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Abstract: In this Letter we examine the cryptanalysis of a class of block ciphers
referred to as substitution-permutation networks or SPNs. Specifically, we present a
novel attack applicable to tree-structured SPNs. Because it uses a known plaintext
approach, the attack is preferable to previously outlined chosen plaintext attacks. As
well, it is shown that the attack is applicable to networks which are simple extensions

of tree-structured SPNs.

Introduction: The concepts of “confusion” and “diffusion” introduced by Shannon
[1] form the basis for a class of private key block ciphers referred to as substitution-
permutation networks or SPNs. These networks, first suggested by Feistel [2], encrypt
by passing an N-bit data block through R rounds of substitutions followed by permu-
tations of the bit positions. The substitutions are accomplished by dividing the block
into small n-bit sub-blocks and using N/n n-bit mappings referred to as S-boxes.
The s-th S-box in round r is defined as a bijective mapping S, : X, — Y,, where
X,, = [XUIXT X090, X € {01}, and Y, = [V Ly 090 v e {01},
The cipher is keyed by applying 7¢ bits of the key to select each S-box mapping from

a set of mappings. A simple example of an SPN is illustrated in Figure 1.

Tree-structured SPNs or T'S-SPNs are a fundamental class of SPNs that were initially
introduced by Kam and Davida [3] and subsequently investigated by Ayoub [4]. These
networks have the property that, assuming that each S-box output bit is a non-
degenerate mapping of the S-box input bits, each ciphertext bit may be represented
as a tree function of all plaintext bits. T'S-SPNs are of interest because they are the
only SPN structure known to provably satisfy the important cryptographic property
of completeness. The network of Figure 1 with the last round removed so that there

are 3 rounds of substitutions would be an example of a T'S-SPN.

In [5], Heys and Tavares, extending the work of Anderson [6] on the cryptanalysis

of bit-based tree ciphers, demonstrated the susceptibility of TS-SPNs to a chosen



plaintext attack. Subsequently, Millan, Dawson, and O’Connor [7] outlined an im-
provement in the efficiency of the attack and O’Connor [8] showed that these networks
are susceptible to differential cryptanalysis, also a chosen plaintext attack. The crypt-
analysis presented in this Letter is preferable to these attacks because it is a known
plaintext attack and is applicable to networks that are constructed by extending

TS-SPNs to more rounds.

Cryptanalysis of TS-SPNs: Consider a TS-SPN. Let Y g, represent an n-bit sub-block
of ciphertext bits associated with the output of a particular last round S-box Sy, and
let X g, represent the input to S-box Sg,. From the definition of tree-structured
networks, Yl(RS) = f;(P) where f; represents an R-level tree function of the N-bit
plaintext input, P, and XiRS) = f/(P") where P’ is a vector of N/n plaintext bits

which form the input to an (R — 1)-level tree function, f;.

The cryptanalyst will attack the cipher by first determining a subset of the key bits
called the target sub-key. For example, define the target sub-key to consist of key bits
associated with the S-boxes which compose the tree function f; plus the key bit(s)
from the last round S-box Sg,. The attack proceeds by obtaining several known
plaintext-ciphertext pairs and executing trial encryptions of the known plaintexts for
all possible values of the target sub-key. The remaining key bits should be arbitrarily
selected in each encryption. When the correct target sub-key is used, the value of bit
XfRS) will be correct in the trial encryption of all plaintexts. Each of the remaining
n — 1 input bits to Sk, will be correct with a probability of 1/2. As a result, the trial
ciphertext sub-block Y i, will be the same as the actual ciphertext sub-block with
a probability of 1/2"1. If the wrong sub-key is used, we expect that X}RS) will be
correct only about 1/2 the time. As a result the trial ciphertext sub-block will be the
same as the actual ciphertext sub-block with a probability of 1/2".

Once the target sub-key is determined, the remaining key bits may be revealed by
targeting other tree functions or by exhaustive search. The complexity of the attack

(defined as the number of encryption operations required) is given approximately by



Ng - Np where Np represents the number of known plaintexts needed to distinguish
the correct sub-key from incorrect sub-keys and N represents the number of sub-key

trials required.

To determine Np consider a hypothesis test with hypothesis Hy being that the trial
target sub-key is incorrect and hypothesis H; being that the trial target sub-key is
correct. The probability that the trial ciphertext sub-block is the same as the actual
ciphertext sub-block is py = 1/2" under Hy and p; = 1/2" ! under H,. Given a
trial of Np encryptions, the number of times that the trial and actual ciphertext sub-
blocks are the same follows the binomial distribution but may be approximated by a
Gaussian distribution with mean p; = Np-p; and variance 0? = Np-p;i-(1=p;) = Np-p;

for hypothesis H;, 7 € {0,1}, where, for practical values of n, (1/27), (1/2" 1) <« 1.

For convenience, we shall assume that the acceptable probability of error in selecting
a hypothesis is the same for both Hy and H,. Hence, designing the hypothesis test so
that the probability that a hypothesis is incorrectly chosen is given by erfe(a) leads
to po + aoy = p1 — aoy where small values for « are sufficient to provide a suitably

small probability of error in the hypothesis test. Consequently, Np is given by
Np = a?(14+V2)%- 2" (1)

Hence, assuming the S-box size to be fixed, the number of known plaintexts required

in the attack is a constant, regardless of the block size.

Assuming that each S-box in the network is keyed independently of the other S-boxes,
the number of sub-key trials required is given by N ~ 27515 where 7g is the number
of key bits used per S-box and 7g is the number of S-boxes that are targeted and is

given by ol R
s = (N/n) Y (1/n) +1 = (N/n) [%

Hence, assuming S-boxes of fixed sized, the number of key trials required in the attack

] +1. (2)

is O(2°Y) where c is a constant. Since the number of required known plaintexts is a



constant, the complexity of the attack increases exponentially in the block size if the

network size is increased without changing the size of the S-boxes.

Example 1: Consider a 64-bit TS-SPN which uses 4-bit S-boxes with each S-box
requiring one unique key bit (i.e., 7¢ = 1). Such a TS-SPN consists of 3 rounds and
requires a total of 48 key bits. Letting o = 4, Np = 1.5 x 2!% and N = 2. Hence,
the complexity of the attack is 1.5 x 2'6 encryption operations which is significantly

248

less than the encryptions required in an exhaustive key search.

Cryptanalysis of Extended TS-SPNs: Consider extending a TS-SPN of Ry rounds
to R rounds such that R = Ry + (Ry — 2). Assume that the network uses the
same permutation for each round selected from Ayoub’s class of cryptographically
equivalent permutations (CEP) [4]. It can be shown that this construction ensures

that any Ry consecutive rounds are a T'S-SPN. The network of Figure 1 is an example

of an extended TS-SPN with Ry = 3.

Using a meet-in-the-middle approach, the attack outlined in the previous section
can also be applied to such extended TS-SPNs. In this case, Np and N may be

determined as before with 7¢ now given by

1/n — 1/nR/2+1] )

s = 2(N/n) [ 1 1/n
Example 2: Consider a 4-round SPN derived by extending the TS-SPN of Example
1 by one round. Using one key bit per S-box results in a total of 64 key bits. Letting
a =4, Np =1.5x2' and Ni = 2!% Hence, the complexity of the attack is 1.5 x 22
964

encryption operations which is significantly less than as in an exhaustive key

search.

Conclusion: We have presented a novel cryptanalysis of tree-structured SPNs and
noted that the attack can be extended to other related networks. The analysis clearly
demonstrates the vulnerability of such ciphers to attacks requiring only a small num-

ber of known plaintext-ciphertext pairs.
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Figure 1. SPN with N =27, n =3, and R =4



