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Abstract — ICEBERG is a block cipher that has been recently 
proposed for security applications requiring efficient FPGA 
implementations. In this paper, we investigate a compact ASIC 
implementation of ICEBERG and consider the novel application 
of concurrent error detection to protect the implementation 
from fault-based attacks. The compact architecture of 
ICEBERG requires about 5800 gates with a throughput of 552 
Mbps in an ASIC implementation based on 0.18 µm CMOS 
technology.  The addition of an effective multiple parity 
concurrent error detection scheme to protect the hardware from 
fault attacks results in a 62% area overhead.  

I. INTRODUCTION 
A compact hardware implementation of a block cipher is 

attractive for low-cost embedded applications. Unfortunately, 
the Advanced Encryption Standard (AES) [1] is not optimal 
for compact hardware implementation due to the large eight-
bit substitution boxes and differences between the encryption 
and decryption circuits.  

ICEBERG [2][3] has been recently proposed as a secure, 
efficient block cipher targeted to FPGA implementation. It is 
a 64-bit block cipher with a 128-bit key. The substitution 
layer of ICEBERG is based on small 4-bit S-boxes resulting 
in a reduced hardware complexity for the encryption and 
decryption processes. ICEBERG can be implemented in 
different architectures such as loop and pipelined designs.  

In this paper, we investigate the compact ASIC 
implementation of ICEBERG. Further, in order to minimize 
the impact of fault-based attacks, we investigate the design of 
a multiple parity based concurrent error detection scheme for 
the compact implementation. 

II. ICEBERG ALGORITHM 
ICEBERG is an iterative involutional block cipher (that 

is, each round operation is an involution) with 16 round 
functions for the encryption and decryption processes. Each 
round function is composed of a non-linear layer, γ, and a 
linear layer, εK, including key addition. The nonlinear layer is 
composed of successive application of S-boxes and bit 
permutations. 

Two types of 4×4 S-boxes are applied in ICEBERG with 
the substitution layers S0 and S1 separately composed of 4×4 
S-boxes which are used to perform the substitution for the 64-
bit input data. The bit permutation layer P8 consists of eight 
parallel permutations on 8-bit blocks of data. The non-linear 
layer can be represented as: 

010
6464 88:}1,0{}1,0{: SPSPS≡→ γγ  

In software implementations, the γ  function can be easily 
replaced by eight identical 8×8 S-boxes. 

The linear layer, εK, includes the consecutive application 
of a linear diffusion layer, bit permutations and a linear key 
addition layer σK which is composed of a bitwise XOR 
between the 64-bit data block and 64 bits of round key. The 
diffusion layer, D, is constructed with a simple involutional 
matrix multiplication. Two types of bit permutation are 
applied in εK: P64 and P4. The P64 layer performs a 64-bit 
permutation and it guarantees that two bits from the same 
byte are always mapped to two different bytes. The P4 layer 
applies in parallel sixteen 4-bit permutations. Hence, the 
linear layer function can be represented as follows: 

64464:}1,0{}1,0{: 6464 PDPP KKK σεε ≡→  
The round function ρK can be represented as: 

γερρ KKK ≡→ :}1,0{}1,0{: 6464  
The key schedule of ICEBERG consists of key expansion 

and key selection. Each 128-bit round key is expanded based 
on the previous round key with the application of non-linear 
substitution boxes, shift operations and bit permutations. 
After the key expansion, the key selection function will be 
applied to the 128-bit round key to select the 64 bits to be 
mixed with the data.   

Since ICEBERG is an involutional cipher, the decryption 
process is performed in the same way as encryption even 
without using the round keys in a reverse order as long as the 
constant values applied in the key schedule are properly 
chosen. As a result, the encryption and decryption processes 
can share the same hardware. 

III. PREVIOUS IMPLEMENTATIONS 
The ICEBERG block cipher is designed for efficient 

FPGA implementations. Three architectures of ICEBERG 
implemented in FPGA have been proposed in [3] for different 
optimization purposes. A fully pipelined unrolled architecture 
and a half pipelined architecture are designed for high-speed 
hardware implementation and a loop architecture is designed 
for compact hardware implementation.   

Based on the FPGA implementation results for a Xilinx 
Virtex-II device, the fully pipelined unrolled architecture of 
ICEBERG can achieve a maximum throughput of about 19 
Gbps, while the loop architecture requires minimum 
hardware resources of about 631 slices with a throughput of 
about 1 Gbps. However, with the consideration of the ratio of 
throughput/area, the half pipelined architecture achieves the 
highest hardware efficiency.  
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IV. COMPACT ASIC IMPLEMENTATION 
Although ICEBERG was proposed for efficient FPGA 

implementations, its ASIC implementations are also very 
efficient. We have explored a compact architecture of 
ICEBERG and implemented it using a 0.18 µm CMOS 
standard cell library based on the TSMC 1P6M process. 
Synopsys Design Analyzer (version 2001.08) is applied as the 
synthesis tool. 

A. Compact Architecture of ICEBERG 
Our compact design utilizes a loop architecture based on 

one round function of ICEBERG and is illustrated in Figure 
1. Only one register is inserted in the round function. The 
major components of the encryption process include the S0 
substitution layer, S1 substitution layer, diffusion layer, key 
addition layer and permutation layers. The S0 layer is 
composed of sixteen 4×4 S0-boxes which are used for 
substitution of the 64-bit input data in parallel. The S1 layer is 
constructed similarly to S0 with sixteen 4×4 S1-boxes. The 
diffusion layer performs a multiplication with a binary 
involutional matrix and is implemented in linear XORs on 
sixteen 4-bit data blocks. The key addition layer is 
implemented in XORs between the input data and the round 
keys. The permutation layers, P8, P64, and P4, are simply 
implemented as wirings and do not require any logic gates. 
Since ICEBERG is a 64-bit involutional block cipher, the 
decryption process can share exactly the same hardware with 
the encryption process. 

The round function of the key schedule is composed of 
key expansion and key selection. The major components 
consist of the left or right shift layer, the S0 layer, the 
permutation layer P128 and the Boolean operations in key 
selection. The left or right shift layer can be simplified as just 
wirings of the input data. The S0 layer in the key schedule is 
implemented in the same way as in the encryption process. 
The 128-bit permutation layer P128 is correspondingly 
implemented as wirings. Since no part of the datapath is 
shared between the encryption process and key schedule, the 
round keys used for each round function can be generated on 
the fly and no storage is needed to store all the round keys.   

B. Hardware Performance Analysis 
Based on the compact architecture of ICEBERG, a 0.18 

µm CMOS standard cell library is applied in our hardware 
performance analysis. During the synthesis, we focus on area 
optimization. The area of the circuit is evaluated in terms of 
equivalent 2-input NAND gate counts. 

Table 1 shows the hardware complexity analysis of each 
component of ICEBERG. The whole datapath implemented 
in ASIC requires about 5.8k gates with a maximum frequency 
of 138 MHz. The encryption process needs sixteen clock 
cycles and since 64 bits of data can be processed in parallel, 
the throughput of the implementation can reach 552 Mbps. 
As shown in Table 2, these results compare favourably to 
compact implementations of other block ciphers, especially 
when considering the tradeoffs between compactness and 
throughput.   For example, although the AES implementation 
in [4] is more compact, this comes at a great expense of speed 
resulting in a throughput to area ratio of more than 30 times 
less than the implementation of ICEBERG investigated in 
this paper. 

 

 
Figure 1 Compact Architecture of ICEBERG 

Table 1. Hardware Complexity Analysis of Compact ICEBERG 

Component Area (gates) Percentage 
S-boxes 2400 41.2% 

Registers 1536 26.4% 
Multiplexers 1024 17.6% 

XOR & Boolean Logic 857 14.7% 
Datapath 5817 100% 

 
Table 2. Comparison of Compact Cipher Implementations 

Cipher 
Implementation 

Area 
(gates) 

Throughput 
(Mbps) 

Throughput /Area 
(Mbps/kgates) 

ICEBERG 5800 552 95.2 
AES [4] 3400 9.9 2.9 
AES [5] 6700 112 16.7 

Camellia [6] 14100 143 10.1 
 

V. CONCURRENT ERROR DETECTION DESIGN 
In a hardware implementation of a block cipher, transient 

or permanent faults can be intentionally induced to mount a 
fault-based cryptanalysis [7]. Such methods exploit the secret 
information leaked by the erroneous behaviour caused by 
injected faults. It is known, for example, that implementations 
of AES can be susceptible to fault attacks based on various 
fault models, such as stuck-at faults [8]. Concurrent error 
detection (CED) is a technique to detect any transient or 
permanent faults that occur in the system and, by suppressing 
the resulting faulted outputs, thereby mitigate the 
susceptibility of the system to attack.  

Numerous approaches to CED for ciphers have been 
proposed. Approaches based on hardware redundancy [9] 
compare the output of cipher operations from the datapath to 
an alternate datapath performing the same computations. 
Such an approach is effective in detecting a broad range of 
permanent or transient faults, but costs greater than 100% of 
the area of the original circuit. The use of CED based on error 
control coding schemes is a very effective mechanism for 



detecting both permanent and transient errors, with minimal 
area overhead [10][11][12][13]. 

In this paper, we investigate a multiple parity based CED 
scheme for ICEBERG with the parity generated for each byte 
of the input 64-bit data block. For the operations of the cipher 
algorithm, the parities of the output are predicted from the 
input data and then are compared with the parities of the actual 
output to detect any mismatch caused by faults.  

A. Multiple Parity Based CED Scheme 
In our parity based CED scheme, we have applied parity 

to both linear and nonlinear components. For the nonlinear 
substitution in the design of the datapath, the 4×4 S-boxes are 
extended to 4×5 S-boxes by attaching a parity bit generated 
from the XOR of both input parity and output parity. Two 
consecutive parities attached in the S-boxes are XORed with 
each other to predict the output parity because all the parities 
in our CED scheme are byte based. The predicted output 
parities are then compared with the parities of the actual S-
box outputs. For the CED circuit designed for linear 
components such as multiplexers and registers, the byte-
based input parities directly pass through duplicated smaller 
multiplexers and registers without any modification to predict 
the parities of the actual output.  

The most complex part of the CED scheme for the 
encryption process is the protection of the three layers of 4×4  
S-boxes. Although two layers of the byte-based permutation 
P8 are inserted between the S-box layers, the parities remain 
the same after those permutations. Therefore, no parity 
prediction circuit is necessary for P8. For the S-box, one 
extra parity bit is stored as the fifth bit of each S-box and the 
parity is generated by the XOR of both input parity and 
output parity. Figure 2 illustrates the three processing steps of 
the parity modification for the S-boxes. The permutation 
layers between the substitution layers are not shown in this 
figure since they will not change the byte-based parities.  

 

 
Figure 2. CED for S-boxes 

In the above figure, the notation P(⋅)  represents the parity 
of one byte of data and “⊕” represents the XOR operation. 
We can see that in the CED circuit for the three layers of S-
boxes, the parities are predicted by the XORs of input parities 
and attached parities stored in the S-boxes. Accordingly, the 
parities of the actual output are equal to the modified parities 
of the input if no error occurs in the S-boxes. All the faults 
that lead to single-bit errors and most multiple fault scenarios 
would be detected under such a parity based CED scheme 
designed for these three layers of S-boxes. 

For the CED scheme of the encryption process, three 
check points are inserted. The first check point is inserted for 

the parity checking between the parities of the actual output 
of the first 64-bit XOR layer and the predicted parities of the 
input data of the first 2-to-1 multiplexer. Consequently, any 
fault that occurs in the first multiplexer and first XOR layer 
can be detected by the first check point. The second check 
point is inserted after the three layers of S-boxes to detect any 
fault that occurs in the S-box hardware. The third check point 
is inserted after the successive components of diffusion and 
second XOR layer for key addition. Due to the property of 
diffusion, the input parities will not change after the diffusion 
and, hence, no parity modification is needed for that 
component. In addition, the CED circuit for the second XOR 
layer is the same as the first one.  

In the key schedule, three more check points are inserted 
in the corresponding CED circuit. The fourth check point is 
used to detect faults that occur in the multiplexers and 
registers. The fifth check point is inserted after the nonlinear 
layer of S0. The generation of the parity bit attached as the 
fifth bit in the S0 layer of the key schedule is different from 
that used in the encryption process. These S-boxes are 
extended from 4×4 S-boxes to 4×5 S-boxes with a fifth output 
bit being the parity of just the four output bits of the S-box. 
Therefore, the fifth check point is used to compare the parities 
of the actual output of the S-boxes and the predicted output 
parities stored in the fifth bit of the S-boxes. The sixth check 
point is inserted after the key selection component. Because 
Boolean operations like AND and OR are included in this 
component, the parity based CED technique is not suitable to 
be applied because the parities are not easy to predict after the 
key selection. Therefore, the hardware redundancy technique 
is a better choice and the whole key selection component is 
duplicated. The output of the duplicated hardware is compared 
with that of the original hardware to detect any fault that 
occurs in the key selection. 

B. Hardware Performance of  CED Scheme 
Based on the compact architecture of ICEBERG with 

parity based CED, we evaluated the hardware performance in 
ASIC using a 0.18 µm CMOS standard cell library. The 
hardware overhead caused by our CED scheme is listed in 
Table 3. From the table, we can see that the area of our 
compact architecture of ICEBERG increases to 9303 gates 
after applying the CED scheme resulting in a hardware area 
overhead of 62%. The corresponding throughput degradation 
is about 7%. These results should be put in context by 
considering that a CED scheme based on hardware 
redundancy would require more that 100% area overhead. 
Similar studies for AES [5] and Camellia [6] found that 
compact implementations with CED resulted in 10.9k gates 
for AES and 26k gates for Camellia. 

Table 3. Overhead for CED Scheme 

 No CED Multiple 
Parity CED Overhead 

Area (gates) 5817 9303 62% 
Throughput (Mbps) 552 512 7% 

 
C. Error Detection Capability 

The basic components of our compact architecture of 
ICEBERG are the XORs, S-boxes, registers, and 
multiplexers. For the linear components, such as XORs, 
registers and multiplexers, a single stuck-at fault would only 



result in one bit error which can be easily detected by the 
parities. For the nonlinear S-boxes, depending on the 
implementation of the logic, a single stuck-at fault may result 
in an even number of errors at the output which can not be 
detected by parities. For example, if all the outputs of the 4×5 
S-boxes, which include one attached parity bit, are jointly 
optimized, not all the possible single faults will be detected 
since the sharing of gates might result in a single fault 
causing two errors at the S-box output. To avoid this, in our 
implementation of S-boxes, each output bit of the S-box is 
independently implemented in combinational logic. As a 
result, a single fault injected inside the S-box will only lead to 
one erroneous output bit which can be detected by the 
parities. Hence, under the protection of our multiple parity 
based CED scheme with independently implemented S-box 
bits, all the single faults in the system can be detected.  

As well, using our CED approach, most multiple faults in 
the linear components of our implementation will be detected 
since they will result in at least one byte including an odd 
number of errors. In order to investigate the effect of multiple 
faults within the S-box layers, we have designed a simulation 
experiment to evaluate the fault coverage of the CED scheme. 
The 64-bit output data of the S-box layer and the attached 
byte-based parities used for parity prediction are separately 
implemented. Under the assumption that each S-box bit costs 
ten gates in an ASIC implementation, we randomly injected 
multiple stuck-at-1 faults into the 640 gates and determined 
whether the multiple injected faults could be detected by the 
parities. We assumed that no matter how many faults are 
injected in the ten gates for the same bit, one error will be 
caused at the S-box output. One million tests have been 
simulated for the number of multiple faults from 2 to 16. The 
resulting fraction of fault cases that are not detected is 
presented in Figure 3. For the double faults, we find that the 
percentage of undetected faults is about 10.98%, but this is 
not shown in Figure 3 in order to have the graph reasonably 
scaled for other multiple faults. To confirm the experimental 
results, we have also computed, using combinatorics, the 
theoretical expectation for the fraction of faults that are not 
detected for the various scenarios. For example, for two 
faults, we determine the probability of undetected fault 
scenarios by calculating the number (22400) of scenarios 
resulting in both faults being in the two S-boxes covered by 
the same parity and dividing by the total number (204480) of 
possible locations for the two faults. This results in a 10.9% 
probability that two faults will be undetected. 

As expected, the experimental results and the theoretical 
results are very close. From Figure 3, we can see that our 
multiple parity based CED applied to the S-boxes has a very 
high fault coverage for multiple fault scenarios. Hence, it is 
fair to conclude that all single faults and most multiple faults 
would be detected. 

VI. CONCLUSION 
In this paper, a loop architecture of the involutional block 

cipher ICEBERG has been investigated and evaluated by 
using a 0.18 µm CMOS standard cell library. To protect our 
ICEBERG hardware from faults intentionally induced for 
cryptographic attacks, we have investigated a multiple parity 
based CED scheme which provides high fault coverage with 
low hardware cost for our compact architecture of ICEBERG. 

We conclude that compact ASIC implementations of 
ICEBERG provide high throughput for small area and can be 
effectively protected using a parity-based CED scheme. 
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Figure 3. Percentage of Undetected Faults 
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