
A Simple Power Analysis Attack Against the Key

Schedule of the Camellia Block Cipher

Lu Xiao1 and Howard M. Heys2

1QUALCOMM Incorporated, lxiao@qualcomm.com
2Electrical and Computer Engineering, Faculty of Engineering and Applied Science,

Memorial University of Newfoundland, howard@engr.mun.ca

Abstract

This paper presents a simple power analysis attack against the key schedule of Camellia.
The attack works for the smart card environment which leaks the Hamming weight of data
being processed, making use of the Hamming weight to deduce all key bits. It is shown that
determining the cipher key given accurate power analysis data is very fast and does not require
any pair of plaintext and ciphertext.

1 Introduction

Camellia [1] is a 128-bit block cipher with a Feistel round structure and supports 128-, 192-, and 256-

bit keys. In February 2003, Camellia was included together with Advanced Encryption Standard

(AES) into the NESSIE portfolio of 128-bit block ciphers [2]. Both the encryption and key schedule

of Camellia can be easily implemented on an 8-bit platform [1].

This paper explores Camellia’s potential vulnerability to a simple power analysis attack when

implemented in an 8-bit smart card environment. A general description of power analysis attacks

is available in references [3] and [4]. Using the Hamming weight information leakage model of [4],

our attack on Camellia runs faster than the attack on AES and does not require any pairs of

plaintext and ciphertext. The attack presented only considers a theoretical, idealized simple power

analysis. Further details on the effects of real measurement noise on the applicability of the attack

are discussed in [5].

1

T1

T0

⊕ Σ1

S-function

KL

T0
T2

T3

T4

T5

P-function

⊕ Σ2

S-function

T5
T6

T7

T8 P-function

KA

T9 ⊕ T0= T8

T8

T13

⊕ Σ3

S-function

T10

T11

T12 P-function

⊕ Σ4

S-function

T14

T15

T16 P-function

T17

T13

T9

T5 ⊕ T1= T4

Figure 1: Camellia’s 128-bit Key Schedule

2 Description of Camellia’s 128-Bit Key Schedule

Camellia’s 128-bit key schedule generates 26 subkeys of 64 bits from the original key KL and

another derived key KA of 128 bits. KA is derived from KL as shown in Figure 1, where Σi is

unique for each round i, S-function performs byte-wise substitution, and P -function performs a

linear transformation. Each subkey can be obtained as one half of KL or KA after they are left

rotated for a specific number of bits. This number can be 0, 15, 30 (only for KA), 45, 60, 77 (only

for KL), 94, or 111, depending on the round number.

3 Hamming Weight Attack

To attack a block cipher with a 128-bit key running on an 8-bit processor, the leakage of Hamming

weight information for each key byte as determined by the measurement of power consumption

straightforwardly enables attackers to reduce the possible key space from 2128 to 290.43, as discussed

in [6]. However, depending on the nature of a block cipher, the implementation of a Hamming weight

attack could be much simpler than this reduced workload. For example, our attack exploits the

redundancy in the key schedule of Camellia and determines all key bits without knowledge of any

plaintext and ciphertext pair.

2

0
1

0
0

0
2

0
3

0
5

0
4

0
6

0
7

left rotation

0
9

0
8

0
A

0
B

0
D

0
C

0
E

0
F

1
2

1
1

1
3

1
4

1
6

1
5

1
7

1
0

KL (16 bytes)

KL<<<45

KL[0, …, 7]

0
F

0
E

1
0

1
1

1
3

1
2

1
4

1
5

1
7

1
6

1
8

0
D

•

0
3

0
4

 • 0
7

0
6

0
8

0
9

0
B

0
A

0
C

0
5

1
8

•

Figure 2: An Example of Subkey Generation
(gray bits: assumed (8m+4)-bit chunk where m=2)

3.1 Requirements for the Attack

The attack works with three prerequisites: 1) access to the power consumption information, 2) the

ability to identify the clock cycles for individual steps in the key schedule (e.g., using the method

suggested in [3]), and 3) a monotonic relation between power and Hamming weight.

3.2 Attack Against Subkey Generation

Our attack is implemented through two steps. The first step exploits the rotational relations

between KL and the resultant subkeys; the second step will exploit relations in the derivation of

KA from KL. Several 64-bit subkeys are derived from KL through left rotation for a certain number

of bit positions (denoted by “<<<”). Since attackers can only check the Hamming weight of each

byte, the rotation offsets (15, 45, 60, 77, 94, 111) provide information determined by the equivalent

shift in bit positions as given by the remainder when the rotation offset is divided by 8.

As shown in Figure 2, each rotation of KL gives a chance to consider bits with a different

byte partition due to the shift of bit-positions with bytes. Assuming 8m+4 adjacent bits of KL

are unknown, up to 5m Hamming weights collected through power measurement can be used to

validate candidates for these key bits. Based on these checks, a dynamic pruning method can be

used to reduce the search space over all 8m+4 bits.

The key KL may be divided into 4 overlapped parts KL[124∼127,0∼31], KL[28∼63], KL[60∼95],

and KL[92∼127] so that they can be processed quickly and independently. Each part produces a

number of 36-bit candidates (i.e., m = 4). Any four candidates from these four parts can be joined

into one KL guess when their overlapped bits are consistent. When applied to Camellia’s key

3

schedule with 20 randomly generated cipher keys, an average of about 238 candidates of the full

KL pass this step.

3.3 Attack Against the Derivation of KA

In this section, we examine the second step in the attack, which gains more key information from

the steps involved in the derivation of key KA. In the first round illustrated in Figure 1, each

byte of KL’s left half (denoted as T0), is XORed with constant Σ1. The result is denoted as

T2 = T0 ⊕ Σ1. The following S-function is byte-wise substitution, denoted as T3 = S(T2). If we

still use KL[124∼127,0∼31] and KL[28∼63] separately to prune partial key space, two more Hamming

weight checks for each hypothetical byte can be performed by comparing the Hamming weights in

T2 and T3 with the corresponding values from measurement. Each output byte of the P -function

(denoted as T4 = P (T3)) depends on at least 5 input bytes. To continue the candidate pruning, we

combine any two candidates of KL[124∼127,0∼31] and KL[28∼63] with consistent overlapped bit values

to form 8 byte guesses of KL’s left half KL[0∼63], denoted as T
′

0. The output of round function with

input T
′

0 is denoted as T
′

4. If T
′

0 = T0, then T
′

4 = T4. Because the Hamming weight per byte in T4

is known, another 8 Hamming weight checks can be performed to examine each T
′

0. In most cases,

only 1 or 2 possible candidates of the left half of KL can pass this step.

For each T
′

0 remaining, the right half of KL (denoted as T1) is guessed. The second Feistel

round in Figure 1 is expressed as: T5 = T4 ⊕ T1, T6 = T5 ⊕ Σ2, T7 = S(T6), T8 = P (T7) .

Similarly to the left half guess, KL[60∼95] and KL[92∼127] can be considered separately to prune the

partial key space by using three more Hamming weight checks for each byte in T5 ∼ T7. Then, any

two candidates of KL[64∼99] and KL[96∼128,0∼3] with consistent overlapped bit values are combined

to form a candidate of KL’s right half KL[64∼127], denoted as T
′

1. The output of the round function

with input T
′

0 ⊕ T
′

4 is denoted as T
′

8. If T
′

0 = T0 and T
′

1 = T1 , then T
′

8 = T8. Thus, another

8 Hamming weight checks can be performed to validate each T
′

1 candidate. Similarly, Hamming

weight checks can be applied from T9 to T17.

We applied this attack to Camellia’s 128-bit key schedule with 10,000 randomly generated

sample keys. The experimental results listed in Table 1 show that 2 rounds of Hamming weight

checks in KA’s derivation is enough for unique key identification in most cases. The attack can be

4

easily extended to 192-bit and 256-bit key schedules [5].

Table 1: Experimental Attack Results with 104 Samples of 128-Bit Camellia Cipher Keys

Scope of HW checks T0 ∼ T7 T0 ∼ T8 T0 ∼ T9 T0 ∼ T10

Cases with unique key identification 14.04 % 97.49 % 99.98 % 100 %

Ave. # of spurious keys 5.3588 0.0264 0.0002 0

4 Conclusion

When Camellia is implemented in a device with Hamming weight leakage due to power mea-

surements, it is very important for implementors to consider appropriate countermeasures. The

vulnerability of many ciphers to similar attacks and practical countermeasures have been discussed

in [5].

References

[1] K. Aoki et al., “Camellia: a 128-bit block cipher suitable for multiple platforms - design and

analysis”, SAC 2000, LNCS 2012, pp. 39–56, Springer-Verlag, 2001.

[2] New European Schemes for Signatures Integrity and Encryption (NESSIE) website. Available

at www.cosic.esat.kuleuven.ac.be/nessie.

[3] E. Biham and A. Shamir, “Power analysis of the key scheduling of the AES candidates”, Second

Advanced Encryption Standard (AES) Candidate Conference, Rome, Italy, 1999.

[4] S. Mangard, “A Simple Power-Analysis (SPA) attack on implementations of the AES key ex-

pansion”, ICISC 2002, LNCS 2587, pp. 343–358, Springer-Verlag, 2002.

[5] L. Xiao, Implementation Analysis of Block Cipher Components and Structures. PhD thesis,

Memorial University of Newfoundland, 2003.

[6] T. S. Messerges, E. Dabbish, and R. Sloan, “Examining smart-card security under the threat

of power analysis attacks”, IEEE Trans. on Computers, vol. 51, pp. 541–552, April 2002.

5

