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Abstract: In this paper, we examine the information leakage between sets of plaintext
and ciphertext bits in symmetric-key block ciphers. The paper demonstrates the effec-
tiveness of information leakage as a measure of cipher security by relating information
leakage to linear cryptanalysis and by determining a lower bound on the amount of data
required in an attack from an upper bound on information leakage. As well, a model is
developed which is used to estimate the upper bound on the information leakage of a
general Feistel block cipher. For a cipher that fits the model well, the results of the anal-
ysis can be used as a measure in determining the number of rounds required for security
against attacks based on information leakage. It is conjectured that the CAST-128 cipher
fits the model well and using the model it is predicted that information leaked from 20

or fewer plaintext bits is small enough to make an attack on CAST-128 infeasible.
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I. Introduction

In his landmark paper, Shannon [1] introduced concepts relating cryptography and in-
formation theory. As well, the paper laid the foundation for the structure of modern
symmetric-key block ciphers, proposing an iterated architecture composed of a number
of rounds of simple cryptographic mixing operations capable of producing “confusion”
and “diffusion”. The best known architecture to which these concepts are practically
applied is referred to as a Feistel cipher [2] and this is the structure used for the pop-
ular Data Encryption Standard (DES) [3]. Another Feistel cipher that we shall later
refer to in our paper is called CAST-128 [4]. CAST-128 has been implemented in sev-
eral commercial network security products [5]. Many other modern Feistel ciphers have

been proposed, including some of the candidates for the Advanced Encryption Standard
(AES) [6].



To date, the major focus in block cipher analysis has been the cryptanalysis of specific
algorithms such as DES. This focus on cryptanalysis has lead to the discovery of sev-
eral powerful cryptanalysis techniques that are applicable to a broad category of ciphers.
Most notably, the two general attacks of differential cryptanalysis [7] and linear crypt-
analysis [8] have had considerable influence on the analysis and subsequent design of
ciphers. Differential attacks are based on predicting likely differences occurring in cipher
data in response to specific differences in pairs of plaintexts; linear attacks are based on

predicting highly likely linear expressions of plaintext, ciphertext, and key bits.

There have been several attempts to establish provable security in block ciphers. Most
notably, Luby and Rackoff [9] provided proof that a Feistel cipher of 3 rounds based on
a pseudo-random function generator as the round function is a pseudo-random permu-
tation generator and, hence, is provably secure against chosen plaintext attacks. It was
also shown that 4 rounds provide provable security against an adaptive chosen plain-
text/ciphertext attack. The result is theoretical in that it relies on the round functions
to be provably pseudo-random function generators. However, several practical propos-
als have used the Luby-Rackoff result as the rationale for ciphers using round functions

constructed from function generators such as hash functions [10][11][12].

Other approaches to provable security have attempted to prove the immunity of ciphers
to notable attacks such as differential and linear cryptanalysis [13][14][15] by carefully
selecting the structure and components of the cipher. Typically, the round functions of
a Feistel cipher are significantly simpler than a hash function, implying more rounds are
required than the optimistic 4 rounds of the Luby-Rackoff result. Often, the security
of ciphers relies on heuristic arguments of the difficulty of finding useful differential
characteristics and linear approximations [16]. For example, the security of CAST-128
has been argued on this basis [17]. Despite many attempts at provable security in block
cipher design, the fact remains that all practical cipher designs still rely on security
proofs premised on reasonable assumptions of the behaviour of the cipher such as the

independence of the data involved in different rounds.

Several papers have attempted to relate the information leakage of a proposed cipher
structure and its components directly to the design and analysis of the security of the
cipher. Some work in this regard has focussed on ciphers that employ substitution boxes
or S-boxes to achieve the cipher nonlinearity (i.e., the confusion). Forré [18] considered
information theoretic measures in the construction of S-boxes with the objective of con-
structing S-boxes to minimize the mutual information between sets of input and output

bits. In [19], Dawson and Tavares extended this work to include both static and dynamic
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measures of mutual information or information leakage. The work by Sivabalan, Tavares,
and Peppard [20] examined the information leakage for a simple substitution-permutation
network with a study of different S-box constructions. However, since their information
leakage measures were derived experimentally, the results apply to a very small system

and must be extrapolated to larger ciphers.

Zhang, Tavares, and Campbell [21] focussed on characterizing the cryptographic prop-
erties of boolean functions within the framework of information theory. However, their
results were not applied to any actual ciphers. In [22], Youssef and Tavares examined
the information leakage of randomly selected functions of multiple output bits. Exact
expressions and simple upper bounds on the expected information leakage of a randomly
selected function were derived and discussed in the context of S-box generation. How-
ever, since the results give average information leakage, rather than upper bounds on
information leakage, they cannot be used to derive estimates of the security of ciphers

constructed from the randomly selected functions.

In this paper, we relate the information leakage of a cipher to cryptanalysis, and, in
particular, linear cryptanalysis. As well, we develop a model of the information leakage
of a general Feistel cipher. As a result, the methods that we employ in modelling the
cipher are able to estimate upper bounds on the information leakage in the cipher and
from this it is possible to place a lower bound on the amount of data (i.e., the number

of ciphertexts) required in an attack.

I1I. Background

In this section, we outline some of the basic background and notation required for the
paper. In particular, we review the notion of a Feistel cipher and some required funda-

mentals from information theory.
A. Feistel Ciphers

We consider first the concept of the Feistel structure for symmetric-key ciphers. Nota-
tionally, we shall consider that the cipher transforms an /N-bit block of plaintext P to
the ciphertext C' by passing the data through a sequence of » rounds. As aligns with
common practice, we shall assume that the number of rounds, r, is even. In a Feistel
cipher, the plaintext is divided into the left half-block P, and right half-block Py and
passed into the first round. In each round, the round function f operates on the right
half of the cipher data block and is parameterized with the subkey associated with the

round. Each subkey is derived from the master key K.



Figure 1: Round 7 in a Feistel Cipher

The general structure of a round in a Feistel cipher is illustrated in Figure 1. In round
of a Feistel cipher, the right half of the data block, X;, is used as the input to the round
function (parameterized with subkey K;) with the resulting output, Y;, being bit-wise
XORed with the left half, Z;. Then the unmodified right half and the modified left half
are swapped and the data is passed to the next round as X;;; and Z;;;. This process
is repeated for the desired number of rounds. Letting C';, and Cy represent the left and
right half of the ciphertext, respectively, the general flow of data though an r-round
Feistel cipher is given by:
X1 — PR
Z1 — PL
fori =1 tor do
Ximi=2;®Y; (1)
Zix1 = X;
Cr— Xop
CR — Zr—i—l
where Y; = fg,(X;) and “@” represents bit-wise XOR on two binary vectors. Note that
X, Y, Z; €40, 1}N/2; the size of K; depends on the method used to mix the subkey bits

into the data in each round.

The round function is essentially responsible for the cryptographic security of the cipher
(i.e., it typically achieves most of the confusion and diffusion). Generally, the more
rounds applied, the more secure the cipher. The structure and nature of the round
function varies significantly from cipher to cipher. One method for implementing the
parameterization of the round function with the subkey is to mix a subkey of N/2 bits
with the data bits using a bit-wise XOR prior to the nonlinear mapping of the data.
That is, Y; = f(X; @ K;) where f is an unkeyed N/2 x N/2 nonlinear mapping. This is
similar to the keying methodology used in DES.
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A notable characteristic of a Feistel cipher is that the decryption procedure is the same as
encryption except the subkeys must be applied in reverse order. In general, the determi-
nation of the subkeys, K, ..., K,, from the master key K (which is usually significantly
shorter than the sum of all subkey lengths) is accomplished by a key scheduling algo-
rithm. Together the key scheduling and the round function structure essentially define
the cipher. It is important to note that the Feistel structure ensures that the cipher is
a bijective mapping for all keys regardless of the nature of the round function and the

method used to apply key bits.
B. Information Theory Notation and Definitions

In this section, we introduce the notation that we shall use when dealing with some of
the basic definitions in the field of information theory. Consider a system with a random
m-bit input vector X and a random n-bit output vector Y. The entropy of Y is defined
to be

HY)=- 3% Pr(Y =y)log, Pr(Y =y) (2)

ye{0,1}"
where Pr(Y = y) represents the probability that Y takes on a value y. The conditional
entropy is given by
HY|X)== Y > Pr(Y=y,X=ux)log, Pr(Y =y|X =z) (3)
z€{0,1}™ ye{0,1}"

and the average mutual information of the system is given by
I(X;Y)=H(Y)-HY|X). (4)

Note that in the remainder of the paper, for convenience, we shall frequently use a more
concise form for representing probabilities where Pr(y) is equivalent to Pr(Y = y) and

Pr(y|x) is equivalent to Pr(Y = y|X = x).

In this paper, we use the term information leakage to refer to the average mutual informa-
tion between subsets of plaintext bits and ciphertext bits. For example, the information
leakage between a set of m bits of plaintext and a set of n bits of ciphertext for a particular

key value K is given by
Ig(P™:C™) =n — H(C™|P™). (5)

In general, in the paper, we shall use the superscript notation “(n)” to label a vector
formed by taking n bits of the base vector. The right side of (5) follows since, assuming

random plaintexts are applied to the cipher, the unconditional entropy of any n bits of
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ciphertext is n due to the bijective nature of a block cipher. We will sometimes drop the

subscript K when referring to an information leakage which applies to all keys.

The smaller the value of information leakage, the less information is available on the
output based on knowledge of the input (and vice versa). In the case of ciphers, a
secure cipher would have negligible information leakage for subsets of plaintexts bits and
ciphertext bits for all keys. This implies that no information about the ciphertext bits can
be determined given knowledge of the plaintext bit values, making it impossible to use
information leakage between the plaintext and ciphertext to find the key.! A practical
cipher should have an information leakage (for all subsets of plaintext and ciphertext

bits) that is small enough to imply that an impractically large number of ciphertexts are

required to derive the key.

II1. Relationship of Information Leakage to Cryptanalysis

Before modelling the information leakage of a cipher, we first examine the effectiveness
of information leakage as a measure of cipher security. Specifically, we will consider the
relationship between linear cryptanalysis and information leakage and then investigate
the direct relationship between information leakage and the amount of data required in

an attack.
A. Information Leakage and Linear Cryptanalysis

Consider the linear expression formed from the XOR of m bits of plaintext P, n bits of
ciphertext C', and [ bits of key K. This is represented as

Pli] ® Pliz] @ ... © Plim| @ C[1] ® Clj2] @& ... & Cljin] (6)
= K[h| & K[ho] @ ... & K[Nh]

where, for example, P[i] represents the i-th bit of plaintext P.

Basic linear cryptanalysis [8] is a known plaintext attack and attacks ciphers by exploiting
an expression of the form of (6) which has a high probability of being satisfied (or not
satisfied) given a random, uniformly distributed selection of plaintexts as input. Ideally
for a secure cipher, any linear expression of the form above should have a probability of

exactly 1/2 of being satisfied.

Let p represent the probability that the linear expression holds for a random selection

!In practice, attacks such as differential and linear cryptanalysis typically attempt to use information
of the penultimate round and the knowledge of the ciphertext to derive information about the subkey
applied to the last round. However, for the purposes of the analysis in this paper, we shall focus on
information leakage at the output of the cipher. Although we could trivially consider the analysis for
one less round, the results would not be significantly different.



of plaintext P. The probability bias for the linear expression can be represented as
€ = |p —1/2|. It can be shown that the number of known plaintexts required in a linear
attack based on an expression with a probability bias of € is proportional to e~ [8]. Hence,
for a cipher to be immune to linear cryptanalysis, we require € — 0 for all possible linear
expressions. That is, for all subsets of plaintext, ciphertext, and key bits the expression
of the form of (6) has a probability of holding that is very close to p = 1/2. (In practice,

N/2 for a block cipher with

for security against a linear attack, it is sufficient that € < 2~
a block size of N, so that the amount of data required in the attack is greater than the

number of plaintexts available for the cipher.)

Linear cryptanalysis considers the random application of plaintexts and the resulting
pseudo-random generation of ciphertexts for a particular fixed key, i.e., the key under
attack. Hence, the probability p is actually the probability that a particular subset of
plaintext bits and a particular subset of ciphertext bits sum to a fixed value which is
determined from the appropriate subset of key bits of the unknown fixed key. In a cipher
such as DES, the fixed value is derived by the XOR sum of key bits as in (6) because the
subkeys are mixed into the data at each round using the XOR operation, allowing the
elimination of variables representing data within the cipher. The result is an expression
involving only the XOR of plaintext, ciphertext, and key bits that can be arranged to
solve for the equivalent of one key bit given by the right side of equation (6). If the
plaintexts utilized in the attack are assumed to be randomly selected, it follows that
the values of the m plaintexts bits are randomly generated from a uniform distribution.
Assuming m < N, the n ciphertext bits are random with respect to the m plaintext
bits since each ciphertext bit is dependent on all plaintext bits (under the reasonable
expectation that the cipher is non-degenerate) and the N — m remaining plaintext bits

are random and independent of the m plaintext bits in equation (6).

In the following theorem, we relate the property of information leakage and the immunity

of a cipher to linear cryptanalysis.

Definition: A cipher is defined to be (m,n)-immune to linear cryptanalysis if, for all

subsets of u plaintext bits, 1 < u < m, and v ciphertext bits, 1 < v < n,
Pliy] & Plio] ® ... & Plil] @ C[j1] @ Clpa] & ... © C[j,] = 0 (7)

holds with a probability of 1/2 for all keys, assuming a random, uniformly distributed

plaintext input P.

We require the following lemma from [23] in the proof of the theorem. A compact proof

of the lemma is given in [24].
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Lemma 1 [23]

Consider a discrete random variable Z and a random binary vector of m bits, X =
[X[1], X[2],...,X[m]]. Then I(X; Z) = 01if, and only if, I(X[i;|®X[is]D.. . X [i]; Z) =
0 for all subsets of u bits of X for all u, 1 < u < m.

Theorem

For all K and all vectors formed from m plaintext bits P(™) and n ciphertext bits C(™),

I(P™); C(™) = 0 if, and only if, the cipher is (m,n)-immune to linear cryptanalysis.
Proof:

From the lemma it follows that
Ix(P™:C™) =0 I(Plil]®...® Pli,);Clji ] ®...® C[j.,]) =0 (8)

for all subsets of u bits of the m plaintext bits and v bits of the n ciphertext bits where
1 <u<mand 1l < v <n. Since the XOR sums of plaintext and ciphertext bits are

balanced, this is equivalent to the cipher being (m, n)-immune. O

It should be noted that the definition of immunity to linear cryptanalysis is equivalent
to the concept of correlation immunity [25]. In fact, a cipher that is (m,n)-immune to
linear cryptanalysis has all boolean functions formed by the linear combination of n or
fewer ciphertext bits being m-th order correlation immune. Further, since any linear
combination of ciphertext bits forms a balanced boolean function, such functions are

m-resilient [26].

Motivated by the strong relationship between linear cryptanalysis and information leak-
age, we shall use tools similar to those applied when considering linear cryptanalysis to
develop a model for the security of a Feistel cipher on the basis of an information leakage
paradigm. However, it is important to note that limitations of the usefulness of the rela-
tionship between linear cryptanalysis and information leakage do exist. First, as we shall
see, the techniques employed in this paper are only applicable for information leakages
involving modest numbers of plaintext and ciphertext bits. Theoretically, full immunity
to linear cryptanalysis requires (m, n)-immunity to linear cryptanalysis with m = N and
n = N. Secondly, the concept of (m,n)-immunity to linear cryptanalysis is of theoretical
interest only. In practice, ciphers can be resistant to linear cryptanalysis without satis-
fying (m,n)-immunity with m = N and n = N. As long as all linear expressions have
a probability bias sufficiently close to 0 (not necessarily exactly 0), linear cryptanalysis
cannot be employed successfully. This explains why, for all ciphers with an /N-bit plain-
text P and ciphertext C, although clearly Ix(P;C) = N # 0 when the key is fixed, the



cipher can still be resistant to linear cryptanalysis: this does not contradict the theo-
rem because, although the bias on any linear expression from the cipher is small enough
to make practical attacks impossible, the cipher is not theoretically (N, N)-immune to

linear cryptanalysis.
B. Complexity of Attacks Based on Information Leakage

In this section, we consider the complexity of directly attacking a cipher with non-zero
information leakage based on distinguishing between a uniform distribution and the dis-
tribution of a set of ciphertext bits conditioned on a set of plaintext bits. This allows
us to relate the amount of information leakage in a cipher to the security of the cipher
as given by the amount of data (i.e., the number of ciphertexts) required to attack the

cipher.

Consider exploiting n ciphertext bits, C"). Since a Feistel cipher is a bijective mapping,
C™ is uniformly distributed and H(C(")) = n. However, for a vector PU"™) representing
m plaintext bits, it is certainly possible that H(C™|P™)) #£ n. This implies for at least
one point, P™) = p(™) and C™ = ™ Pr(c™|pm) £ 1/2".

Assume that the largest probability bias for Pr(c(™|p(™)) is given by

€maz = max | Pr(d™[p™) —1/2". (9)
p(m)’c(")

(Note that we now use a definition of probability bias which refers to the deviation from
a probability of 1/2", as opposed to a probability of 1/2 as in linear cryptanalysis.) In
order to distinguish information that might be used in determining the key or a subset
of the key bits, the cryptanalyst would be interested in distinguishing the conditional
probability distribution from the uniform distribution. We shall refer to the uniform
distribution as distribution 1 and the distribution of C™ conditioned on a value of
P = p(m) as distribution 2. Let p; = 1/2" and py = Pr(c™|p™)). Hence, 1/2"— €4 <
p2 < 1/2" 4 €paz. Assuming Ng data samples are taken, consider the random variable
representing the number of times a sample has a particular value ¢®). The resulting
distributions are binomial in nature for both cases with mean p; = Ngp; and variance
0? = Ngpi(1 — p;) where the index 7 € {1,2} is used to indicate the distribution. The
cryptanalyst, in order to exploit information leakage, would like the distance between
the two means to be large in comparison to the standard deviation, making it easy to
distinguish the conditional distribution from the uniform distribution. However, the
cipher designer will, at least implicitly, try to ensure that the conditional distribution is

close enough to uniform to be indistinguishable for all but an infeasible amount of data
17Vg.
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Assume that in order for the distributions to be distinguishable, the two distributions

must have means such that

|p2 = p1| = max{oy, 02} (10)
where
ncl(gfcluz — 1] = Ns€maa- (11)
For €4, < 1/2", 09 = 01, and
ek ()" i
This results in .
Ng > % (13)
and, hence,
Ny > # (14)

max

As expected, from the work of Matsui [8], the amount of data required, Ng, varies
inversely with the square of the probability bias. It must be noted however that in
the case of linear cryptanalysis, the probability of interest deviates from 1/2, whereas
the information leakage approach exploits a bias from a probability of 1/2". The lower
bound on Ng also appears to decrease exponentially in n, implying for a fixed €,,,, that
the lower bound on the amount of data required decreases significantly with more bits
involved in the attack. The perspective at this point, however, is incomplete in that we
must consider that €,,,, is also a function of n. We deal with this issue by modelling a
general Feistel cipher in Section V to examine the overall effect on the lower bound on

Ny as a function of n.

In order for the cipher to be not susceptible to attack, Ng > 2¥~™ where N is the block
size and m is the number of fixed plaintext bits. This ensures that the amount of data
required to attack the cipher is greater than the available plaintexts which have a fixed

value for m particular bits.

Although in this section, we have related the amount of data required in the attack to
the probability bias, it is also possible to relate Ng directly to the information leakage
of the cipher. In Section IV-C, we shall give a lower bound on the value of Ng given an

upper bound on the information leakage I,,,, where I(P(m); C(")) < Iaz-
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IV. Foundational Theory for Information Leakage Models

Before discussing a model of the information leakage of a general Feistel cipher, it is

necessary to consider some basic mathematical tools that will be required in the analysis.
A. Generalized Piling-Up Lemma

The computation of the information leakage of the cipher will be done in an iterative
fashion, from round to round. It will be based on using principles similar to those used
in the calculation of the probability used in linear cryptanalysis [8]. Fundamental to that
analysis is the “piling-up lemma” used to determine the probability that the XOR sum
of independent binary random variables is equal to 0 or 1. In this section, we generalize

the lemma to apply to vectors consisting of multiple bits combined by bit-wise XOR.

Counsider

Y=X1X0®...0 X, (15)

where X is a randomly generated n-bit vector, “@” represents bit-wise XOR, and all X;
are independent. Let € represent the maximum bias from 1/2" for the probability of the

occurrence of a specific value of X; over all 7, 1 <7 < k. That is,

Pr(X;: =) —1/2"). (16)

€= max
1<i<k, z€{0,1}m

Define €,,4, to represent the maximum bias from 1/2" for the probability that Y takes

on a particular value y. That is,

maz = Pr(Y =y)—1/27, 1
emar = WX |Pr(Y =y)—1/2"), (17)

We now state the lemma that we shall refer to as the generalized piling-up lemma.
Lemma 2 (Generalized Piling-up Lemma)

Consider the bit-wise XOR of k£ > 2 random, independent, n-bit vectors as given in (15)

and the definitions of € and €,,,, given in (16) and (17). Then

Emap < 2FTDnER (18)
Moreover, if € < 1/2", then €4, < €.
Proof:

We shall prove (18) by using induction on k.

Base Case: Let k = 2. We are interested in determining an upper bound on Pr(X;® X, =
y) where y € {0,1}". Without loss of generality, we shall consider y to be the all zeros

vector.
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Let Pr(X; = j) = 1/2" + 6% and Pr(Xy = j) = 1/2" + ¢7 where j is the integer
representation of a vector. The probability that the XOR of two vectors is all zeros is

equivalent to the probability that the two vectors are the same:

2" —1 1 1
PrX & Xy=0)= Y (2— + 5;.) (2— + 5;') (19)
j=0

where we have used the independence of X; and X, to determine each term of the
summation. Now

I =
PriXi®Xy=0)=—+ o 2% (85 +67) + 2% 8567 (20)
j= j=
Since 32; Pr(X; = j) = 1, we have 30; &7 = 0. Similarly, 3; 07 = 0. Hence, the middle

term in (20) is 0 and since, by definition, € = max;{|¢}[, |67|} then
b b 1 n 2
PriX;® X, =0)— on < €mar < 2" (21)

as expected from the lemma for £ = 2.

Induction Step: For our induction hypothesis, we shall assume that the lemma holds for
the XOR of & — 1 random n-bit vectors. Hence, letting € represent the upper bound on

the bias for the sum of k& — 1 vectors, we have
€I S 2(/&'—2’)716/6—1 (22)

and € < e. Now we can use the same reasoning as in the base case if we consider X; to
be the vector representing the sum of £ — 1 vectors and X, represents the k-th vector.
Since now [&%] < € and [67] < € for all j, (18) follows straightforwardly from (20).

The proof of the lemma is completed by noting that
Erman S Q(kfl)n k — (2716)/6716 <€ (23)

if e <1/2m. 0

Note that if € > 1/2", the right side of (18) evaluates to greater than or equal to 1/2"
and, hence, the expression of (18) is not useful in determining an upper bound on the
bias that converges to zero as the number of vectors k increases. Since in our analysis the
number of vectors will increase proportionally to the number of rounds in the cipher, it is
desirable to consider scenarios in which € < 1/2" so that we can derive an upper bound

on the bias, and consequently the information leakage, which is converging to zero.
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B. A Lower Bound on Entropy

Counsider an n-bit random vector Y, which has probabilities Pr(Y = i) = 1/2" 4 «a; where

¢ is an integer representation of Y with 0 < ¢ < 2" — 1. The entropy of Y is given by

2n—1

1 1
HY)=-> (— + a,-) log, ( + a/) (24)
=0 \2" 2
Counsider now the expansion of logy(1/2" + «;) using a Taylor series:
1 2n .
log, (—n + ozi) =—n+A [Z( ) Li—_s ] (25)
2 L 1 J J

where A = log, e. Substituting (25) into (24) and using >-; oy = 0 gives

oo 2(] n 2"-1
HY)=n-A)_ l(— Z @ ] (26)
‘ j=2 .] .] - 1
Now assuming |o;| < 1/2", the j = 2 term dominates the summation so that
2n—1
HY)m=n—-X-2""13%" o’ (27)

Letting €,,4, = max; |o;|, the entropy of Y is bounded approximately by the following:

HY)zn-X-2""e . (28)
A similar expression can be derived for the entropy of Y conditioned on a specific value x
of another random variable X. In this case, a bound on H(Y'|zr) can be computed using

(28) where €4, is the maximum bias such that |Pr(Y = i|z) — 1/2"| < €42-
C. An Upper Bound on Information Leakage

An expression can also be developed for an upper bound on the average mutual infor-
mation between an n-bit random vector Y and an m-bit random vector X. If Y and X
are uniformly distributed, H(Y) = n and H(X) = m. Using the lower bound derived for
entropy in the previous section, we know

min H(Y|z) >n— \-22" 1 (29)

z€{0,1}" Cmaz

where €4, = max;, |Pr(Y = i|r) — 1/2"|. Also, we note that H(Y|X) > min, H(Y |z)

and, hence, the average mutual information is upper bounded by I,,,.. as below:

I(X;Y) <

n— H(Y mas 30
n— min H(Y|r)<I (30)
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where

Im‘az' —\. 22717162

mazr

(31)
with €,,4, being the largest bias of the conditional probability over all values for ¥ and
X.

If we consider X to represent m bits of plaintext and Y to represent n bits of ciphertext,

we can now directly relate the upper bound on information leakage to a lower bound on

the amount of data, Ng, required in an attack. Substituting (31) into (14) gives

A 2n
Ng >

. 32
4. Im(w ( )

As expected, an increase in the amount of information leakage (actually the upper bound
on information leakage) lowers the amount of data required (actually the lower bound
on Ng). However, to this point in our development we still do not have a clear picture
of the relationship between the number of ciphertext bits involved in the leakage, n,
and the upper bound on leakage I,,.,.. We address this issue in the next section by
modelling a bound on the probability bias €,,,,, and subsequently information leakage,

of a generalized Feistel cipher.

V. Modelling Information Leakage of a Feistel Cipher

In this section, we focus specifically on developing a model for determining a measure
of the information leakage of a Feistel cipher. For reasons of clarity, we shall initially
consider a model for the round function, followed by an analysis of the simplest case,
referred to as the “restricted case”, and eventually an analysis of the more difficult

“general case”.

The determination of the information leakage of a Feistel cipher involves the iterative
computation of bounds on probabilities. The development of such bounds requires the
assumption that the output bits of the round function in round ¢ are independent of the
output bits of the round function in round ¢ 4+ 27 where j is an integer. This will allow us
to use the generalized piling-up lemma.? Intuitively, for our analysis, the independence
assumption should be a reasonable approximation because we will be restricting our

analysis to modest sized subsets of plaintext and ciphertext bits and the large number of

2The applicability of the piling-up lemma is also appropriate in circumstances where we model the
cipher to have random, independent, uniformly distributed subkeys and the subkey bits are mixed with
the data using an XOR operation. This random subkey model is frequently assumed in the consideration
of a cipher’s resistance to linear cryptanalysis as an appropriate approximation to the actual situation
of a fixed key. This topic is thoroughly discussed in [27].
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remaining plaintext bits are assumed to be random and independent. The appropriate-
ness of the independence assumption is further supported by experimental observations
as detailed in Section VII-A.

A. Modelling the Round Function

In determining bounds on the information leakage of a cipher, we will inevitably require a
bound on the probability of a value taken by a vector formed from a subset of ciphertext
bits conditioned on a vector formed from a subset of plaintext bits. This will require
determining a bound on the conditional probabilities of the round function of the form
Pr(Y™ =y | X = 2(m) = Pr(y™|2™)) where Y™ represents a vector formed from

n output bits and X™ represents a vector formed from m input bits.

In our model of the round function, we do not consider a specific method of keying
the round function, but rather simply assume that each function generated under a key
has some fundamental random behaviour. Consider modelling the behaviour of a round
function in a Feistel cipher for the scenario that a set of m input bits are fixed and a set
of n output bits are targetted to be of interest. Let L = N/2 — m represent the number
of non-fixed input bits. In the generation of the round function for a particular subkey,
we assume that 2° values of the n output bits are randomly selected from a uniform
distribution. These values correspond to the 2% inputs derived from the selections for the
L non-fixed input bits combined with the m fixed bits. We do not necessarily assume that
the round function is a pseudo-random function generator as defined in [9]. Although
a pseudo-random function generator satisfies the model, a round function can satisfy
the model without being a perfect pseudo-random function generator. Our model would
apply, for example, if we randomly generated an N/2 x N/2 mapping for the round
function f and keyed it by XORing N/2 subkey bits with the data at the input to the

function.

The model for the round function can be viewed as equivalent in nature to an occupancy
problem of randomly throwing a number of balls into a collection of bins. The number
of balls is given by 2* and the number of bins is given by 2". The number of balls in a

particular bin is given by the binomial distribution:

2L\ /1\* 1\ "
Pr(k balls in a bin) = ( k’ > (2—n> (1 - Q—n) : (33)

The mean number of balls in a bin is g = 2¥=" and the variance of the number of balls
in a bin is given by
o =21 —1/2") < 2" = (34)
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where the inequality approaches an equality for n > 1. Noting that the binomial dis-
tribution is approximately Gaussian under the conditions that mean g > 0 and the
standard deviation ¢ < p, we can assume with high probability that the number of balls
in a bin, k, will be within 8¢ of the mean? if the total number of balls, 2, is large. That
is, the condition

p—8c < k<p+8c (35)
is highly probable if ;1 > 0 and 0 < p.

Now, the random variable value £ is related to the conditional probability of getting a
particular n-bit value y™ for the output Y™ given the m-bit fixed input value of z(™).

In particular,

Pr(y™|z™) = k/2F (36)

implying
1 8o \ ys 1 8o .

g2/ P)] ()
2—n—2—L<P7(y | )<2—n+2—L (37)
with high probability. This results in the bias €; being bounded, with high probability,
as in
_ (n)]..(m) n 8o . 3—(L+n)/2
€f = (m)a‘}(c)|PT(y~|3: N —1/2 |§2—L<2 )= (38)
x m 7y n

For N =64, L = N/2—m = 32— m and (38) becomes
€ < 9= 13+(m—n)/2 (39)

for a round function that fits the model well.

In the derivation of the information leakage of the entire cipher, we will be using the
generalized piling-up lemma based on the bound for the probability biases for the round
function as given in (38) above. However, we must consider restrictions on the values of
m and n in deriving €; for the round function so that e does not exceed 1/2" since the
piling-up lemma requires €; < 1/2". Therefore, we will be able to analyze a cipher as

long as (L +n)/2 —3 > n. Hence, L —n > 6 or
m+n<N/2—6. (40)

For N = 64, we therefore require m +n < 26 in our model of the round function in order
to be able to compute a useful upper bound on the information leakage of the cipher

using the techniques in the following sections.

3The factor of 8 was chosen as an arbitrarily large enough value to ensure negligible probabilities in
the tails of the distribution.
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As an example cipher for which our analysis is applicable, we conjecture that our model
of a round function fits well with the CAST-128 round function because of its non-
degenerate nature: all input bits influence all output bits. Supporting experimental
evidence is presented in Section VII-B. It should be noted though that the model would
not work well for all ciphers. For example, DES has S-boxes with small output sizes and
therefore does not have a non-degenerate round function. As a result, the input bits to
the round function have large, localized influences on the output bits, implying a poor
fit to the model.

It should also be noted that it is not necessary to use the model to apply the methodology
used in the analysis of the following sections. All we really require for our approach to
be useful is that the probability biases in a round function be bounded by a value of
€7 < 1/2" for the values of m and n of interest. In a real cipher, it may be possible, using

the characteristics of the round function, to determine a bound on the value of €.
B. Modelling Multiple Rounds: Restricted Case

We now extend our analysis to the full Feistel cipher. We consider in the first instance the
information leakage involving only n bits in the left half of the ciphertext, C';, and n bits
in the right half of the plaintext, Pg, such that the n bits of C are in the same relative
bit positions as the n bits in Pg. (The arguments can also be applied when considering
bits from only the right half of the ciphertext and the left half of the plaintext.) We refer

to this as the restricted case.

Let a vector formed from a set of n bits of C', be represented as the random vector C,(Jn) and
a particular value of C,(’J") be represented by c(L") . In the restricted case, we are interested
in the probability of the occurrence of the value C(Ln) given that the corresponding n bits
of Pg are fixed at a value p%). Hence, we represent this probability as Pr( c(L") | pg)). The
remaining N — n bits of plaintext are assumed to be independent, uniformly distributed

random variables.

Let the input to the round function of round i be X; and the output of the round
function be Y;. From the definition of a general Feistel cipher given in Section II-A, a
vector representing n bits of C'; can be derived from
r/2
¢y =P ey v, (41)
i=1
where the large summation represents a bit-wise XOR on the vectors and it is assumed
that the number of rounds r is even. In the expression, all vectors are formed from the

same positions for the n bits. Note that the relationship between C‘En) and the input
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ng is determined by the sum of the YZ, vectors (i.e., the output of every second round
function). Ideally for no information leakage, €,,,, — 0, where
€mar = IAX |P7( )|p(")) 1/2". (42)

p(};)v cr,

We shall determine €,,,, by using the generalized piling-up lemma, making use of the
assumption that the bits of interest of all Y5; and Pr are independent. In the use of expres—
sion (18), we must consider the maximum value for the probability bias |Pr( Yor | ) —

1/2"|. However, we assume that all variables on the right side of equation (41) are

independent and, therefore,

Pr(ys? [p%)) = Pr(ys?) (43)

where P'r(yg?)) is the probability of a particular value for n bits of the output of the

round function in round 2¢ assuming a uniform distribution across all inputs to the
round function. It can, in fact, be shown that Yg(’") is independent of PI(%"); however we

must rely on the appropriateness of our assumption of independence between all Y(")
(n)
and P, ".

Using our model of a round function, we let
Pr(ysi) —1/2" < (44)

where €; is determined from the round function model of the previous section with the

number of fixed input bits to the round function given by m = 0.

The generalized piling-up lemma can now be used to determine a bound on the probability
of PT(CLn)|p(n)) resulting in
€maz S 2(7’/2_1)“6]01‘/2 (45)

for a cipher of r rounds.

For a cipher with a block size of N, from the development of the previous section, the
probability bias €; can be bounded for all values of n < N/2 — 6 (since m = 0). Hence,
an upper bound, I,,,., on the information leakage I(P(") C(n)) can be determined for
a large number of cases for n using (31). As well, this can be related to the amount of
data that is required to distinguish the information leaked in the cipher, given by Ng
in equation (14) or equivalently (32). For a cipher of block size N = 64, the results for
several values of n have been computed and are presented in Table 1. The value of min

Ng given in the table represents the lower bound on Ng computed from (14) or (32).
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n | #rounds (r) Emaz Iaz min Ng
1 2 8.63 x10°° | 2.15 x 1078 225
4 1.49 x 1078 | 6.41 x 10716 250
6 2.57x 10712 1 1.91 x 10723 275
8 4.44 x 10716 | 5.69 x 10731 | 2100
2 2 6.10 x 107 ° | 4.30 x 108 225
4 1.49 x 1078 | 2.56 x 1015 249
6 3.64 x 10712 | 1.53 x 10~22 273
8 8.88 x 10716 | 9.10 x 1073 297
4 2 3.05 x107° | 1.72x 10~ 7 225
4 1.49 x 1078 | 4.10 x 1014 247
6 7.28 x 10712 | 9.78 x 102! 269
8 3.55 x 1071° | 2.33 x 10727 291
8 2 7.63 x107% | 2.75 x 1076 225
4 1.49 x 1078 | 1.05 x 10~ 243
6 2.91 x 10~ | 4.00 x 10717 261
8 5.68 x 10714 | 1.53 x 10722 279
12 2 1.91 x 107% | 4.40 x 107 275
4 1.49 x 1078 | 2.69 x 1079 239
6 1.16 x 10719 | 1.64 x 10~13 293
8 9.09 x 10713 | 1.00 x 10~ 17 267
16 2 477 x 1077 | 7.04 x 107* 225
4 1.49 x 107% | 6.88 x 1077 235
6 4.66 x 10710 | 6.72 x 10710 245
8 1.46 x 107 | 6.56 x 10713 295
24 2 298 x10°% | 1.80 x 10! 225
4 1.49 x 1078 | 4.51 x 102 227
6 7.45x 1079 | 1.13 x 1072 229
8 3.73x 1079 | 2.82x 1073 231

Table 1: Information Leakage for Restricted Case (N = 64)

As can be seen from the table, as expected, the upper bound on information leakage
decreases and the lower bound on the amount of data required increases as the number of
rounds increases. As the number of bits involved in the information leakage, n, increases,
the lower bound on the amount of data required decreases. Considering ciphers of 8
rounds, for n = 24 the lower bound is small enough (< 2%4") that the cipher cannot be
claimed to be secure against attacks based on information leakage. (This is not to say

that the cipher is insecure; it just cannot be claimed that the cipher is secure.)

We emphasize that this is a very specific case, where (1) the number of plaintext bits
equals the number of ciphertext bits, (2) the plaintext bits are in one half and the

ciphertext bits are in the corresponding half, and (3) the n ciphertext bits correspond to
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Figure 2: Example Scenario for Isolated-Half Case

exactly the same bit positions as the n plaintext bits.
C. Modelling Multiple Rounds: Isolated-Half Case

Next we consider the broader case of m plaintext bits and n ciphertext bits with n #
m but such that all bits are still in C'; for the ciphertext and Pk for the plaintext.
(Similarly, we could consider Cr and Pr.) We refer to this as the isolated-half case since
we still consider the bits of interest are confined to just one half of the ciphertext and
the corresponding half of the plaintext. Let Pl(%"”m) = [Pgl“), Pgh)] represent the vector
derived from the set of plaintext bits and C}”‘*"Z) = [C’En‘), Cg”)] represent the vector
derived from the set of ciphertext bits where ny represents the number of plaintext bits
that are not aligned with the ciphertext bits, n; represents the number of bit positions
common to both the plaintext and ciphertext vectors, and ns represents the number of
ciphertext bits not aligned with the plaintext bits. When considering the information
leakage, we consider the distribution of the values of the n; + ny ciphertext bits when
the ng + ny plaintext bits are fixed and the remaining plaintext bits are randomly and

independently selected.

As an example, consider the information leakage from bits {1,4,5,7,11} in the plaintext
right half to bits {1, 3,5,9,11,25} in the ciphertext left half as shown in Figure 2. In this
case, ng = 2, ny = 3, and ny = 3 with Py = [Pg[4], Pr[7]], PU™ = [Pg[1]. Pr[5]. Pg[11]],
™) = [Cy[1],Cy[5], Cp[11]], and C"*) = [C1[3],CL[9], C1[25]]. As well, the ny bits of
C';, may be considered aligned with ny bits of plaintext, represented as P}(z"’), although

these plaintext bits are not part of the information leakage expression.
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We can modify equation (41) to highlight the component subsets of bits:

C(ﬂl) P(nl) @ ET/2 ("1)

C(n2 _ 712) @ ET/Z 77,2). (46)

As in the previous section, we assume that the bits of interest of all Y5; and Py are
independent and, hence, it is evident from (46) that the n; + ny ciphertext bits are not
directly influenced by the set of ny plaintext bits. (That is, the ny 4+ no ciphertext bits
are not derived by XORing the ng plaintext bits with the outputs of round functions.)
Hence, our independence assumption implies that there is no leakage of the n( bits of
plaintext to the n; + ny ciphertext bits.* Also the ny ciphertext bits are influenced by

‘nz)

the random, uniformly distributed bits P’ which are independent of the set of ny 4+ n;
plaintext bits of interest. Hence, the entropy of the n; + ns ciphertext bits conditioned
on the ng+ ny plaintext bits is given by the entropy of the n; ciphertext bits conditioned

on the n; plaintext bits plus the unconditional entropy of the ny ciphertext bits. That

is,
H(CP )P ™)) = H(CP™ [PY) + ne. (47)
Hence,
I(P(N(H-m) CLM—I-nz)) _ I( (m);cgn))‘ (48)

An upper bound on the information leakage can therefore be computed as in the restricted

case of the previous section.
D. Modelling Multiple Rounds: General Case

Finally, we must consider the completely general case of m plaintext bits and n (# m)
ciphertext bits and any combination of bit positions, i.e., the bits are not constrained to
only one half of the plaintext and ciphertext. We use the following notation to refer to
bits involved in the information leakage expression:

nro - the number of bits in P, not aligned with bits in C'g

nr1 - the number of aligned bits in P, and Cp

nre - the number of bits in C not aligned with bits in P,

nro - the number of bits in Pi not aligned with bits in C',

ng1 - the number of aligned bits in Pg and Cp,

nro - the number of bits in C'; not aligned with bits in Py

*Although the ng plaintext bits must influence the values of the n; 4 ny ciphertext bits, the inde-
pendence assumption is premised on the assumption that negligible information leakage would occur
between the ngy plaintext bits and the n; + no ciphertext bits. For example, in the trivial case of r = 2,
the influence of the ny plaintext bits is diffused through the two round functions and it is reasonable to
expect the information leakage would be negligible in comparison to the n; + ny plaintext bits directly
influencing the corresponding ciphertext bits.
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Hence, in determining the information leakage we consider a total of nyg+ng1+ngo+ng:
plaintext bits to be fixed and are interested in the information leaked to ng; + ng2 +
nr1 + npo bits of ciphertext, assuming that the non-fixed plaintext bits are random and

independent. Our objective then is the consideration of

_[(PénLO‘f‘nLl)? P;%HR()-I-HRI); anm-l-nm)’ Cl(%nm-l-nm))‘ (49)
We know
- ~(nR1+NnR2) (np1+nr2)y _ .
H(C) ,Cr ) =ng1 +nge+np1 4+ np2 (50)

and so need to consider the conditional entropy

H(CE”RI+”R2)7 Crl(%nLH-an)|P£TLL0-HLL1)7 PgLRo-i-nm)). (51)

Similar to the reasoning in the previous section, we rationalize that the ciphertext bits
counted in ngy and nyo are randomized by bits that are uniformly distributed and inde-

pendent of the plaintext bits of interest. Hence,

I__[(C«glm-i-nm)7 Cl(QnLrl-an)|P£7LL0-HLL1)7 PI(%nRo-I-nm))

_ H(Cglm),Cl(%nLl)|P[(/nL0+nL1),PI(%nRO-I—an)) + H(anR2),C§%nL2)) (52)
_ H(Cglm)’ C}({“L1)|P£HL0+71L1)’ P]({"R(H‘”Rl)) 4 npo 4 ngo

and therefore (npotnr1) p(nrotnri), ~(nritnrz) ~(npit+niz)
I(PL Lotni) plrrotnr), olnrtnre) olnatnie))y

_ I(PénLo-I-Tlm)’ P}(;Ro-l-ﬂ}n); CglRl), C%LLI)) ( )

However, we can no longer consider the influence of fixed plaintext bits in one half in
isolation and we must consider the influence of some number of fixed bits of the plaintext
right half when determining the information leakage from the plaintext left half and vice

versa.

Consider the output of the first round function Y;. According to our round function
model, we assume that the randomness of ) is generated by the L, = N/2 — (ngo+ng1)
non-fixed bits of the input to the round function. The bits of Y; are combined with the
bits of Py by the XOR operation and we are specifically interested in the bits Pén“)
(since Pé"“’) does not directly affect the ciphertext bits of interest and as a result of
our assumption of independence between output bits of every 2nd round function and
plaintext bits). The round function model is based on 2% balls being tossed into the
2"21 bins of interest. In the context of the notation used in Section V-A, m = ngrg+ nr:
and n = ng;. From this reasoning we can compute a bound on the probability bias €; at
the output of the round function and, consequently, determine the probability bias for

the corresponding ny; bits at the output of the XOR.
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At the output of the round function of round 2, we are interested in the bias of the bits
of Y; corresponding to the ngy bits from Pi. To model the 2nd round function, since we
are interested in an upper bound on the probability bias, we shall assume the worst case
scenario, where the fixed nyg+ny; bits of Py constrain the input to the right half of round
2 to take on only 2%¢ values where L, = N/2 — (ngg + nr;). Clearly, this is pessimistic
since the nrg 4+ nyy bits of Pp that are fixed, are randomized when XORed with the
corresponding bits of Y7, resulting in X, capable of taking on 2V/2 values. However, X5
is not necessarily uniformly distributed. So the distribution for the vector of output bits
of interest from the 2nd round function Y5 is modelled by considering tossing 2% balls

into 2"? bins and consequently bounding the probability bias.

Extrapolating the analysis from round 2 to find an upper bound on the information
leakage, we use the pessimistic approach and model all odd rounds of the cipher by
considering 2%° balls tossed into 2" bins and all even rounds by considering 2% balls
tossed into 2" bins. Using this model, the upper bound on the biases for the outputs
of all the round functions can be determined. We can then apply the piling-up lemma to
derive an upper bound on the biases of the overall cipher for the left and right halves of

ciphertext. That is, the following can be computed:

€Lmas = MAX |P71(C(L"R1)|p(LnL0+nL1)7p%‘LR0+nR1)> . 1/2nR1| (54>
and
€ mar = TAX |PT(C¥;L1‘) |p(LnLo+nL1)7pglRo+nR1)) _ 1/2n,L1|‘ (55)

In order to compute a bound on the information leakage of the combined left and right

halves of the ciphertext, we use the approximation®

I(P[(/WLO‘F”LL) P}(ZHR0+"R1), anm) Cglm)‘)
~ I(Pézn}?o+nR1)7 Pén‘é0+nLl); Cém?l))_ (56)
_|_I(PI(%71RO-I-ﬂm)7 PénLo-&-nm); C}(Qnm)).

Hence, we may employ (54) and (55) to determine an upper bound on the information
leakage of each ciphertext half separately and then combine them as per (56) to determine
the upper bound on the information leakage. Subsequently, a lower bound on the amount
of data required in an attack based on information leakage can be computed. A number of
sample values of plaintext and ciphertext bit sets have been considered and are presented

in Table 2 for a cipher of block size N = 64 and r = 8 rounds.

>Expression (56) is true with equality for ciphers which XOR subkeys to data in each round under
the assumption of random, independent, uniformly distributed subkeys.
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Npo —Np1 —NRo — NR1 | €Lmazs €Rmax Inan min -ZVS
0—-1-0-1 1.78 x 1071 | 1.82 x 10~ 2%
1-1-1-1 711 x 1071 [ 291 x 10728 292
3—1-3-1 1.14 x 10713 | 7.46 x 10726 284
0—-2-0-2 1.42 x 1071 | 4.66 x 10727 290
2—-2-2-2 227 x 10713 | 1.19 x 1072 282
1-3—-1-3 4.55x 10717 | 1.91 x 1072 280
0—4-0-4 9.09 x 10713 | 3.06 x 10722 278
4—-4—-4-4 2.33 x 10710 | 2.00 x 10~17 262
§—4-8—-4 5.96 x 107% | 1.31 x 10712 246
4-8—-4-8 9.54 x 107 | 8.60 x 10~® 238
§-8—-8-38 244 x 107* | 5.64 x 1073 222

Table 2: Information Leakage for General Case (N = 64, r = 8)

Note that in the analysis of the general case, as per (40), in order for the bound on the
probability bias of our modelled round function to be small enough for convergence as the
number of rounds increases, for N = 64, nyg+np1 +ng < 26 and npy +ngy+ngr < 26.
In Table 2, we have assumed that nyps = ngo = 0: since no information is leaked through
the nzs and ngo bits, there is no value in including them in an attack. In fact, including

them only increases the number of plaintexts required in the attack.

From the table, we observe the general trend of a decrease in the lower bound on the
amount of data required for an attack, Ng, as the number of bits involved in the plaintext
increases. For the scenarios with a large number of involved bits we find the lower bound
on Ny is too small to be able to claim security against exploiting information leakage.
However, due to the nature of the analysis, it seems very likely that the small value of
the lower bound is the result of the looseness of the bound, rather than a sincere security

risk.

VI. Application of the Model to CAST-128

In this section, we consider the results of the model applied to a cipher with the parame-
ters of CAST-128 [4]. We conjecture that the model of the round function applies well to
the CAST-128 round function and, hence, the results in this section accurately represent
security bounds for CAST-128. This is discussed further below and is supported with

experimental evidence in Section VII-B.

CAST-128 is a Feistel cipher of block size N = 64 and 16 rounds. It has a 32 x 32 round
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function generated by dividing the data block into 4 bytes and using the values of the
bytes to look-up the 32-bit output values of four 8 x 32 S-boxes. The outputs of the
S-boxes in the CAST-128 round function are combined to produce a 32-bit output using
3 operations: addition modulo-232, subtraction modulo-23?, and 32-bit XOR. There are
37 subkey bits mixed into each round: 32 bits are combined with the incoming data using
either addition, subtraction, or XOR and this is followed by a key-dependent rotation

determined from the remaining 5 bits of subkey.

There are actually 3 defined round functions in CAST-128 with the round number deter-
mining which function is applied. The functions differ in which operations are used for
combining the outputs of the S-boxes. As an example, round function f; with a 32-bit
input X and a 32-bit output Y is defined to be:

D=(Ky,+X)—K,

Y = (($1[Dy] ® S Da]) + SsDs]) — Sa[Du] (57)

where S; represents S-box ¢, D; represents the 8-bit input to S-box ¢, and K,, and K,
represent the combining and rotation subkeys, respectively. The operators “@”, “47, and
“—" represent XOR, addition, and subtraction, respectively, and the notation “V «— U”
represents a left rotation of vector V' by U bits. Note that D and K, represent 32-bit

vectors and K. is 5 bits in length. Round functions f, and f3 are similar in nature.

A notable property of the CAST-128 round function is that all input bits influence all
output bits. This occurs because the 8-bit input of each S-box influences a 32-bit output
which is combined with the other 32-bit S-box outputs to produce the 32-bit output of
the round function. This is a strength of the CAST cipher which is not present in DES,
for example, and is an important consideration when modelling the round function. In
the CAST-128 round function, as in our round function model, we expect there can be
some small amount of information leakage from any set of input bits to any set of output
bits. (Contrast this to the DES round function, where it is trivally true that input bits
have no influence on most output bits, implying the information leakage is 0 for some

sets of inputs and outputs but for other sets the information leakage is high.)

In order to examine the security bounds for the CAST-128 cipher, we computed the
information leakage with N = 64 and r = 16 for all valid combinations of nq, np1,
ngo, and ng such that in the round function model, (40) is not violated. We observed
that the smallest lower bound for any number of plaintext and ciphertext bits occurs for
scenarios where the number of ciphertext bits is 1 and the number of plaintext bits is
maximized in the plaintext half not corresponding to the half of the ciphertext bit. That

is, np1 = 1 and ng, = 0 with npy maximized is a scenario which gives the smallest lower



np | Smallest min Ng | Restricted min Ng
(nLO‘nLl"n'RO"n'Rl‘) (nLO'nLl‘nRO‘an)
2 | 2192 (0-1-1-0) 2193 (0-2-0-0)
4 | 2176 (0- 1 3 0 2179 (0-4-0-0)
6 | 2160 (0- 2165 (0-6-0-0)
8 | 2144 (0 1 7 O) 2151 (0-8-0-0)
10 | 2128 (0-1-9-0) 2137 (0-10-0-0)
12 | 242 (0-1-11-0) | 2'23  (0-12-0-0)
14 | 296 (0-1-13-0) | 219 (0-14-0-0)
16 | 280 (0-1-15-0) | 2% (0-16-0-0)
18 | 264 (0-1-17-0) | 28! (0-18-0-0)
20 | 2%8 (0-1-19-0) | 27 (0-20-0-0)
22 | 232 (0-1-21-0) | 2% (0-22-0-0)

Table 3: Smallest Lower Bound on Ng (N = 64, r = 16)

bound on Ny for a given number of plaintext bits np. (The number of bits of ny does
not influence the leakage and resulting bound on Ng.) So, in consideration of (40), if
np < 26, then nyg = 0, npy = 1, ngg = np — 1, and ng; = 0 minimizes the bound on
Ng and, if np > 26, then nyg =np — 25, np; =1, ngy = 24, and nr; = 0 minimizes the
bound on Ng. (We could also reverse the role of the left and right halves and the results
would be the same.) It is not surprising that these scenarios minimize the bound on Ng

because such scenarios maximize the bias of the round function €.

In Table 3, we present, as a function of the number of plaintext bits involved in the
information leakage expression np, the minimum computed bounds on Ng and the corre-
sponding scenario for a cipher of N = 64 and r = 16 as in CAST-128. For comparison, we
also give the value of the bound on Ng for the restricted case of the same number of bits.
As the number of bits increases, the smallest lower bound and the restricted case lower
bound diverge somewhat. In an attack based on information leakage, np plaintext bits
are fixed, allowing a maximum of 2¥~"7 plaintexts available to mount the attack. For
np < 20, the amount of data required exceeds 264="7 implying that the cipher cannot

be attacked using information leakages involving 20 or fewer bits.

VII. Experimental Results

In this section, we present a limited set of experimental results supporting the applica-

bility of the model and the conjecture that CAST-128 is well represented by the model.
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n | #rounds | Theoretical €,,,, | Average Experimental €,,,, | Largest Experimental €,,,,
1 2 3.906 x 10~! 3.906 x 10~! 3.946 x 107!
4 3.052 x 10~! 3.052 x 10~! 3.089 x 10!
6 2.384 x 107! 2.385 x 107! 2.428 x 107!
8 1.863 x 107! 1.865 x 107! 1.915 x 107!
2 2 1.953 x 107! 1.953 x 107! 2.005 x 10!
4 1.526 x 107! 1.526 x 107! 1.573 x 107!
6 1.192 x 107! 1.193 x 107! 1.246 x 107!
8 9.313 x 1072 9.327 x 1072 9.871 x 1072
3 2 9.766 x 10~ 9.767 x 1072 10.315 x 1072
4 7.629 x 1072 7.692 x 1072 8.090 x 102
6 5.960 x 102 5.964 x 1072 6.407 x 1072
8 4.657 x 1072 4.663 x 1072 5.160 x 1072

Table 4: Experimental Results for Restricted Case (N = 24)

A. Verification of Analysis on a Small Cipher

In this section, we consider a small scale Feistel cipher. Specifically, we examine a cipher
with a block size of NV = 24 and with a round function generated as a randomly selected
12 x 12 mapping. The small block size makes it possible to consider probability biases

that are large enough to be verified using several thousand test encryptions.

Our specific objective in the experiments was to verify the correctness of the approach
to computing the probability biases used in bounding the information leakage of the
cipher, essentially verifying the applicability of the piling-up lemma. The first set of ex-
periments involved verification of the restricted case discussed in Section V-B. Following
these experiments, several scenarios from the general case discussed in Section V-D are

examined.
1) Restricted Case

To verify the restricted case scenarios, our experimental approach generated a number
of ciphers by randomly selecting a round function and then modifying it in specific bits
to create probability biases that were large enough to be easily measured at the cipher
output. The round function in each cipher was not keyed but the results would be
identical to the scenario where we XOR a subkey to the data at the input to the round
function. For a specific set of 3 input bits, the randomly generated round function was
modified so that the probability bias from 1/8 was exactly ¢; = 25/256 for all values.
Similarly, for a 2 bit set, the probability bias from 1/4 of €, = 25/128 was established
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for all values; for a particular bit, the probability bias from 1/2 was ¢; = 25/64.

With each generated cipher, many random test encryptions were executed for the different
cases with a set of either n = 1, 2, or 3 bits held fixed in the plaintext right half while
the remaining plaintext bits were randomly selected. The fixed bits corresponded to the
bits in the 2nd round at the output of the round function that were generated to give

the probability biases €; above.

The experimental probabilities associated with the corresponding ciphertext bits were
determined for 1000 different ciphers as a function of the number of rounds. The average
biases and the largest biases across all ciphers were determined for the different scenarios
and these are tabulated in Table 4 and compared to the values computed according to
equation (45), with €; as appropriate from above. Note that the experimental results
compare very favourably with the theoretical results derived for the restricted case of
Section V-B. The experimental average bias is very close to the expected value in all
cases; the largest bias is marginally greater than the expected value which is not surprising
given that these values are derived by picking the largest from 1000 experimental sets
of data. This gives us encouragement that the assumption of independence used in the
analysis (that allowed the application of the piling-up lemma) appears to give a reasonable
approximation of the behaviour of the cipher. The analysis for the isolated-half case of
Section V-C follows straightforwardly from the restricted case and, hence, we do not

present any experimental verification of such scenarios here.
2) General Case

The general case of Section V-D relies exclusively on the “balls-in-bins” approach to
modelling the behaviour of the round function and so cannot be verified by a specially
modified round function as we did for the restricted case. However, we have observed
experimental results consistent with the upper bound derived in the analysis of Section
V-D. Specifically, we have randomly generated 1000 ciphers, each based on a randomly
generated 12 x 12 round function (without modified bits as before) and, using a number
of test plaintexts with some fixed bits (ny; bits in P, and ng in Pg), have examined
the probability bias associated with the corresponding ciphertext bits. In Table 5, the
resulting experimental probability biases are compared against their theoretical upper
bound values derived using the methodology of Section V-D. Note that np; + ng <
N/2—6 = 6 as per the discussion of Section V-A. As expected, the experimental results

fall below the theoretical bounds. The theoretical upper bounds on the bias do not

appear to be very tight.
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np — ngr | #rounds | Theor. €1mae | EXP. €1mer | Theor. €gmar | EXDP. €rmaz
1-1 2 1.250 x 1071 [ 3.286 x 1072 | 1.250 x 10~! | 4.003 x 1072
4 3.125 x 1072 | 2.193 x 1073 | 3.125 x 1072 | 2.579 x 1073

6 7.813x 1073 | 2.021 x 1073 | 7.813 x 1073 | 2.034 x 1073

8 1.953 x 1073 | 1.300 x 1073 | 1.953 x 1073 | 1.531 x 1073

2-2 2 1.250 x 1071 [ 2.309 x 1072 | 1.250 x 10~' | 4.781 x 10~2
4 6.250 x 1072 | 2.593 x 1073 | 6.250 x 102 | 2.993 x 103

6 3.125 x 1072 | 2.434 x 1073 | 3.125 x 102 | 2.331 x 103

8 1.563 x 1072 | 2.622 x 1073 | 1.563 x 1072 | 2.455 x 1073

2—-3 2 8.839 x 1072 | 2.476 x 1072 | 1.768 x 10~" | 6.748 x 1072
4 6.250 x 1072 | 2.722 x 1073 | 1.250 x 10~" | 3.597 x 103

6 4.419 x 1072 | 2.408 x 1073 | 8.839 x 1072 | 3.287 x 1073

8 3.125 x 1072 | 2.288 x 1072 | 6.250 x 1072 | 2.736 x 103

3—-1 2 2.500 x 107" | 3.253 x 1072 | 6.250 x 1072 | 2.869 x 1072
4 1.250 x 1071 [ 2211 x 1073 | 3.125 x 1072 | 2.332 x 1073

6 6.250 x 1072 | 2.298 x 1073 | 1.563 x 102 | 2.181 x 103

8 3.125 x 1072 | 2.692 x 1073 | 7.813 x 1073 | 2.524 x 1073

Table 5: Experimental Results for General Case (N = 24)

B. Applicability of Round Function Model to CAST-128

It is not conceivable to verify the applicability of the model to the CAST-128 round
function for all combinations of appropriately sized input and output sets (i.e., so that
m + n < 26). It is particularly difficult since the 32 X 32 size of the CAST-128 round
function makes the probability biases very small, with typically several million tests of
round function values to determine experimentally. So, we focussed our tests on a small
number of cases for m and n and used 10 randomly selected subsets of m plaintext bits
and n ciphertext bits for each case. We used function f; in our experiments with K, and
K, both being all zeroes. Table 6 illustrates the largest bias values that were found in
experiments using 10° test values for the different scenarios and compares these against
the corresponding bound used in the model. As conjectured, no experimental values

exceeded the bound suggested by the model.

VIII. Conclusions

In this paper, we have examined information leakage between bits of plaintext and cipher-
text as a measure of cipher security. Information leakage has been related to cryptanalysis
such that a lower bound on the amount of data required to attack a cipher by exploiting

information leakage can be determined from an upper bound on the information leakage
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m — n | Theoretical Maximum €y | Largest Experimental €
1—-1 1.221 x 104 9.151 x 10
2-2 1.221 x 1074 6.775 x 107°
8 —4 4.883 x 1074 2.807 x 1074
8—38 1.221 x 1074 6.517 x 107°
10-6 4.883 x 107* 2.662 x 10~*
11-1 3.906 x 1073 5.709 x 1074
12—-4 1.953 x 1073 6.988 x 1074
12 -12 1.221 x 1074 6.599 x 107°

Table 6: Experimental Probability Biases for CAST-128

of the cipher. The theoretical equivalence of zero information leakage and immunity to

linear cryptanalysis has also been established.

The paper has also presented a model of a general Feistel cipher that can be applied to
get a general sense of the amount of information leakage (in the form of an upper bound)
as a function of the number of rounds, block size, and selection of bits involved in the
leakage. The usefulness of the model is supported with experimental evidence and the
applicability of the model to the CAST-128 cipher has been discussed. As an example
use of the model, for the CAST-128 cipher, we predict that the information leakage from
20 or fewer bits of plaintext is such that an attack would require more than the available
plaintexts - an impossible requirement. For scenarios of information leakage involving
more than 20 bits, it is not possible to conclude that the CAST-128 cipher is immune
to attacks based on information leakage. However, it is important to note that this is a
limitation of the analysis in this paper which gives lower bounds on the amount of data

required, rather than a negative reflection on the security of CAST-128.

The model is most useful for information leakage involving small numbers of plaintext
and ciphertext bits. It is likely that, due to the conservative nature of the round function
model and the slow convergence of the upper bound on the probability bias for the
cipher when round function bias is close to 1/2", the analysis provides a loose upper
bound on information leakage, particularly when the number of involved bits becomes
large. Therefore, the amount of data required for an attack involving a large number
of bits is a correspondingly loose lower bound. Future work could involve finding better

methods for bounding the information leakage involving larger numbers of bits.
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