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Abstract— This paperdevelopsanalyticalmodelsfor the avalanchecharacteristicef a classof
block ciphersusually referredto as substitution-permutatioencryptionnetworksor SPNs. An
SPNis consideredo display good avalanchecharacteristicsf a onebit changein the plaintext
input is expectedo resultin closeto half the ciphertextoutputbits changing. Good avalanche
characteristicareimportantto ensurehata cipheris not susceptibldo statisticalattacksandthe
strengthof an SPN’savalanchecharacteristicenay be considerechisa measuref therandomness
of the ciphertext. The resultspresentedn this paperdemonstrateéhat the avalanchebehaviour
of encryptionnetworkscan be improved by using larger S-boxes. As well, it is shownthat
increasingthe diffusion propertiesof the S-boxesor replacingthe permutationsby diffusive

linear transformationss effective in improving the network avalanchecharacteristics.
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I. Introduction

Sinceits introductionin 1977, the Data Encryption Standard(DES) [1] hasbecomethe most
widely applied private key block cipher. Initial analysisof the DES algorithm suggestedhat

the 56-bit key size was too small and that DES would eventuallysuccumbto an exhaustive
key searchusing specializedhardware[2]. Recently,a hardwaredesignto effectively break
DES usingexhaustivekey searchwasoutlined by Wiener[3]. Unfortunately,it is not generally
known how to efficiently modify the DES algorithmto allow for different block or key sizes.
This suggestghatthereis a needto replaceDES with an efficient, secure flexible block cipher
whosedesignis well understood.The resultspresentedn this paperare a contributionto the

achievemenbf this objective.

Avalancheis an importantcryptographicpropertyof private key block ciphers. We saythat a

ciphersatisfiegsheavalancheriterionif changinga singleplaintextbit is expectedo resultin one
half of the ciphertextbits changing.Satisfactionof this criterionis necessaryor the ciphertext
to be randomand, dependingon the keying methodology canassistin makinga cipherresistant
to certain statistical attackssuch as key clustering attacks[4][5]. In this paperwe develop
an analytical model of the avalanchecharacteristicof an important class of block ciphers,
referredto as substitution-permutatioencryptionnetworks(SPNs). We examinethe tendency
of a networkto display goodavalanchecharacteristicas the numberof roundsis increasedand
investigatethe effect of modifying variousdesignconstraintssuchas S-boxsize. The objective
of the analysisis to determinearchitectureghatwill allow an efficient implementatiorwith the

fewestnumberof roundsnecessaryo achievea suitablelevel of security.

II. Background

Feistel[6] was the first to suggestthat an SPN architectureconsistingof roundsof nonlinear



substitutiongS-boxes)onnectedy bit positionpermutationsvasa simple,effectiveimplemen-
tation of Shannon’grinciple of a“mixing transformation’basedon the conceptf “confusior?
and“diffusion” [7]. (Note thatthis basicSPNarchitecturediffers from a DES-like architecture
which also usessubstitutionsand permutationgor a mixing transformationwhich operateson
only half the block at a time.) It hasbeenshownthat this basic SPN structurecan be usedto
constructcipherswhich possesgood cryptographigoropertiessuchas completenesfg] and,as
shownin [9], resistancdo differential cryptanalysis[10] and linear cryptanalysis[11]. Many
modernblock ciphers,including DES[1], FEAL [12], LOKI [13][14], andIDEA [15][16], while
deviating from the basic SPN model, are basedon Shannon’sfundamentalconcepts. In this
paperwe considerthe basic SPN model becausecomparedo other ciphers,it is a simple but

elegantstructurefor which it is generallypossibleto prove security properties.

In general, we shall consideran N-bit SPN to be composedof R roundsof n x n S-
boxeswith eachround consistingof M = N/n S-boxes. We denotethe plaintext input as
P =[P, P, ... Py], P; € {0,1}, andthe ciphertextoutputas C = [Cy C; ... Cy], C; € {0,1}.
S-boxesn the networkaredefinedasa bijective mappings : X — Y whereX = [X; ... X,],
X; € {0,1}, andY = [}Y7 ... V,,], ¥i € {0,1}. Theinterconnectiorbetweenconsecutiverounds
of S-boxess typically achievedby a permutationof the bit positionsfrom the outputof a round
to the input of the next round suchthat no two output bits of an S-box are connectedo one
S-boxin the next round.A simple exampleof an SPNis illustratedin Figure 1 with N = 16,

R =4, andn = 4.

In generalthe SPNciphermay be keyedby applyingkey bits to the S-boxesusingoneor both

of the following methods:

(1) selectionkeying: key bits are usedto selectwhich mappingfrom a setof mappingsis to



be usedfor a particular S-box, and

(2) XOR keying: key bits are XORed with the network bits prior to enteringan S-box.

Since,by definition,the avalanchecharacteristiof a cipherassumeshatthe cipherkey is fixed,
the methodof keying the S-boxesdoesnot affect the analysisin this paper. Hence,in this
paperwe do not addresdhe issueof keying the cipher. However,the relationshipbetweenkey

avalancheand a key clusteringattackis thoroughlydiscussedn [5].

When consideringthe avalanchecharacteristicof a block cipher, we are interestedin the bit
changesor XOR differenceswithin the network whentwo plaintexts,P’ and P", are selected
asinputssuchthatwt(AP = P' & P") = 1 where AP = P’ & P” representshe bit-wise XOR
of P andP” andwt(-) representshe Hammingweight of the specifiedvector. The ciphertext
changeresultingfrom P’ and P” is representedby AC. We refer to an S-box input change
as AX andan S-box outputchangeas AY. The numberof input and output bit changesof
an S-boxis given by wt(AX) andwt(AY), respectivelyithe numberof ciphertextbit changes

is representedy wit(AC).

The concepif avalanchen SPNswasinformally introducedby Feistel[6] andFeistel,Notz, and
Smith[17] asthe propertyof a smallnumberof bit changesn plaintextleadingto an“avalanche”
of changesn subsequentoundsresultingin a large numberof ciphertextbit changesWe shall

define avalancheformally as follows:

Definition 1: A cipher is said to satisfy the avalanche criterion if, for each key, on
average half of the ciphertext bits change when one plaintext bit is changed. That is,
E (wt(AC) | wt(AP) = 1) = N/2.

An extension to this definition was proposed by Webster and Tavares [18] and is referred to as

the strict avalanche criterion (SAC). Boolean functions satisfying SAC and their relationships to
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cryptographic systems have been examined by several authors [19][20][21][22][23].

Definition 2: A cipher is said to satisfy the strict avalanche criterion (SAC) if, for each key,
each ciphertext bit changes with a probability of 1/2 when a single plaintext bit is changed. That
is, PIAC; =1 AP =¢;) = 1/2for 1 <t < Nand1 <: < N wheree; = [e1 €3 ... ey]
with e; = 1 and ej = 0, § # 1.

It is apparent that the avalanche criterion and SAC are very similar. SAC imposes the extra
conditions that a particular plaintext bit is changed and all ciphertext bits are equally likely to
change given the one bit plaintext change. Therefore, although a network satisfying SAC must
satisfy the avalanche criterion, satisfaction of the avalanche criterion does not necessarily imply
satisfaction of SAC.

The avalanche criterion and SAC are of interest in the design of ciphers since the satisfaction of
these criteria is a necessary condition for the randomness of the ciphertext. However, it should
be noted that satisfaction of these criteria is not sufficient to ensure the security of the cipher.
For example, the powerful cryptanalysis techniques of differential and linear cryptanalysis have
been very effective on ciphers which have been shown to reasonably satisfy SAC. In particular,
although DES has been found experimentally to reasonably satisfy SAC after a modest number
of rounds [18], differential and linear cryptanalysis have been applied effectively on the full 16

round algorithm [24][11].
ITI. Modelling Avalanche

In this section, we develop models for the avalanche characteristics of SPNs. We shall consider
two genera network models, distinguished by the nature of their permutation component. The

models are;

Model A — Stochastic Permutation



* a network where the permutation between any two rounds is modelled as a random

variable whose values are equally likely
Mode B — Deterministic Permutation

» anetwork which has a specified fixed permutation between rounds

In either case, the identity permutation is used before and after the last round of S-boxes.

For both network models, we assume any set of one or more input bit changes to an S-box results
in the number of output bit changes represented by the random variable D, i.e,, D = wit(AY).
We assume the likelihood of a particular non-zero value for D is given by considering that all
possible values of AY belonging to the set of 2" — 1 non-zero changes are equally likely. Hence,

the probability distribution of D is given by

Po0=0={; ek o1 0
and
0 ,wi(AX) =0
Pp(D =d) = z(ng_)l Wi (AX) > 1 2)

for 1 < d < n. Note that the S-box model essentially represents an average over al randomly
selected S-boxes and is not intended to characterize the behaviour of an actual physically
realizable S-box. However, as experimental evidence suggests, modelling the number of output
changes of each S-box as a random variable appears to be a suitable approximation when
considering an SPN constructed using randomly selected fixed S-boxes.

For ease of notation, throughout the paper we will represent the probability of a specific value =
of random variable Z, P(Z = z), as simply P(z). Further, for random variable D representing
the number of output bit changes of an S-box, we maintain the subscript D on the probability

operator P in order ensure clarity. Hence, Pp(D = d) is represented by Pp(d).
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(@) Model A — Stochastic Permutation

Model A is implemented by recursively calculating the probability distribution of the number
of bit changes after each round of substitutions given a one bit plaintext change. The recursive
probability is taken over the uniform distribution of permutations. Let 1V, represent the random
variable corresponding to the number of bit changes after round r given a one bit plaintext
change, i.e,

M
W, = Z wt(AY ) (3

s=1
where we have included the subscripts » and s for AY to represent the output change of an
S-box numbered s, 1 < s < M inround r, 1 <r < R. We wish to determine the probability
distribution P(W, = w,) given P(W,_1 = w,_1).
Let /, be a value of the random variable L, representing the number of S-boxes in round r
affected by a change. Under the assumptions of the model, the number of output bit changes
in round r is strictly dependent on the number of S-boxes in round r affected by an input bit

change and, therefore, from the total probability theorem, we have

M
P(w,) =Y P(w, | ) P(L,). (4)
=1
Hence, the probability distribution of interest is given by
M N
P(wy) =Y Plw, [1;) Y Pl | wy—1)- Pwy—1). (5)
l

r=1 wr_1:1

In our methodology, it is necessary therefore to determine an expression for the two conditional
probabilities: P(w, | I;) and P(l, | w,_1).
Consider first P(I, | w,—1), the probability that /, S-boxes in round r are affected by changes

given that there are w,_; output changes of the round r — 1 substitutions. This can be
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determined by considering the number of selections of w,_; bit changes, Ny (w,—1), and the
number of selections of w,_; bit changes that affect exactly I, S-boxes, Nrw (I, w,—1), and

is, subsequently, given by

P(Zr | wr—l) = NLW(ZTawT—l)/NW’(wr—l) (6)
where
Nwz(w) = (Z) )

and Nrw(l,w) is determined as in Lemma 2. Equation (6) incorporates the stochastic nature
of the permutation by assuming that any selection of w,_; bits from the output of the round
r — 1 substitutions results in a random selection of the w,_; corresponding input bits to round
r where all selections of the w,_; input bits are equally likely.

Lemma 1 (Generalization of Inclusion-Exclusion Principle [25, p.106]): Consider a set of
objects, each of which may or may not possess each property from a total set of ¢ properties.
If the properties are symmetric, the number of objects which possess exactly ¢ properties, T'(#),

0 <t < ¢, isgiven by

(1) = i(—l)”(ﬁ) (4)r ) ®)

where I'*(z) represents the number of objects which have at least : particular properties.

Lemma 2: Assuming that each round consists of M n x n S-boxes, the number of selections of

w input bit changes to a round that affect exactly [ S-boxes is given by

Now (L w) = A(M — 1, w, M) (9)
where
M .
A(M — 1w, M) = )Mt MY 4+ 10
W= 3 (0 () aiean a0
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with
A*(i,w, M) = <(M - i)”) (12)

w

Proof: Let A(M — [,w, M) represent the number of selections of w bit changes so that exactly
M — [ S-boxes do not have input bit changes. Therefore, Ny (l,w) = A(M — [,w, M).
Subsequently, letting A*(7, w, M) represent the number of selections such that at least  particular
S-boxes do not have input changes and applying Lemma 1 leads directly to equation (10). The
quantity A*(z,w, M) is given in equation (11) as the number of selections of w bit changes for
the remaining M — ¢ S-boxes which may or may not have changes. ]
Consider now the determination of P(w, | I,), the probability distribution of output changes of
the round r S-boxes given that the inputs to /, S-boxes are affected by changes from round r — 1.
Letd = [dq dy ... d; ] where d; € {1,...,n} isthe number of output changes, w¢(AY), in the

-th S-box that has had an input change. Define

Iy
A:{d|2di:w,} (12)
=1

to represent the values of d for which there are a total of w, output bit changes. It may be

seen that

P(w, |I;) = P(d) (13)

deA

where P(d) represents the probability of a particular d occurring. Since each S-box operates

independently, we have

P(d) =[] Po(d). (14)
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The probability of P(w, |I,) could be computed by examining al d € {1,...,n}” to find al
d € A. However, this is very computationally intensive since there are n'» possible values of
d for a particular value of /,. In order to determine the complete distribution for P(w, | {;)
we must consider all values of /, and, therefore, there are N(d) different values of d to be

considered, where

For example, a 64-bit network using 4 x 4 S-boxes, would require consideration of approximately

232 yector values.

Instead, it is more efficient to determine P(w, | [,) by summing over only unique unordered
arrangements of the elementsof d. We introduce a vector of I, elements, d, derived by sorting the
elements of d from smallest to largest. That is, d = [d;, d;, ... d;, | whered;, < di, < ... < d;, .
Now in order to determine the complete distribution of P(w, | /,) the number of vector values

to consider is given byl

~ M+n
N(d) - < o ) _1 (16)
Therefore, for a 64-bit network using 4 x 4 S-boxes there are only about 2'? different vector

values to consider.

1 Thevaue of N ((Nl) is determined in the following manner [26, p.38]. Consider sorted arrangements of the
M S-boxes according to the values of wt(AY,;), 1 < s < M. There are n + 1 classes of S-boxes corresponding
to 0 < wt(AY,,) < n and a sorted arrangement is identified by placing n imaginary separators between S-boxes
when the class changes. Hence, the number of arrangements is given by considering the selection of the placements
of the n separators among M + n different elements. From this, one is subtracted to account for the fact that the

placement of all separators after M S-boxes is equivalent to /., = 0 and is invalid.
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Define ® to be the set of possible d for a particular value of ... For each sorted vector d there are

I/ (1! 32!...3,!) corresponding unsorted d where 8, = #{i | 1 <: < l,, d; = a}. Therefore,

[!
Plw, | )= Y mp(d) (17)

dednA

where P(d) is given as before and ® N A represents the set of all d for which there are a total

of w, output bit changes.

It can aso be shown that P(w, | I,) can be efficiently calculated by
lr . —_ -
Plan )= S o () (00 (18)
0

(2 =" & ZAN
However, in order to establish the foundation for the remainder of the analysis in the paper, we
have explicitly examined the calculation of P(w, | [,) by the methodology of summing over the
unordered arrangements of the elements of d. It should be noted that, for many networks of
practical size, the methodology of computing over all unordered arrangements of the elements
of d as in equation (17) is reasonable. However, in cases where very large networks are of
interest, equation (18) may be used as a more efficient means of computation.

Using equations (5), (6), and (17) we can now recursively determine the probability distribution
of bit changes and thereby determine the expected number of bit changes after round r, E (W;),
given an initial distribution of

1 ,wg=1
P(Wozwo):{o 32#1 (19)

where Wy represents the number of plaintext bit changes. Subsequently, we may determine the
minimum number of rounds required to reasonably satisfy the avalanche criterion.

Note that, due to the stochastic nature of the permutation, for » > 2 all output bits are equally
likely to change regardless of the input change distribution and, hence, E (W, )/N can be used

as a measure of the network’s adherence to SAC after » rounds.
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(b) Model B — Deterministic Permutation

In general, modelling the avalanche characteristics of an SPN with a given fixed permutation
is a more difficult problem than the stochastic permutation case. The approach to the problem
depends on the permutation. One particularly interesting class of permutations was identified by
Ayoub [27]. Thisclassis similar to the permutation structure introduced by Kam and Davida [8]
as a methodology for providing completeness for networks which satisty N = n®. (A network
is said to be complete if each output bit is a nondegenerate function of al input bits.) Ayoub
extended this structure to a class of permutations, referred to as Cryptographically Equivalent
Permutations (CEP), to be used in a network with an arbitrary number of rounds. Permutations
belonging to the class of CEP have the characteristics that they are optimal (in the sense that
they achieve completeness in the fewest number of consecutive rounds), allow the use of the
same permutation for each round, and are applicable to networks which satisfy the constraint
that log N/log n < 3. In this section we consider two useful permutation structures belonging

to the class of CEP.

In order to simply describe the permutations we introduce the concept of bit partitions. The N
bits of an SPN round may be divided into partitions of »? contiguous bits (or » contiguous S-
boxes) with the first partition beginning at the first bit. A bit coordinate position in round » may
be identified by (@,a,@) where p,, 1 < p, < N/n?, represents the partition to which the bit
belongs, 3,, 1 < 5, < n, represents the S-box number within the partition, and b,, 1 < b, < n,
represents the bit number within the S-box. Assuming that bit « of round » — 1 is connected to

bit ; of round r, the two permutations of interest satisfy the following constraints:

14



Permutation Type I:

N =n?

1= (]/3\1”—1 = 17§r—labr—1)

(20)
j = <ﬁ1‘ - 173\1" :/Z;T—la/b\r - §7_1>
Permutation Type II:
N =rn?
1 = (ﬁr—la/s\r—la,g?"—1> (21)

J (]/3\1" - br—lagr - ﬁr—la br - 3\r—l>-

The network of Figure 1 uses a Type | permutation. Figure 2 illustrates an SPN utilizing a Type
Il permutation for which N = 27, R = 4, and n = 3.
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Permutation Type I:

The recursive model for permutation Type | is based on finding the probability distribution
of the number of affected S-boxes in a round given the probability distribution of the num-
ber of affected S-boxes in the previous round. Therefore, we are interested in determining
P(Lryi =lryr [ Ly = 1) = P(lryr | 1)

Let P*(6,d) represent the probability that a specific d occurs and at least 6 particular S-boxes

are not affected in the next round. Applying Lemma 1, it may be seen that

o B l,! ot (6N (1 b
Pl =n =11 = 3 55573 (- (J((g)P 6.d) (@)

where d, ®, and /3, are defined as before. The factor [,!/(51!52!...3,!) represents the number
of different values of d corresponding to a sorted vector of ®.
The probability that at least 6 particular S-boxes are not affected in the next round from an S-box

with d; output changes, P*(¢é | d;), is smply determined by

P8 | dy) = (nd_i6>/<:;i> (23)

where the numerator represents the number of ways of selecting d; bits from the n — é bits
connected to the S-boxes that may be affected in the next round and the denominator is the total

number of ways of selecting d; bits from n bits. Subsequently, P*(é,d) is given by

I Ir

p(s.d) =[] P*(6,di) = [[ P*(6 | di) - Pp(di). (24)

Assuming an initial probability distribution of

P(lell):{é 2; (25)
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it is simple to recursively calculate P(l,41) using

M

Pst) = 3 Pyt |1) - P(L,), (26)
l,=1

The probability distribution of bit changes for a particular round can be determined by equation
(4) where P(w, | I,) is determined as in equation (17). As before, the tendency of a network
to satisfy the avalanche criterion as the number of rounds is increased can be examined by

calculating the expected bit changes after each round, E (W;).

Note that, since we assume that the S-box properties are symmetric and the permutation is
symmetric, any variation between the probabilities of different output bits changing are eliminated
after the second round and, hence, the SAC nature of a network using permutation Type | can

be considered to be given by E (W;)/N for r > 2.
Permutation Type II:

The model for this scenario determines the probability distribution of bit changes per round
by recursively considering the probability distribution of an unordered list of the number of

S-boxes with input changes per partition.

Leth, = [b{” .. BY| where bl = [A{”) .. 7| with ") = 1 if the i-th Sbox of the
j-th partition in round r has an input change and 2"") = 0 if it does not. Then, wt <ﬁ§-”)
represents the number of S-boxes in partition 5 of round  with input changes. Now define g, =
{ g\ g,(f)} to represent the elements of {wt(ﬁ@) .o wt (ﬂ,([)” conveniently sorted from the

smallest element to the largest element. That is, g, = [gY) g,(f)] = [wt(ﬁ&?) . wt (ng))}

where wt (ﬁg:)) <...<wt (ﬁg?) We are interested in determining P(g, | gr—1)-

Lemma 3: For an SPN using permutation Type |1, let SX) represent a set of n S-boxes in round

r — 1 where each S-box belongs to partition : and 5};') represent a set of n S-boxes in round r
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where each S-box is the :-th S-box of a partition. Then the connections between Sﬁf) and Sg)
are equivalent to permutation Type |I.
Without loss of generality, let the number of S-boxes of S( ) with input changes be g(T Y and

the number of S-boxes of S() with input changes be determined by

1 =3"h, (27)
7=1

Hence, the probability distribution of interest is given by

P(gr | g—1) ZHP< )/(ﬂ)) (29)

h,€7 =1 r

where 7 is the set of h, which, when the weights of their elements are sorted, correspond to
g,. Asimplied by Lemma 3, we can determine P( ) | 9, (r— U) using equation (22). Note that
the denominator in the product term is necessary since we are only interested in one particular

selection of ZEi) S-boxes for each h, in the summation.

Let T represent the set of all possible g,. The probability of g, can be calculated using

P(g)= > Plgr|gr—1) Plgr—1) (29)
gr—leT
and letting
1 ,g1=[0..01]
Plgy) = {O , otherwzise. (30)

The probability of bit changes for round r is smply calculated from

P(w;) = Z P(w; | gr) - P(gr) (31)
greT
where
P(w, | gr) = de;m 51'52 By P(d) (32
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with
=Yg\ (33)
Jj=1

and d, @, A, and 33, are defined as before and P(d) is determined as in equation (14). Again,
the avalanche behaviour of the network may be determined by E (¥,.). It should be noted that
the methodology of equations (27) to (33) is computationally intensive and, hence, is limited
to networks of modest size. For example, networks which use permutation Type Il with » = 8
and N = 512 cannot be modeled since equation (28) cannot be evaluated in a practical amount

of time.

Dueto the symmetries in the S-boxes and the permutation, for » > 3, anetwork using permutation
Type Il will have al output bits changing equiprobably and, hence, its SAC behaviour revealed

by examination of E(W,)/N.
(c) Results

The resulting graphs of expected bit changes as a function of the number of roundsin the network
are presented in Figure 3 for both model types applied to a network with N = 64 based on 4 x 4
and 8 x 8 S-boxes. Note that in al cases the expected number of bit changes approaches the
ideal number of N/2 = 32 as the number of rounds in the network is increased. As well, there
is only a small difference in the performance of Model A and Model B, implying that little
advantage is gained in using an optimal set of permutations.

It is apparent that the network composed of 8 x 8 S-boxes satisfies the avalanche criterion in
fewer rounds than the network composed of 4 x 4 S-boxes. Define ¢ to be the error of an R
round network from perfectly satisfying SAC such that e = | 1— E (W,)/(N/2) |. The results
of Model A and B indicate that a 64-bit SPN reasonably satisfies SAC, with ¢ < 107°, for

R >16 whenn =4 and for R > 7 when n = 8.
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In order to assess the validity of the analytical methods used, Figure 3 also includes experimental
graphs of the avalanche behaviour for the networks using the deterministic permutations. For
the network with 4 x 4 S-boxes, a set of 16 S-boxes was randomly selected and used in al
rounds with the rounds connected by permutation Type I1; for the network with 8 x 8 S-boxes,
a set of 8 S-boxes was randomly selected and used in all rounds with the rounds connected by
permutation Type |. The results presented are the expected ciphertext bit changes for a single
input bit change based on 10° randomly selected plaintexts. From the graphs, it is apparent
that the experimental results agree very closely with the analytical results of Model B. For the
network based on 4 x 4 S-boxes, the relative errors of the experimental values were less than
2% of the values determined from the analytical model; for the network using 8 x 8 S-boxes,
the relative errors were less than 1%. For both network types, the relative error decreased
significantly as the number of rounds increased: for a large number of rounds (R > 6), the

relative error in both networks was about 0.05%.

IV. Improving Avalanche Characteristics of Networks

In this section we consider two methodologies for improving the avalanche characteristics of
SPNs: (1) improving the diffusion characteristics of the S-boxes and (2) using a diffusive linear
transformation between rounds of S-boxes. In both cases, we assume that the permutation is
stochastic so that the analysisis tractable and since Figure 3 suggests that a stochastic permutation

is a good approximation of a deterministic permutation model.

(a) Diffuson Characteristics of S-boxes

The avalanche characteristics of an SPN may be improved by selecting S-boxes for the network

which have strong diffusion characteristics, i.e., the property that a small input change leads to
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a large output change. For example, one property which improves the diffusion characteristics
of an S-box is the property that we refer to as guaranteed avalanche (GA).

Definition 3: An S-box satisfies the property of guaranteed avalanche of order ~ if, for a one
bit input change, at least v output bits change, i.e., wt(AX) =1 = wt(AY) > ~.

Note that a guaranteed avalanche of order v = n is not possible in a bijective S-box since
there are n S-box input changes such that wt(AX) = 1 and only one S-box output change
satisfying wt(AY) = n. Guaranteed avalanche order 2 is an acknowledged DES S-box design
criterion [28].

Consider the S-box model of equations (1) and (2). In order to modify the model to create
a general model for an S-box which satisfies guaranteed avalanche of order ~, we shall apply
equation (1) and replace equation (2) with probabilities conditioned on the number of input bit
changes. Letting Pj,(d) = Pp(d | wt(AX) =1) and P}(d) = Pp(d | wt(AX) > 1), equation

(2) is replaced with

jﬁ ,d >y
Pp(d) = 2 (7) (34)
(J)_7 yd <~
and
"y _n-PL(d
Pp(d) = (d;n — _ljf : (35)

for 1 < d < n. Notethatit is assumedhat the value of v is realizablein bijective S-boxes
andthat equationg34) and (35) representalid probabilities. For example,y # n sincey = n

implies P (n) = 1 and P},(n) < 0.

The motivationfor the modelis similar to the previousS-box model. The probabilities P}, (d)

and P})(d) are not intendedto reflect probabilitiesthat are necessarilyfound in any physically

realizableS-box. Rather,the S-box model characteristicare determinedfrom an averageof
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all S-boxeswhich satisfy the guaranteedavalancheorder. The casefor wt(AX) = 1 arises
from assumingthat selectionof AY is uniformly distributedover the set of valuessuchthat
D = wt(AY) > ~. Consideringthe caseof wt(AX) > 1, we seethat the denominatorof
equation(35) representshe numberof valuesof AX for which wt(AX) > 1 andthe numerator
representshe numberof valuesof AY for which wt(AY) = d, adjustedo removethe expected

numberof AY valuesusedfor the n valuesof AX for which wt(AX) = 1.

Consideringthis new S-box model within the contextof the Model A network with stochastic
permutationsthe developmentollows similarly to equations(4) through (19), exceptthat we
mustnow considerseparateljthe caseof an S-boxwith a one bit input changeandthe caseof

an S-box with more than a one bit input change.

Let I/ representhe numberof S-boxesin roundr for which wt(AX) = 1 and!, representhe

numberof S-boxesin roundr for which wt(AX) > 1. Now equation(5) becomes
lr

M
Plwy) =YY Plw, | 1,1)

I,=11,=0

N
> Pl 0y [weey) - Pw,—y). (36)

r—1 1

Considerfirst the determinationof
P(l, 1 Jwr—1) = Nppw (I, by we—1) /Ny (wir—1) (37)

where Ny (w) is given by equation(7) and Ny (', [, w) is determinedasin the following
lemma.

Lemma 4: Assumingthateachroundconsistsof M n x n S-boxesthe numberof selectionsof
w input bit changego a round that affect exactly ! S-boxessuchthat !’ S-boxeshavechanges

in one input bit only is given by

Nppw (UL w) = (?) -B(l', 1, w) (38)
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where 1
B(I',1,w) = Z (—1)i—l'<;,> (f,)B*(z’,l,w) (39)

and

(=i

B*(i, 1, w) :an(—l)]< ; )A*(j,w—i,l—i) (40)

j=0
with A*(j,w — ¢,[ — ¢) calculatedfrom equation(11).
Proof: Let B(!',1,w) representhe numberof selectionsof w bit changedor ! S-boxessuch
that eachS-box has at leastone input bit changeand exactly I’ S-boxeshave only a one bit
input change.Allowing for the numberof ways of selecting!/ S-boxesfrom the total setof M
S-boxes, Ny rw(l',1,w) is given by equation(38).
Using the generalizatiorof the inclusion-exclusiorprinciplein Lemmal, B(!', [, w) is straight-
forwardly determinedasin equation(39), where B*(z, [, w) representshe numberof selections
suchthat at least: particular S-boxeshave a one bit input changeand all / S-boxeshave at
least one input bit change.
Thequantity B*(z, [, w) is givenin equation(40) asthe numberof selectionf singlebit changes
within the i S-boxes;»?, multiplied by the numberof selectionssuchthat the remainingw — :
bit changesare placedso that eachof the remaining/ — : S-boxeshasat leastone input bit
changing(or equivalentlythatno S-boxeshaveno input bit changes).The numberof selections
of the remainingw — ¢ bit changesare determinedusing Lemma 1 where we have utilized
A*(j,w — 1,1 — 1) from equation(11) asthe numberof selectionsof the w — ¢ bit changesso

thatat least; of the/ — : S-boxesdo not havea bit change. O]

We may now determine P(w, | I.,1,) similarly to equation (13) except that we must now consider
the two different cases for the number of input bits changed. Define the vector d' = [d’l dy ... d’lJ

such that d; € {~, ...,n} represents the number of output changes, wt(AY), of the i-th S-box for
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whichwt(AX) = 1. Similarly, definethevector d” = |dj d5 ... &) _; | suchthat d} € {1,...,n}
represents the number of output changes, wt(AY ), of the ¢-th S-box for which wt(AX) > 1

We can determine the probability using

Plw, [ 1,5) =Y P(d,d") (41)

(d’,d")eA*

where
I L1
A* = {(d’,d")ZdH Zd’;wr}. (42)
=1 =1

The probability P(d',d") is given by

-1,

P(d',d") = H Py (d}) (43)

HPD (d})

To improve the efficiency of the algorithm calculating the conditional probability, we can
conveniently consider unordered arrangements of the elements of the vector pair (d’,d"). Define
d’ and d” to be vectors derived by sorting d’ and d”, respectively. Let ®* represent the set
of possible values for (3’, a”) for a particular value of 7, and I.. For each sorted vector pair
<H’,Ei”) there are

Lt (=)
giLLBt g

corresponding vector pair values for (d’,d") where 8, = #{i |1 <i <[, d; = o} and 3 =

Ng» = (44)

#{t|1<i<l, -1, d =a}. The resulting equation for the conditional probability can be

written as

Plw, | 1,L)= Y Ng.-P(d,d"). (45)
(d’,d")ed*nA*

The probability P(w,) can now be determined using equation (36) and, subsequently, E (W)

can be calculated.
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The results for 64—bit SPNs using 4 x 4 and 8 x 8 S-boxes with different GA orders are illustrated
in Figure 4 and Figure 5 respectively. The graphs of Figures 4 and 5 suggest that satisfaction of
the avalanche criterion occurs in fewer rounds if the S-boxes satisfy higher orders of guaranteed
avalanche. However, it is important to stress that it is unclear whether it is possible to find
S-boxes that satisfy high orders of guaranteed avalanche and that still reasonably satisfy other

known design criteria such as nonlinearity [29].

(b) Linear Transformations Between Rounds

It is alsopossibleto improvethe avalanchecharacteristicef a block cipherbasedon Shannon’s
principlesof confusionanddiffusion by usinga suitableinvertible linear transformatiorin place
of a permutationbetweerroundsof S-boxes.Let N be evenandconsiderthe classof invertible

linear transformationsdefined by

V =#(L(U)) (46)

whereV = [V} V5 ... V] is the vector of input bits to a round of S-boxes,U = [U; U; ... Uy]
is the vector of bits from the previousround output, £(U) = [L;(U) ... Ly(U)], and 7 is a
stochastigpermutationuniformly selectedrom the setof all permutationgasin Model A). The

i-th elementof £(U) is definedby

L(U)=U10..0U_10Uiy @ ...0 Uy. 47

Using sucha transformatiorbetweerroundsis usefulin rapidly diffusing bit changeswithin the

network as is seenin the following lemma.

Lemma 5: Let Z = £L(U) whereZ = [7; Z; ... Zy]. Let AU = [AU; ... AUy]| be the XOR

differencebetweentwo arbitrary valuesof U, and AZ = [AZ; AZ, ... AZy] is the resulting
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XOR differencefor Z. Then

wt(AU) ,wt(AU) even

wHAZ) = { N — wi(AU) ,wt(AU) odd. (48)

Hence usingthelineartransformatiorof equation(46) betweerroundsof substitutionss helpful
in promotingavalanchebecauseehangesf small, odd weight are translatednto large changes.
For example,if N = 64, a onebit changefrom the outputof roundr becomesa 63 bit change
to the input of round r + 1. Applying the linear transformationto the output of eachround
of S-boxesresultedin the dramaticimprovementof the avalanchebehaviourof the network as
illustratedin Figures4 and5. It shouldbe notedthatthe linear transformatiorof equation(46)
doesnot effectively diffuse bit changeswvhen the numberof bit changess even: changesof
small, evenweightaretranslatednto changef the samesmall weight. For example,a two bit

changefrom the outputof roundr becomesa two bit changeto the input of roundr + 1.

V. Conclusion

We havepresentedinalyticalmethodsor modellingthe avalanchecharacteristicef substitution-
permutationencryptionnetworks. The resultsclearly indicatethat networkscomposecdf large
8 x 8 S-boxessatisfy the avalanchecriterion and SAC in fewer roundsthan those basedon
smaller4 x 4 S-boxes. Furtherit is shownthat strengtheninghe diffusion propertiesof the
S-boxesor using a diffusive linear transformationbetweenroundscan improve the avalanche
characteristic®f the network, facilitating the constructiornof efficient cipherswith fewerrounds

requiredfor adequatesecurity.
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