
Compact ASIC Implementation of the ICEBERG Block Cipher
with Concurrent Error Detection

Huiju Cheng and Howard M. Heys
Electrical and Computer Engineering

Memorial University of Newfoundland
St. John's, Canada

Abstract — ICEBERG is a block cipher that has been recently
proposed for security applications requiring efficient FPGA
implementations. In this paper, we investigate a compact ASIC
implementation of ICEBERG and consider the novel application
of concurrent error detection to protect the implementation
from fault-based attacks. The compact architecture of
ICEBERG requires about 5800 gates with a throughput of 552
Mbps in an ASIC implementation based on 0.18 µm CMOS
technology. The addition of an effective multiple parity
concurrent error detection scheme to protect the hardware from
fault attacks results in a 62% area overhead.

I. INTRODUCTION
A compact hardware implementation of a block cipher is

attractive for low-cost embedded applications. Unfortunately,
the Advanced Encryption Standard (AES) [1] is not optimal
for compact hardware implementation due to the large eight-
bit substitution boxes and differences between the encryption
and decryption circuits.

ICEBERG [2][3] has been recently proposed as a secure,
efficient block cipher targeted to FPGA implementation. It is
a 64-bit block cipher with a 128-bit key. The substitution
layer of ICEBERG is based on small 4-bit S-boxes resulting
in a reduced hardware complexity for the encryption and
decryption processes. ICEBERG can be implemented in
different architectures such as loop and pipelined designs.

In this paper, we investigate the compact ASIC
implementation of ICEBERG. Further, in order to minimize
the impact of fault-based attacks, we investigate the design of
a multiple parity based concurrent error detection scheme for
the compact implementation.

II. ICEBERG ALGORITHM
ICEBERG is an iterative involutional block cipher (that

is, each round operation is an involution) with 16 round
functions for the encryption and decryption processes. Each
round function is composed of a non-linear layer, γ, and a
linear layer, εK, including key addition. The nonlinear layer is
composed of successive application of S-boxes and bit
permutations.

Two types of 4×4 S-boxes are applied in ICEBERG with
the substitution layers S0 and S1 separately composed of 4×4
S-boxes which are used to perform the substitution for the 64-
bit input data. The bit permutation layer P8 consists of eight
parallel permutations on 8-bit blocks of data. The non-linear
layer can be represented as:

010
6464 88:}1,0{}1,0{: SPSPS≡→ γγ

In software implementations, the γ function can be easily
replaced by eight identical 8×8 S-boxes.

The linear layer, εK, includes the consecutive application
of a linear diffusion layer, bit permutations and a linear key
addition layer σK which is composed of a bitwise XOR
between the 64-bit data block and 64 bits of round key. The
diffusion layer, D, is constructed with a simple involutional
matrix multiplication. Two types of bit permutation are
applied in εK: P64 and P4. The P64 layer performs a 64-bit
permutation and it guarantees that two bits from the same
byte are always mapped to two different bytes. The P4 layer
applies in parallel sixteen 4-bit permutations. Hence, the
linear layer function can be represented as follows:

64464:}1,0{}1,0{: 6464 PDPP KKK σεε ≡→
The round function ρK can be represented as:

γερρ KKK ≡→ :}1,0{}1,0{: 6464
The key schedule of ICEBERG consists of key expansion

and key selection. Each 128-bit round key is expanded based
on the previous round key with the application of non-linear
substitution boxes, shift operations and bit permutations.
After the key expansion, the key selection function will be
applied to the 128-bit round key to select the 64 bits to be
mixed with the data.

Since ICEBERG is an involutional cipher, the decryption
process is performed in the same way as encryption even
without using the round keys in a reverse order as long as the
constant values applied in the key schedule are properly
chosen. As a result, the encryption and decryption processes
can share the same hardware.

III. PREVIOUS IMPLEMENTATIONS
The ICEBERG block cipher is designed for efficient

FPGA implementations. Three architectures of ICEBERG
implemented in FPGA have been proposed in [3] for different
optimization purposes. A fully pipelined unrolled architecture
and a half pipelined architecture are designed for high-speed
hardware implementation and a loop architecture is designed
for compact hardware implementation.

Based on the FPGA implementation results for a Xilinx
Virtex-II device, the fully pipelined unrolled architecture of
ICEBERG can achieve a maximum throughput of about 19
Gbps, while the loop architecture requires minimum
hardware resources of about 631 slices with a throughput of
about 1 Gbps. However, with the consideration of the ratio of
throughput/area, the half pipelined architecture achieves the
highest hardware efficiency.

Support for this research was provided by the Natural Sciences and
Engineering Research Council of Canada (NSERC) and CMC Microsystems.

IV. COMPACT ASIC IMPLEMENTATION
Although ICEBERG was proposed for efficient FPGA

implementations, its ASIC implementations are also very
efficient. We have explored a compact architecture of
ICEBERG and implemented it using a 0.18 µm CMOS
standard cell library based on the TSMC 1P6M process.
Synopsys Design Analyzer (version 2001.08) is applied as the
synthesis tool.

A. Compact Architecture of ICEBERG
Our compact design utilizes a loop architecture based on

one round function of ICEBERG and is illustrated in Figure
1. Only one register is inserted in the round function. The
major components of the encryption process include the S0
substitution layer, S1 substitution layer, diffusion layer, key
addition layer and permutation layers. The S0 layer is
composed of sixteen 4×4 S0-boxes which are used for
substitution of the 64-bit input data in parallel. The S1 layer is
constructed similarly to S0 with sixteen 4×4 S1-boxes. The
diffusion layer performs a multiplication with a binary
involutional matrix and is implemented in linear XORs on
sixteen 4-bit data blocks. The key addition layer is
implemented in XORs between the input data and the round
keys. The permutation layers, P8, P64, and P4, are simply
implemented as wirings and do not require any logic gates.
Since ICEBERG is a 64-bit involutional block cipher, the
decryption process can share exactly the same hardware with
the encryption process.

The round function of the key schedule is composed of
key expansion and key selection. The major components
consist of the left or right shift layer, the S0 layer, the
permutation layer P128 and the Boolean operations in key
selection. The left or right shift layer can be simplified as just
wirings of the input data. The S0 layer in the key schedule is
implemented in the same way as in the encryption process.
The 128-bit permutation layer P128 is correspondingly
implemented as wirings. Since no part of the datapath is
shared between the encryption process and key schedule, the
round keys used for each round function can be generated on
the fly and no storage is needed to store all the round keys.

B. Hardware Performance Analysis
Based on the compact architecture of ICEBERG, a 0.18

µm CMOS standard cell library is applied in our hardware
performance analysis. During the synthesis, we focus on area
optimization. The area of the circuit is evaluated in terms of
equivalent 2-input NAND gate counts.

Table 1 shows the hardware complexity analysis of each
component of ICEBERG. The whole datapath implemented
in ASIC requires about 5.8k gates with a maximum frequency
of 138 MHz. The encryption process needs sixteen clock
cycles and since 64 bits of data can be processed in parallel,
the throughput of the implementation can reach 552 Mbps.
As shown in Table 2, these results compare favourably to
compact implementations of other block ciphers, especially
when considering the tradeoffs between compactness and
throughput. For example, although the AES implementation
in [4] is more compact, this comes at a great expense of speed
resulting in a throughput to area ratio of more than 30 times
less than the implementation of ICEBERG investigated in
this paper.

Figure 1 Compact Architecture of ICEBERG

Table 1. Hardware Complexity Analysis of Compact ICEBERG

Component Area (gates) Percentage
S-boxes 2400 41.2%

Registers 1536 26.4%
Multiplexers 1024 17.6%

XOR & Boolean Logic 857 14.7%
Datapath 5817 100%

Table 2. Comparison of Compact Cipher Implementations

Cipher
Implementation

Area
(gates)

Throughput
(Mbps)

Throughput /Area
(Mbps/kgates)

ICEBERG 5800 552 95.2
AES [4] 3400 9.9 2.9
AES [5] 6700 112 16.7

Camellia [6] 14100 143 10.1

V. CONCURRENT ERROR DETECTION DESIGN
In a hardware implementation of a block cipher, transient

or permanent faults can be intentionally induced to mount a
fault-based cryptanalysis [7]. Such methods exploit the secret
information leaked by the erroneous behaviour caused by
injected faults. It is known, for example, that implementations
of AES can be susceptible to fault attacks based on various
fault models, such as stuck-at faults [8]. Concurrent error
detection (CED) is a technique to detect any transient or
permanent faults that occur in the system and, by suppressing
the resulting faulted outputs, thereby mitigate the
susceptibility of the system to attack.

Numerous approaches to CED for ciphers have been
proposed. Approaches based on hardware redundancy [9]
compare the output of cipher operations from the datapath to
an alternate datapath performing the same computations.
Such an approach is effective in detecting a broad range of
permanent or transient faults, but costs greater than 100% of
the area of the original circuit. The use of CED based on error
control coding schemes is a very effective mechanism for

detecting both permanent and transient errors, with minimal
area overhead [10][11][12][13].

In this paper, we investigate a multiple parity based CED
scheme for ICEBERG with the parity generated for each byte
of the input 64-bit data block. For the operations of the cipher
algorithm, the parities of the output are predicted from the
input data and then are compared with the parities of the actual
output to detect any mismatch caused by faults.

A. Multiple Parity Based CED Scheme
In our parity based CED scheme, we have applied parity

to both linear and nonlinear components. For the nonlinear
substitution in the design of the datapath, the 4×4 S-boxes are
extended to 4×5 S-boxes by attaching a parity bit generated
from the XOR of both input parity and output parity. Two
consecutive parities attached in the S-boxes are XORed with
each other to predict the output parity because all the parities
in our CED scheme are byte based. The predicted output
parities are then compared with the parities of the actual S-
box outputs. For the CED circuit designed for linear
components such as multiplexers and registers, the byte-
based input parities directly pass through duplicated smaller
multiplexers and registers without any modification to predict
the parities of the actual output.

The most complex part of the CED scheme for the
encryption process is the protection of the three layers of 4×4
S-boxes. Although two layers of the byte-based permutation
P8 are inserted between the S-box layers, the parities remain
the same after those permutations. Therefore, no parity
prediction circuit is necessary for P8. For the S-box, one
extra parity bit is stored as the fifth bit of each S-box and the
parity is generated by the XOR of both input parity and
output parity. Figure 2 illustrates the three processing steps of
the parity modification for the S-boxes. The permutation
layers between the substitution layers are not shown in this
figure since they will not change the byte-based parities.

Figure 2. CED for S-boxes

In the above figure, the notation P(⋅) represents the parity
of one byte of data and “⊕” represents the XOR operation.
We can see that in the CED circuit for the three layers of S-
boxes, the parities are predicted by the XORs of input parities
and attached parities stored in the S-boxes. Accordingly, the
parities of the actual output are equal to the modified parities
of the input if no error occurs in the S-boxes. All the faults
that lead to single-bit errors and most multiple fault scenarios
would be detected under such a parity based CED scheme
designed for these three layers of S-boxes.

For the CED scheme of the encryption process, three
check points are inserted. The first check point is inserted for

the parity checking between the parities of the actual output
of the first 64-bit XOR layer and the predicted parities of the
input data of the first 2-to-1 multiplexer. Consequently, any
fault that occurs in the first multiplexer and first XOR layer
can be detected by the first check point. The second check
point is inserted after the three layers of S-boxes to detect any
fault that occurs in the S-box hardware. The third check point
is inserted after the successive components of diffusion and
second XOR layer for key addition. Due to the property of
diffusion, the input parities will not change after the diffusion
and, hence, no parity modification is needed for that
component. In addition, the CED circuit for the second XOR
layer is the same as the first one.

In the key schedule, three more check points are inserted
in the corresponding CED circuit. The fourth check point is
used to detect faults that occur in the multiplexers and
registers. The fifth check point is inserted after the nonlinear
layer of S0. The generation of the parity bit attached as the
fifth bit in the S0 layer of the key schedule is different from
that used in the encryption process. These S-boxes are
extended from 4×4 S-boxes to 4×5 S-boxes with a fifth output
bit being the parity of just the four output bits of the S-box.
Therefore, the fifth check point is used to compare the parities
of the actual output of the S-boxes and the predicted output
parities stored in the fifth bit of the S-boxes. The sixth check
point is inserted after the key selection component. Because
Boolean operations like AND and OR are included in this
component, the parity based CED technique is not suitable to
be applied because the parities are not easy to predict after the
key selection. Therefore, the hardware redundancy technique
is a better choice and the whole key selection component is
duplicated. The output of the duplicated hardware is compared
with that of the original hardware to detect any fault that
occurs in the key selection.

B. Hardware Performance of CED Scheme
Based on the compact architecture of ICEBERG with

parity based CED, we evaluated the hardware performance in
ASIC using a 0.18 µm CMOS standard cell library. The
hardware overhead caused by our CED scheme is listed in
Table 3. From the table, we can see that the area of our
compact architecture of ICEBERG increases to 9303 gates
after applying the CED scheme resulting in a hardware area
overhead of 62%. The corresponding throughput degradation
is about 7%. These results should be put in context by
considering that a CED scheme based on hardware
redundancy would require more that 100% area overhead.
Similar studies for AES [5] and Camellia [6] found that
compact implementations with CED resulted in 10.9k gates
for AES and 26k gates for Camellia.

Table 3. Overhead for CED Scheme

 No CED Multiple
Parity CED Overhead

Area (gates) 5817 9303 62%
Throughput (Mbps) 552 512 7%

C. Error Detection Capability

The basic components of our compact architecture of
ICEBERG are the XORs, S-boxes, registers, and
multiplexers. For the linear components, such as XORs,
registers and multiplexers, a single stuck-at fault would only

result in one bit error which can be easily detected by the
parities. For the nonlinear S-boxes, depending on the
implementation of the logic, a single stuck-at fault may result
in an even number of errors at the output which can not be
detected by parities. For example, if all the outputs of the 4×5
S-boxes, which include one attached parity bit, are jointly
optimized, not all the possible single faults will be detected
since the sharing of gates might result in a single fault
causing two errors at the S-box output. To avoid this, in our
implementation of S-boxes, each output bit of the S-box is
independently implemented in combinational logic. As a
result, a single fault injected inside the S-box will only lead to
one erroneous output bit which can be detected by the
parities. Hence, under the protection of our multiple parity
based CED scheme with independently implemented S-box
bits, all the single faults in the system can be detected.

As well, using our CED approach, most multiple faults in
the linear components of our implementation will be detected
since they will result in at least one byte including an odd
number of errors. In order to investigate the effect of multiple
faults within the S-box layers, we have designed a simulation
experiment to evaluate the fault coverage of the CED scheme.
The 64-bit output data of the S-box layer and the attached
byte-based parities used for parity prediction are separately
implemented. Under the assumption that each S-box bit costs
ten gates in an ASIC implementation, we randomly injected
multiple stuck-at-1 faults into the 640 gates and determined
whether the multiple injected faults could be detected by the
parities. We assumed that no matter how many faults are
injected in the ten gates for the same bit, one error will be
caused at the S-box output. One million tests have been
simulated for the number of multiple faults from 2 to 16. The
resulting fraction of fault cases that are not detected is
presented in Figure 3. For the double faults, we find that the
percentage of undetected faults is about 10.98%, but this is
not shown in Figure 3 in order to have the graph reasonably
scaled for other multiple faults. To confirm the experimental
results, we have also computed, using combinatorics, the
theoretical expectation for the fraction of faults that are not
detected for the various scenarios. For example, for two
faults, we determine the probability of undetected fault
scenarios by calculating the number (22400) of scenarios
resulting in both faults being in the two S-boxes covered by
the same parity and dividing by the total number (204480) of
possible locations for the two faults. This results in a 10.9%
probability that two faults will be undetected.

As expected, the experimental results and the theoretical
results are very close. From Figure 3, we can see that our
multiple parity based CED applied to the S-boxes has a very
high fault coverage for multiple fault scenarios. Hence, it is
fair to conclude that all single faults and most multiple faults
would be detected.

VI. CONCLUSION
In this paper, a loop architecture of the involutional block

cipher ICEBERG has been investigated and evaluated by
using a 0.18 µm CMOS standard cell library. To protect our
ICEBERG hardware from faults intentionally induced for
cryptographic attacks, we have investigated a multiple parity
based CED scheme which provides high fault coverage with
low hardware cost for our compact architecture of ICEBERG.

We conclude that compact ASIC implementations of
ICEBERG provide high throughput for small area and can be
effectively protected using a parity-based CED scheme.

Percentage of Undetected Faults

0.0000%

0.5000%

1.0000%

1.5000%

2.0000%

2.5000%

3.0000%

3.5000%

3 4 5 6 7 8 9 10 11 12 13 14 15 16

of injected faults

Experimental Result

Theoreticl Result

Figure 3. Percentage of Undetected Faults

REFERENCES
[1] National Institute of Standards and Technology (NIST), "Advanced

Encryption Standard (AES)", FIPS Publication 197, Nov. 2001.
[2] F. Standaert, G. Piret, G. Rouvroy, J. Quisquater, and J. Legat,

“ICEBERG: an Involutional Cipher Efficient for Block Encryption in
Reconfigurable Hardware”, Fast Software Encryption (FSE 2004),
Lecture Notes in Computer Science, Vol. 3017, pp. 279-299, 2004.

[3] F.-X. Standaert, G. Piret, G. Rouvroy, and J.-J. Quisquater, "FPGA
Implementations of the ICEBERG block cipher", INTEGRATION: The
VLSI Journal, vol. 40, no. 1 , pp. 20-27, 2007.

[4] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen, "AES Implementation
on a Grain of Sand", IEE Proceedings on Information Security, vol.
152, no. 1, pp. 13-20, 2005.

[5] N. Yu and H.M. Heys, "A Hybrid Approach to Concurrent Error
Detection for a Compact ASIC Implementation of the Advanced
Encryption Standard", IASTED International Conference on Circuits,
Signal, and Systems (CSS 2007), Banff, Alberta, Canada, July 2007.

[6] H. Cheng and H.M. Heys, "Compact Hardware Implementation of the
Block Cipher Camellia with Concurrent Error Detection", IEEE
Canadian Conference on Electrical and Computer Engineering
(CCECE 2007), Vancouver, British Columbia, Canada, April 2007.

[7] D. Boneh, R.A. DeMillo, and R.J. Lipton, "On the Importance of
Checking Cryptographic Protocols for Faults", Advances in Cryptology
– EUROCRYPT '97, Lecture Notes in Computer Science, vol. 1233,
Springer, pp. 37-51, 1997.

[8] J. Blomer and J. Seifert, "Fault Based Cryptanalysis of Advanced
Encryption Standard (AES)", Financial Cryptography (FC 2003),
Lecture Notes in Comp. Sci., vol. 2742, Springer, pp. 162-181, 2003.

[9] R. Karri, K. Wu, P. Mishra, and Y. Kim, “Fault-based Side-channel
Cryptanalysis Tolerant Rijndael Symmetric Block Cipher
Architecture,” IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems (DFT'01), 2001.

[10] K. Wu, R.Karri, G. Kouznetzov and M.Goessel, “Low Cost Concurrent
Error Detection for the Advanced Encryption Standard,” International
Test Conference 2004 (ITC 2004), pp. 1242-1248, 2004.

[11] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri and V. Piuri, “Error
Analysis and Detection Procedures for a Hardware Implementation of
the Advanced Encryption Standard,” IEEE Transaction on Computers,
vol. 52, no.4, pp. 492-505, April 2003.

[12] M. Karpovsky, K. Kulikowski, and A. Taubin, “Robust Protection
against Fault-Injection Attacks on Smart Cards Implementing the
Advanced Encryption Standard,” International Conference on
Dependable System and Networks (DSN ’04), 2004.

[13] C-H. Yen and B-F Wu, "Simple Error Detection Methods for Hardware
Implementation of Advanced Encryption Standard", IEEE Transactions
on Computers, vol. 55, no. 6, pp. 720-731, 2006.

