generation matrix G = [I|C] is MDS if, and only if,
every square submatrix of C is nonsingular.

To minimize gate count and delay in hardware, we want to find an MDS mapping
based on a (2k, k, k+1)-code over GF(2n) with low Hamming weights of w(FC) and wi(FC).
Theorem 1 provides us a way to determine whether a matrix candidate is MDS. Theoretically,
the optimal MDS mapping can always be determined through an exhaustive search of all
matrix candidates of C. However, such a search is computationally impractical when k and
n get large. In this case, it is reasonable to focus the search on some subsets of candidates
which are likely to yield MDS mappings. The search scope can thus be limited to circulant,
Hadamard, and Cauchy matrices.

Table 1 describes four choices for the MDS search. We adopt an appropriate searching
method based on the number of candidates to be tested and the required MDS features (invo-
lution or not). If computation permits, exhaustive search is preferred. When an exhaustive
search is impractical, a search in circulant matrices may be performed for non-involution
MDS mappings or a search in Hadamard matrices may be performed for MDS mappings
which are involutions. Since only a subset of MDS mappings are derived from circulant,
Hadamard, or Cauchy matrices, only exhaustive search over all possible matrices (and there-
fore all MDS mappings) is guaranteed to find a truly optimized MDS mapping. However for
large k and n, searching over a subset of MDS mappings is the best that can be achieved.
The objective is to find the candidate with the MDS property and a low hardware cost.
The hardware “cost” could be gate count, delay, or both. Sometimes, no candidates in
the sets of circulant and Hadamard matrices pass the MDS test. In this case, the optimal
mapping will be determined through a search of Cauchy matrices, where each candidate is
deterministically MDS.

Once a candidate is proved to be MDS (or involution MDS), those remaining candidates
with higher hardware cost can be ignored narrowing the search space. The results generated
in this searching method can be used for the hardware characterization of ciphers with MDS
mappings of a specified size.

It is noted that w(FC) − nk just indicates the upper bound of XORs in the circuit.
Two greedy methods introduced in [13] can be applied to the MDS matrix multiplication
in order to further reduce redundancy in the circuit. However, the improvement of using
greedy methods is not significant when w(FC) is already low.

7

Table 2: MDS Search Results

Optimal Non-involution MDS Optimal Involution MDS
MDS Galois P (x) Average Delay Delay

Field w(FC) w(FC) (Gate Matrix w(FC) (Gate Matrix
levels) Type levels) Type

(4, 2, 3) GF(22) 7 H 8 9 2 exhaustive 11 2 exhaustive
(4, 2, 3) GF(24) 13 H 32 17 2 exhaustive 21 2 exhaustive
(4, 2, 3) GF(28) 11D H 128 35 3 exhaustive 48 3 exhaustive
(8, 4, 5) GF(24) 13 H 128 76 3 circulant 88 3 Hadamard
(8, 4, 5) GF(28) 11D H 512 164 3 circulant 200 4 Hadamard
(16, 8, 9) GF(24) 13 H 512 464 4 Cauchy 544 5 Cauchy
(16, 8, 9) GF(28) 11D H 2048 784 4 circulant 928 5 Hadamard

3.3 MDS Search Results

We have implemented a search for the best MDS mappings of various sizes. During the
search, gate reduction is given higher priority than delay reduction because the delay differ-
ence among mappings is generally not evident. The optimal2 non-involution MDS mappings
for bit-parallel implementations for various sizes of MDS mappings are given in Table 2. As
in Rijndael, SPNs using these optimal MDS mappings are more efficient in encryption than
decryption. In Table 2, the average w(FC) is determined by computing the number of matrix
entries and dividing by two. These average w(FC) values are included to show how effective
the optimization work is for each MDS category.

The optimal involution MDS mappings in terms of our complexity analysis are also given
in Table 2. Since the MDS test of Theorem 1 is computationally intensive, an involution
test will be performed first to eliminate wrong candidates. In [8], an algebraic construction
of an involution MDS mapping based on Cauchy matrices is described. This known MDS
mapping is used to prune remaining candidates that produce higher complexity before a
better mapping is found. These two steps reduce the candidate space dynamically.

The categories in Table 2 correspond to many MDS mappings in real ciphers (although
there are minor differences in Galois field selection). For example, Square, Rijndael, and
Hierocrypt at the lower level have non-involution MDS mappings based on (8, 4, 5)-codes
over GF(28) [14, 4, 5]. SHARK has an non-involution MDS mapping based on (16, 8, 9)-
codes over GF(28) [11]. Hierocrypt at the higher level has two choices of non-involution
MDS mappings, based on (8, 4, 5)-codes over GF(24) and GF(232), respectively [5]. Anubis
has an involution MDS mapping based on an (8, 4, 5)-code over GF(28) [6]. Khazad has
an involution MDS mapping based on a (16, 8, 9)-code over GF(28) [7]. None these ciphers
have MDS mappings with complexity as low as their corresponding cases listed in the tables.
The mappings of Rijndael, Anubis, and Khazad have MDS mappings that are close to the
optimal cases in terms of gate counts (i.e., w(FC) = 184, 216, and 1296, respectively), while
Hierocrypt’s MDS mappings have high complexity, similar to the average gate counts.

As Table 2 indicates, the involution MDS mappings are not as efficient as non-involution
MDS mappings after optimization. However, the performance difference between them is

2Here “optimal” means “locally optimal” when the MDS mapping is constrained to a particular matrix
category.

8

quite small. When used in an SPN, the involution MDS mapping produces equally opti-
mized performance for both encryption and decryption. When an SPN uses a non-involution
MDS mapping optimized only for encryption, the inverse MDS mapping used in decryption
has a higher complexity. For example, the MDS mapping used in Rijndael decryption has
w(FC) = 472 and, hence, needs more gates in hardware than the MDS mapping used for
encryption which has w(FC) = 184. When a non-involution MDS mapping is optimized
for both encryption and decryption, the overall hardware cost is similar to an optimized
involution MDS mapping.

The real hardware circuits of these MDS mappings produce complexities with the same
trends as shown in Table 2. For example, using Synopsys Design Compiler (with default
optimization strategy) and TSMC’s 0.18 µm CMOS cell library, we get the area sizes of the
optimal non-involution MDS mappings of the bottom four rows of Table 2 as 1549.0, 3659.0,
8863.0, and 17376.4 µm2, respectively. Their critical time delays are 1.30, 1.33, 2.01, and
2.01 ns, respectively.

4 General Hardware Model of Invertible S-boxes

4.1 Decoder-Switch-Encoder Structure

In this section, we derive a general hardware model of n×n invertible S-boxes by simplification
of a decoder-switch-encoder structure. Using this model, the upper bounds of optimized gate
counts and delay for S-boxes can be deduced.

I1
I0

n×2n
decoder

In-1

X1
X0

switch
Y1
Y0

2n×n
encoder

O1
O0

On-1

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

12 −nX
12 −nY

Figure 2: A General Hardware Structure of Invertible S-boxes

As shown in Figure 2, the n×2n decoder outputs 2n distinct minterms from the n-bit
S-box input. The switch is a wiring area composed of 2n wires. Each wire connects an
input port Xi to an output port Yj, 0≤ i, j≤ 2n−1. Since the S-box is invertible, only one
input port is connected to an output port. Although the wiring scheme embodies the S-box
mapping, the switch does not cost any gates. The output of the switch is encoded through
a 2n×n encoder, which produces the n-bit output of the S-box.

4.2 Decoder

The n×2n decoder is implemented by n NOT gates and a number of AND gates. The
NOT gates generate complementary variables of n inputs. The AND gates produce all 2n

minterms from n binary inputs and their complements.

9

The most straightforward approach is to generate every minterm separately, which costs
2n ·(n − 1) 2-input AND gates plus n bit-wise NOT gates, and a delay of dlog2 ne+1 gate
levels. This approach can be improved by eliminating redundant AND gates in the circuit.
The optimized circuit can be generated using a dynamic programming method.

for i← 0 to n− 1 do

D(i, i)← 0
for step← 1 to n− 1 do

for i← 0 to n− 1− step do

j = i + step
D(i, j)←∞
for k ← i to j − 1 do

temp = D(i, k) + D(k + 1, j) + 2j−i+1

if temp < D(i, j) then D(i, j)← temp
return D(0, n− 1)

Figure 3: Algorithm to Determine Decoder AND-Gate Count

Consider the dynamic programming algorithm in Figure 3, used to compute the mini-
mum number of AND gates in the decoder. Let D(i, j) be the minimal number of 2-input
AND gates used for generating all possible minterms composed of literals Ii, · · · , Ij and their
complements. Thus, D(i, j) = 0 when i = j. If we know two optimal results of subproblems,
say D(i, k) and D(k + 1, j) where i ≤ k < j, all minterms for Ii, · · · , Ij can be obtained by
using AND gates to connect two different minterms in the subproblems, respectively. Since
the number of these pairs is 2j−i+1, this solution needs D(i, k) + D(k + 1, j) + 2j−i+1 AND
gates in total. The algorithm of Figure 3 can be easily modified to determine the actual gate
network used for the decoder. When n = 2k, it can be shown that the number of 2-input
AND gates and bit-wise NOT gates in the decoder is given by

GDec(n) = n
k

∑

i=1

22i−i + n . (8)

The delay, in terms of the number of gate levels, of the decoder is

DDec(n) = dlog2 ne+ 1 .

4.3 Encoder

The 2n×n binary encoder can be implemented using a number of 2-input OR gates. Table 3
gives the truth table of a 16×4 binary encoder. Each output signal Oi is the OR of the 2n−1

input signals that produce “1” in column Oi in the truth table; this is denoted as Oi =
∑

Yk.
If we separately construct circuits for these output signals, it would cost n ·(2n−1−1) 2-input
OR gates and a delay of n−1 gate levels. Fortunately, most OR gates can be saved if the
same intermediate ORed signals are reused.

Considering that the OR is done in a dynamic programming method, some subproblems
used in calculating Oi are also used in calculating Oj if i>j >0. For example, as shown in

10

Table 3: Truth Table of a 2n×n Encoder

Input Output Input Output
Yk O3 O2 O1 O0 Yk On−1 On−2 On−3 · · ·
Y0 0 0 0 0 Y0, · · · , Y2n−3

−1 0 0 0 · · ·
Y1 0 0 0 1
Y2 0 0 1 0 Y2n−3 , · · · , Y2n−2

−1 0 0 1 · · ·
Y3 0 0 1 1
Y4 0 1 0 0 Y2n−2 , · · · , Y3·2n−3

−1 0 1 0 · · ·
Y5 0 1 0 1
Y6 0 1 1 0 Y3·2n−3 , · · · , Y2n−1

−1 0 1 1 · · ·
Y7 0 1 1 1
Y8 1 0 0 0 Y2n−1 , · · · , Y5·2n−3

−1 1 0 0 · · ·
Y9 1 0 0 1
Y10 1 0 1 0 Y5·2n−3 , · · · , Y6·2n−3

−1 1 0 1 · · ·
Y11 1 0 1 1
Y12 1 1 0 0 Y6·2n−3 , · · · , Y7·2n−3

−1 1 1 0 · · ·
Y13 1 1 0 1
Y14 1 1 1 0 Y7·2n−3 , · · · , Y2n

−1 1 1 1 · · ·
Y15 1 1 1 1

(a) n = 4 (b) n ≥ 4

Table 3, the task of calculating On−1 includes the subproblems of calculating the OR from
Y5·2n−3 to Y6·2n−3−1 and calculating the OR from Y6·2n−3 to Y2n−1. These two subproblems
are also included in the calculation of On−3 and On−2, respectively. As a result, the OR
gates needed to solve the recurrent subproblems can be saved. Actually, in the procedure of
calculating Oi, only the subproblem of calculating the OR from Y2i to Y2i+1−1 has to be solved
because all other 2n−i−1−1 subproblems have been solved in the procedures of calculating
On−1, · · · , Oi+1. In this sense, we need 2i−1 OR gates for the subproblem that has not been
solved and 2n−i−1−1 OR gates to OR the results of all 2n−i−1 subproblems. In total, the
count of OR gates for the encoder is

GEnc(n) =
n−1
∑

i=0

[(2i − 1) + (2n−i−1 − 1)] = 2n+1 − 2n− 2 (9)

and the gate delay is
DEnc(n) = n− 1.

4.4 S-box Complexity

Based on the analysis of the decoder-switch-encoder structure, the hardware complexity of
invertible S-boxes is estimated. Since 8×8 S-boxes are very popular in current block ciphers
(e.g., Rijndael [4], Hierocrypt [5], and Camellia [9]), let us examine the usability of this
model in this case. According to (8) and (9), the upper bound of the optimal gate count
for an 8×8 invertible S-box is 806, while the gate count before logic minimization is 2816.
Through experimental simplifications using the Synopsys logic synthesis tool [18], we can

11

1

10

100

1000

10000

100000

1000000

4 5 6 7 8 9 10 11 12 13 14 15 16

Size n

G
at

e
C

ou
nt

DSE Model Reference Model

Figure 4: Gate Count Upper Bounds of S-boxes

0

5

10

15

20

25

30

35

4 5 6 7 8 9 10 11 12 13 14 15 16

Size n

D
el

ay
 (G

at
e

le
ve

ls
)

DSE Model Reference Model

Figure 5: Delay Upper Bounds of S-boxes

Table 4: Gate Counts of Invertible S-boxes in the Decoder-Switch-Encoder Model

S-box Size 4×4 6×6 8×8 10×10 12×12 14×14 16×16
NOT # 4 6 8 10 12 14 16
AND # 24 88 304 1120 4272 16712 66144
OR # 22 114 494 2026 8166 32738 131038

Gate Count 50 208 806 3156 12450 49464 197198
Reference Count 36 192 1020 5112 24564 114672 524268

realize 8×8 invertible S-boxes with a count of area units close to 800 when the target library
is lsi 10k.db. Since a small part of cells in the library have more than 2 inputs, the cell count
is around 550. Such a result is quite close to the upper bound when n = 8.

When considering the implementation of an S-box in hardware, the upper bound of the
gate count increases exponentially with the S-box size n, as shown in Figure 4. Simulta-
neously, the upper bound of delay increases linearly, as shown in Figure 5. In these two
figures, the S-box optimization model described in [16] and presented in Section 2 is used
as a reference and the decoder-switch-encoder model is labelled DSE. When the size of an
S-box is less than 6, the delay of the two models are similar and the gate count of the refer-
ence model is slightly lower. As the size of the S-box increases, the decoder-switch-encoder
model costs less in both gate count and delay. The details of gate counts and delays are
listed in Table 4 and Table 5. Given the fact that about half the gates used in the reference
model are XOR gates which are typically more expensive in hardware than NOT, AND, and
OR gates, the decoder-switch-encoder model would appear to be more useful for hardware
design, both as an indication of the upper bound on the optimal S-box complexity and as a
general methodology for implementing an invertible S-box.

Table 5: Gate Delays of Invertible S-boxes in the Decoder-Switch-Encoder Model

S-box Size 4×4 6×6 8×8 10×10 12×12 14×14 16×16
NOT 1 1 1 1 1 1 1
AND 2 3 3 4 4 4 4
OR 3 5 7 9 11 13 15

Delay 6 9 11 14 16 18 20
Reference Delay 6 10 14 18 22 26 30

12

5 Efficient Rijndael Encryption Implementations

Since Rijndael was selected as AES, it is of great significance to characterize the implemen-
tation of Rijndael in hardware. Each round of Rijndael contains the following operations to
the state (i.e., the intermediate data stored in a two dimensional array) [4]: (1) a layer of 8×8
S-boxes called ByteSub, (2) a byte-wise cyclic shift per row called ShiftRow, (3) an MDS
mapping based on an (8, 4, 5)-code per column called MixColumn, and (4) the round key
mixing through XORs. The MDS mapping is defined over GF(28) and the S-box performs
multiplicative inverse over GF(28) followed by a bitwise affine operation.

With parallel S-boxes implemented through table lookups, a hardware design is proposed
in [19]. Adhering to the structure of the algorithm specification of [4] as in Figure 6(a), this
design achieves a throughput of 1.82 Gbits/sec in 0.18 µm CMOS technology, where each
S-box costs about 2200 gates. Since some operations over the composite field GF((24)2) are
more compact than over GF(28), an efficient Rijndael design in composite field arithmetic
is proposed in [20]. A cryptographic core (i.e., essentially one round mainly consisting of 16
S-boxes and the MDS mapping layer) in [20] only costs about 4000 gates and a delay of 240
gate levels [21] is expected in theory.

no

yes

no

no

yes

yes

Plaintext

Kr

ByteSub

MixColumn

r =10

Ciphertext

K0

r <10

Plaintext

Inversion over GF((24)2)

r <10

LT1

LT2

K10

Ciphertext

(a) Design I (b) Design II

ShiftRow

Kr-1

T(⋅)

T(⋅)

Figure 6: Rijndael Encryption Implementations

Following the normal encryption dataflow, labelled as Design I in Figure 6(a), we apply
the discussed S-box model and MDS bit-parallel implementation method to ByteSub and
MixColumn, respectively. After the first round key K0 is added to the plaintext, the state
goes through an iterative round structure. Regardless of its mathematical definition, Byte-
Sub is implemented as a layer of 16 parallel 8×8 S-boxes using the decoder-switch-encoder
model. Then, the state iteratively proceeds through ShiftRow, MixColumn, and the addi-
tion with round key Kr. ShiftRow is implemented through wiring without any gates needed.
Four bit-parallel MDS mappings perform MixColumn for the 4 columns. As listed in Ta-

13

ble 6, we get an iterative core circuit of one round which costs 13456 gates and produces
a delay of 15 gate levels per round. Because the MDS mappings are omitted in the last
round, the Rijndael encryption of 10 rounds produces a delay of 148 gate levels, a significant
improvement over the delay of 240 gates levels in the design of [20]. The design needs far
fewer gates than in [19].

Table 6: Gate Counts and Delays of Operations in Design I

Operations ByteSub MixColumn Key Addition Total Per Round
Gate Count 12896 432 128 13456

Delay (gate levels) 11 3 1 15

As shown in Figure 6(b), labelled as Design II, we get a more compact circuit through
hybrid operations over GF(28) and its equivalent composite field GF((24)2). The polynomial
P1(y) = y4 + y +1 is used to define GF(24) and the polynomial P2(x) = x2 +x+09H is used
to define GF((24)2). Such a composite field is the same as in the implementation proposed
in [20] for ease of comparison. The conversion from GF(28) to GF((24)2) is denoted as T (·),
and its inverse is T−1(·).

It has been recognized that the multiplicative inverse over GF((2m)n) can have a much
lower complexity than the equivalent inverse over GF(2mn) [13, 22]. As an example, the
equivalent ByteSub over GF((24)2) costs less than one fifth of the gate count of a gen-
eral invertible S-box based on the upper bound of 806 in the decoder-switch-encoder S-box
model. However, the subfield-based operation is normally slow. In the implementation
of Figure 6(b), the inverse over the composite field costs a gate delay of 14 (as deduced
from [12, 13, 20, 21]). Given additional overhead for field conversion and ByteSub’s affine
function, the ByteSub instance has a much longer delay path than in the implementation of
Design I. To mitigate this problem, we can incorporate all linear operations into LT1 in the
first nine rounds and LT2 in the last round as shown in Figure 7, resulting in a delay of 202
gate levels for encryption. The number of gates used in the iterative core circuit is slightly
(about 3%) less than in [20]. The detailed gate counts and delays for Design II components
are listed in Table 7. The Appendix describes the detailed implementation of LT1 and LT2.

Table 7: Gate Counts and Delays of Operations in Design II

Operations 16×Inversion over LT1 LT2 T (·) Key Total
GF((24)2) [12, 13, 20, 21] Addition Per Round

Gate Count 2384 792 304 208 128 3816
Delay (gate levels) 14 5 3 3 1 20

Figure 8 compares the estimated performance of the two designs of Figure 6. Design I
uses the MDS mapping implementation method and S-box model discussed in Sections 2
and 4 directly (while “Design I (Ref.)” uses the reference model in [16] for the S-boxes). In
Design II, the method discussed in the Appendix is used to deduce the linear transformations
LT1 and LT2. As Figure 8 shows, Design II gains a delay reduction of 16% and a slight
reduction in the number of gates compared with the implementation of [20]. Design I is a
much faster implementation with about three times as many gates.

14

T -1(⋅)

A(Qij)

ShiftRow

MixColumn

T(⋅)

Affine Function T -1(⋅)

A(Qij)

ShiftRow

Affine Function

(a) LT1 (b) LT2

Figure 7: Linear Transformations in Design II

0%

100%

200%

300%

400%

500%

Gate count 100% 423% 337% 97%

Delay 100% 74% 62% 84%

Design in [20] Design I (Ref.) Design I Design II

Figure 8: Performance Comparison

0

50000

100000

150000

200000

250000

300000

350000

400000

0 5 10 15 20

Delay (ns)

Area

Design I Design II

(µm2)

Figure 9: Synthesis of Round Structure

The round structures of the two Rijndael designs have been coded in VHDL and synthe-
sized by using Synopsys Design Compiler and TSMC’s 0.18 µm CMOS cell library. Setting
constraints to tradeoff area and delay during synthesis, we get the characteristic curves shown
in Figure 9. The two end points of each curve represent the synthesis results with smallest
delay and area. In line with our performance evaluation, Design I can lead to an iterative
cipher architecture with a throughput up to 4 Gbits/sec (i.e., the smallest round critical
path is 3.04 ns). On the other hand, Design II is useful for an area-restricted or pipelined
application because of its small area requirement.

6 Conclusions

We have presented a mechanism to select the MDS mappings for optimal hardware imple-
mentation of a block cipher. The optimized MDS mapping straightforwardly leads to a
compact and fast implementation at the gate level. As well, a general model of invertible
S-boxes is proposed and the upper bounds of the minimal hardware complexity are deduced
through systematic logic minimization. Since S-boxes and MDS mappings are both widely
used cipher components, the discussed design, optimization and hardware complexity eval-

15

uation provides an analytical basis for studying the hardware performance of block ciphers.
As an example, two efficient hardware designs of Rijndael encryption are considered with
regards to different tradeoffs between gate count and delay, and their synthesis results are
presented.

References

[1] C.E. Shannon, “Communication Theory of Secrecy Systems”, Bell System Technical
Journal, vol. 28, pp. 656-715, 1949.

[2] E. Biham and A. Shamir, “Differential cryptanalysis of DES-like cryptosystems”, Ad-
vances in Cryptology - CRYPTO ’90 , Lecture Notes in Computer Science 537, pp. 2-21.
Springer-Verlag, 1991.

[3] M. Matsui, “Linear Cryptanalysis Method for DES Cipher”, Advances in Cryptology -
Eurocrypt ’93, Lecture Notes in Computer Science 765, Springer-Verlag, pp. 386-397,
1993.

[4] J. Daemen and V. Rijmen, “AES Proposal: Rijndael”, Advanced Encryption Standard,
available on: csrc.nist.gov/encryption/aes/rijndael.

[5] K. Ohkuma, H. Muratani, F. Sano, and S. Kawamura, “The Block Cipher Hierocrypt”,
Workshop on Selected Areas in Cryptography - SAC 2000, Lecture Notes in Computer
Science 2012, Springer-Verlag, pp. 72-88, 2001.

[6] P. Barreto and V. Rijmen, “The Anubis Block Cipher”, NESSIE Algorithm Submission,
2000, available on: www.cosic.esat.kuleuven.ac.be/nessie.

[7] P. Barreto and V. Rijmen, “The Khazad Legacy-Level Block Cipher”, NESSIE Algorithm
Submission, 2000, available on: www.cosic.esat.kuleuven.ac.be/nessie.

[8] A. Youssef, S. Mister, and S. Tavares, “On the Design of Linear Transformations for
Substitution-Permutation Encryption Networks”, Workshop on Selected Areas in Cryp-
tography - SAC ’97, Ottawa, 1997.

[9] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and T. Tokita,
“Camellia: a 128-bit Block Cipher Suitable for Multiple Platforms”, NESSIE Algorithm
Submission, 2000, available on: www.cosic.esat.kuleuven.ac.be/nessie.

[10] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti, and E. Roback,
“Report on the Development of the Advanced Encryption Standard (AES)”, Report on
the AES Selection from U.S. National Institute of Standards and Technology (NIST),
available on: csrc.nist.gov/encryption/aes.

[11] V. Rijmen, J. Daemen, B. Preneel, A. Bosselaers, and E. De Win, “The Cipher
SHARK”, Workshop on Fast Software Encryption - FSE ’96, Lecture Notes in Com-
puter Science 1039, Springer-Verlag, pp. 99-112, 1997.

16

[12] E.D. Mastrovito, “VLSI Design for Multiplication over Finite Fields GF(2m)”, Applied
Algebra, Algebraic Algorithms and Error-Correcting Codes - AAECC-6, Lecture Notes
in Computer Science 357, pp. 297-309, 1989.

[13] C. Paar, “Efficient VLSI Architectures for Bit-Parallel Computation in Galois Fields”,
PhD Thesis, Institute for Experimental Mathematics, University of Essen, Germany,
1994.

[14] J. Daemen, L. R. Knudsen, and V. Rijmen, “The Block Cipher Square”, Workshop on
Fast Software Encryption - FSE ’97, Lecture Notes in Computer Science 1267, Springer-
Verlag, pp. 54-68, 1997.

[15] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North-
Holland, Amsterdam, 1977.

[16] E. Biham, “A Fast New DES Implementation in Software”, Workshop on Fast Software
Encryption - FSE ’97, Lecture Notes in Computer Science 1267, Springer-Verlag, pp.
260-272, 1997.

[17] R. Anderson, E. Biham, and L. Knudsen, “Serpent: a Proposal for the
Advanced Encryption Standard”, AES Algorithm Submission, available on:
www.cl.cam.ac.uk/∼rja14/serpent.html

[18] Synopsys, Online Documentation on Synopsys Design Analyzer, 2000.

[19] H. Kuo and I. Verbauwhede, “Architectural Optimization for a 1.82Gbits/sec VLSI
Implementation of the AES Rijndael algorithm”, Workshop on Cryptographic Hardware
and Embedded Systems - CHES 2001, Lecture Notes in Computer Science 2162, Springer-
Verlag, pp. 51-64, 2001.

[20] A. Rudra, P.K. Dubey, C.S. Jutla, V. Kumar, J.R. Rao, and P. Rohatgi, “Efficient
Rijndael Encryption Implementation with Composite Field Arithmetic”, Cryptographic
Hardware and Embedded Systems - CHES 2001, Lecture Notes in Computer Science 2162,
Springer-Verlag, pp. 171-184, 2001.

[21] A. Rudra, Personal Communication.

[22] V. Rijmen, “Efficient Implementation of the Rijndael S-box”, available on:
www.esat.kuleuven.ac.be/∼rijmen/rijndael.

Appendix: Implementation of LT1 and LT2 in Rijndael

Design II

In order to mathematically represent LT1 and LT2, we denote the input state as {Ui,j}
and the output state as {Vi,j}, where i denotes the row index and j denotes the column

17

index of an element in the state. The binary coefficients of Ui,j and Vi,j in their polynomial
expressions can be written as two tuples Ui,j and Vi,j, respectively. LT1 can be expressed as











V0,j

V1,j

V2,j

V3,j











=











FL02 FL03 FL01 FL01

FL01 FL02 FL03 FL01

FL01 FL01 FL02 FL03

FL03 FL01 FL01 FL02





















U0,j

U1,j−1

U2,j−2

U3,j−3











+











T (63H)
T (63H)
T (63H)
T (63H)











. (10)

In above equation, FL01, FL02, and FL03 are 8×8 submatrices derived from the following
expression:

FL0i = FT · F0i · FA · F
−1
T , i = 1, 2, 3 (11)

where F0i is the product matrix associated with 01H, 02H, or 03H in GF(28) and matrix FA

is associated with the affine function A(·) inside ByteSub (i.e., A(X) = FA · X + 63H). FT

is the 8×8 transformation matrix associated with T (·)(i.e., T (Ui,j) = FT · Ui,j). Its inverse
is F−1

T .

Similarly, LT2 is a function defined as











V0,j

V1,j

V2,j

V3,j











= (FA · F
−1
T)











U0,j

U1,j−1

U2,j−2

U3,j−3











+











63H
63H
63H
63H











. (12)

Once we know the matrices FT , FL0i, and the result of FA · F
−1
T (as listed in the

following), the gate networks consisting of XORs can be straightforwardly derived for LT1
and LT2. The greedy method I described in [13] is used to reduce redundancy in the gate
network, where small modifications are made in order to avoid the increase of delay.

FT =































1 0 1 0 0 0 0 0
1 0 1 0 1 1 0 0
1 1 0 1 0 0 1 0
0 1 1 1 0 0 0 0
1 1 0 0 0 1 1 0
0 1 0 1 0 0 1 0
0 0 0 0 1 0 1 0
1 1 0 1 1 1 0 1































FL01 =































0 0 0 0 1 0 0 0
0 1 0 1 0 1 0 0
1 0 1 0 0 0 1 0
0 0 1 0 0 1 0 1
1 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0
1 0 0 0 1 0 1 0
0 0 0 1 0 1 0 0































FL02 =































1 0 1 0 1 0 1 1
1 1 1 1 1 0 1 1
0 0 1 1 1 1 1 0
0 1 1 1 0 1 1 0
0 0 1 1 0 0 1 0
1 1 1 0 1 1 1 0
0 0 1 1 1 1 0 0
0 0 0 0 1 0 1 1































FL03 =































1 0 1 0 0 0 1 1
1 0 1 0 1 1 1 1
1 0 0 1 1 1 0 0
0 1 0 1 0 0 1 1
1 0 1 1 0 0 1 0
1 1 0 0 1 0 1 0
1 0 1 1 0 1 1 0
0 0 0 1 1 1 1 1































18

FA · F
−1
T =































1 0 0 0 0 1 1 0
1 1 0 1 0 0 0 0
1 0 0 0 1 1 1 0
0 1 1 1 1 0 1 1
0 0 0 0 0 1 0 1
0 1 0 1 1 0 0 1
1 0 0 0 1 1 1 1
0 1 1 0 0 1 0 1































19

