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— In this paperwe examineaclassof productciphersreferredto assubstitution-

permutationnetworks. We investigatethe resistanceof thesecryptographicnetworksto

two importantattacks:differentialcryptanalysisandlinearcryptanalysis.In particular,we

developupperboundson thedifferentialcharacteristicprobabilityandon theprobability

of a linearapproximationasa functionof thenumberof roundsof substitutions.Further,

it is shown that using large S-boxeswith good diffusion characteristicsand replacing

the permutationbetweenroundsby an appropriatelinear transformationis effective in

improving the cipher security in relation to thesetwo attacks.
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�
. Introduction

The classof productciphersconsideredin this paperis basedon principlesintroduced

by Shannon[28]. Shannonsuggestedthat secure,practical product ciphers may be

constructedusinga “mixing transformation”consistingof a numberof layersor rounds

of “confusion” and “dif fusion”. The confusioncomponentis a nonlinearsubstitution

on a small sub-blockand the diffusion componentis a linear mixing of the sub-block

connectionsin order to diffuse the statisticsof the system.

Feistel [13] and Feistel, Notz, and Smith [14] were the first to introducea practical

architecturebasedon Shannon’sconceptswith a network structure consisting of a

sequenceof roundsof smallsubstitutions(referredto asS-boxes),easilyimplementedby

table lookup andconnectedby bit positionpermutationsor transpositions.Suchciphers

aregenerallyreferredto assubstitution-permutationnetworksor SPNs.The fundamental

principlesof an SPN form the foundationfor many modernproductciphers,including

DES [20], FEAL [29], and LOKI [10].

Recentcryptanalysistechniqueshavehad a notableeffect on the perceivedsecurityof

many productciphers. For example,DES hasbeenfound to be theoreticallycryptana-

lyzableby differentialcryptanalysisusinga chosenplaintextapproach[5] andby linear

cryptanalysisusinga known plaintextapproach[18]. In this paper,we examinethe se-

curity of SPNswith respectto thesetwo powerful cryptanalysistechniquesandsuggest

structuresthat aid in resistingthe attacks. In particular,we developupper boundson

theprobability of a differentialcharacteristicandon the deviationof the probability of a

linear approximationfrom the ideal valueof 1/2. The objectiveof suchan analysisis to
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determinea flexible architecturethat canbe efficiently implementedin asfew roundsas

possibleto providesuitablysmall probabilitiesfor differential characteristicsand linear

approximations.

� �
. Background

We shall considera general
�

-bit SPN as consistingof � roundsof ����� S-boxes.

The numberof S-boxesused in eachround is representedby � where � � �	� � .

The plaintext and ciphertext are
�

-bit vectors denotedas 
 � �������������������� and

� � �� � � � ����������� , respectively. An S-box in the network is defined as an � -bit

bijective mapping �  "!$#&% where !&�'� ()��(*�+�����,()-.� and % �'�/0��/1�+�����2/3-�� . A

simpleexampleof an SPNis illustratedin Figure1 with
� �54,6 , �7�98 , and �:�;8 .

In generalS-boxesmay be keyedusingoneor both of the following methods:

(1) selectionkeying: key bits areusedto selectwhich mappingfrom a setof mappings

is to be usedfor a particular S-box, and

(2) XOR mask keying: key bits are XORed with the network bits prior to entering

an S-box.

Notethatmethod2 mayactuallybeconsideredasa specialcaseof method1. Method2,

however,ensuresthatall mappingsin thesetof possiblemappingsfor anS-boxarefrom

the samecryptographicequivalenceclass[30]. We shall assumein our discussionthat

the networkis keyedusingXOR maskkeying by XORing
�

bits of key (asdetermined

by the key schedulingalgorithm)beforethe first substitution,after the last substitution,
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Figure 1. SPN with � � ��� , � ��� , and �	�
� .

andbetweenall substitutions.Decryptionis performedby applying the key scheduling

algorithm in reverseand using the inverseS-boxes.

Ratherthan strictly confiningourselvesto the basicform of substitutionsconnectedby

permutations,in thispaperwe considerthemoregeneralmodelof substitutionsconnected

by invertible linear transformations.However,for consistency,we still refer to the more

generalarchitectureas an SPN.

Many papershaveexaminedthecryptographicallydesirablepropertiesof SPNsandtheir

components.Acknowledgeddesigncriteria for thenetworkS-boxesincludenonlinearity
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[26][19][3][21] and information theoretic properties[15][12]. Preferredpermutation

structurespromotethe influenceof input bits [16][4][11].

Of particularimportanceto our discussionis the notion of nonlinearityandwe shall use

the following nonlinearitymeasureswhen referring to a booleanfunction or an S-box.

The nonlinearityof an � -input booleanfunction, �  ������ 4�� - # ���	� 4�� , is defined asthe

Hammingdistanceto the nearestaffine function:

��
� ��� � ��� � � �������������! " #$%'&�(*) %,+-%/.1032457698;: : : 8 5=<>8 ?�@BADCE8 6EF (1)

Consequently, the nonlinearity of an G�HIG bijective mapping or S-box J is defined as

the minimum nonlinearity of all non-zero linear combinations of output functions:

KML � J � " N3O G K�L-P #$%'&�(RQ % � %TSUR698 : : : 8 U < @=ADCE8 6EF 8WVEX;XBURY�Z[ C (2)

where

� % represents the G -input function of the O -th output of the S-box. Letting J]\ (
represent the inverse S-box of S-box J , it can be shown that

KML_^ J \ (7` " K�L � J � [22].a*aba
. Two Important Classes of Cryptanalysis

In this section we discuss two important classes of cryptanalysis which have had signif-

icant success against product ciphers.

(a) Differential Cryptanalysis

In a series of papers [5][6][7][8], Biham and Shamir successfully demonstrate the sus-

ceptibility of several product ciphers to differential cryptanalysis. Notably, differential

cryptanalysis has been successful in breaking weakened versions of DES and can theo-

retically compromise the security of the full 16–round DES algorithm using ced7f chosen
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plaintexts. As well, differential cryptanalysis has been successfully applied to the FEAL

cipher for up to 31 rounds of substitutions.

Differential cryptanalysis is an attack which examines changes in the output of the

cipher in response to controlled changes in the input. In general, we are interested

in bit changes or XOR differences within the network when two plaintexts, ��� and

� ��� are selected as inputs. We represent the XOR difference of the two plaintexts by

� ����� �	� � ��� . Let the input and output difference to a particular round 
 be represented

by
����

and
����

, respectively. Differential cryptanalysis relies on the existence of

highly probable “characteristics” where an � -round characteristic, ��� , is defined as a

sequence of difference pairs: � � ����� �������	���������! " # "� � �$� � �	�%� � �	& . The algorithm tries

an appropriate number of chosen plaintexts with
� �'� �$���

and counts the number of

times that a sub-key consisting of a subset of the key bits is consistent with the ciphertext

difference,
�)(

, assuming that the characteristic has occurred. If the characteristic occurs

with probability *,+.- , the correct sub-key bits are consistent with a probability of at least

*/+ - . After an appropriate number of trials (typically several times more than 021�*/+ -
chosen plaintext pairs) the correct sub-key will be counted significantly more times than

incorrect sub-keys.

In this paper, we shall assume that a characteristic probability is determined by the

product of the probabilities of the occurrence of a one round difference pair. Letting

3 � �$�  �	�%�  � represent the probability of occurrence of the 
 -th round difference pair,
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then

* +.- �
��
�� � 3 � �$�  �	�%�  �	 (3)

Equation (3) gives exactly the characteristic probability taken over the independent

distributions of plaintext and key. Hence, it strictly applies only when the plaintext

and the keys applied at each round are independent and uniformly randomly selected

for the encryption of each plaintext pair. In practice, equation (3) has been found to

provide a reasonable estimate of the characteristic probability in ciphers with mutually

dependent round keys.

Differential cryptanalysis of a basic SPN can be applied similarly to the attack on

DES-like ciphers. For a DES-like cipher, differential cryptanalysis determines key bits

associated with the input to the last round function by using knowledge (directly available

from the right half of the ciphertext) of the two input values (and their difference) to

the last round function combined with probabilistic knowledge of the output difference

of the last round function. Similarly, differential cryptanalysis of a basic SPN can be

used to determine the key bits XORed to the output of the last round of S-boxes by

using knowledge of the two ciphertext values (and their difference) and the probabilistic

knowledge of the input difference to the last round of S-boxes.

Hence, a differential attack of an SPN may be successful if the cryptanalyst is aware of

a highly probable characteristic for the first ��� 0 rounds, ���	� � . The attack targets the

round � S-boxes that are affected by the output changes of the characteristic,
�%� �
� � .

The targeted sub-key contains the key bits which are XORed with the output of the

targeted S-boxes. Consequently, trying all sub-key values, the cryptanalyst can use the
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known ciphertext values to decrypt the portion of round � associated with the target

S-boxes. (Ciphertext pairs which have bit changes in the output of non-targeted S-boxes

may be discarded since they can not be generated by characteristic ��� � � .) If the XOR

difference of the target S-box inputs determined by the partial decryption corresponds to

��� �
� � , then the corresponding sub-key count is incremented. The actual sub-key may

be deduced as the key which is consistent most frequently over a number of trials.

Similarly to the analysis of the differential cryptanalysis of DES by Biham and Shamir

[5], it can be assumed that, in circumstances where a highly likely � ��� 0 � -round

characteristic of probability * + ����� is known, the number of chosen plaintexts required to

determine the sub-key may be approximated by
���

where

� � � 0 1	* + �����  (4)

In practice, the number of chosen plaintexts required will be greater than
� �

since we

have neglected the factor of 2 (which arises from the fact that the chosen plaintexts are

encrypted in pairs) and since many incorrect sub-keys, as well as the correct sub-key,

are counted at least once.

Let
�
	

and
�
�

represent the input and output XOR differences, respectively, to an

S-box when a plaintext difference
� � is applied to the cipher. The existence of highly

probable characteristics depends on two factors: the distribution of S-box XOR difference

pairs, � ��	 ���� � , and the diffusion of bit changes within the network. We define the

probability of an S-box XOR pair � ��	 ���� � to be the probability that
���

occurs

given that one of the input values for
	

is randomly selected and the other is related by
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Figure 3. High Probability Characteristics

the difference ��� . Let the probability of the most likely S-box XOR pair (other than

� �������
	��������� ) be ��� .

Characteristics derived from S-box XOR pairs with high probabilities will typically occur

with high probability. Several authors [12][21][2] have related the information theoretic

and nonlinear (bentness) properties of S-boxes to minimizing � � and suggest that S-

boxes based on these principles provide resistance to differential cryptanalysis. In [25],

O’Connor shows that, for large � , the S-box XOR pair probability is expected to be

at most ���������
� . Hence, the expected maximum XOR pair probability decreases as the

size of the S-box is increased. For ��� � S-boxes, the expected maximum XOR pair

probability satisfies � �"! � �$# .

High probability characteristics will also occur when poor diffusion of bit changes results
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in a characteristic involving a small number of S-boxes [17][25]. Consider, for example,

a 4–round characteristic for an SPN with ����� S-boxes that have a maximum XOR pair

probability of *�� � 0 1�� . It is possible that a characteristic might exist with only one

S-box affected in each round, i.e., an input change of one bit leads to an output change

of one bit in all rounds. This is illustrated by the highlighted lines in Figure 3(a). Since

such a characteristic involves the fewest number of S-boxes possible, it is clear that the

probability of a 4–round characteristic is bounded by

* +��
	 � 0 1�� ��� �� ���  (5)

Assume now instead, that all S-boxes are such that a one bit input change must cause at

least two output bits to change and that the permutation used in the network is such that

no two outputs of an S-box are connected to one S-box in the next round. The 4–round

characteristic which affects the fewest number of S-boxes is similar to that shown in

Figure 3(b). Assuming * � � 0 1�� , we now find that the characteristic probability is

bounded by

* + � 	 � 0 1�� ��� �� �
���

(6)

which is a significantly smaller characteristic probability than the previous case.

(b) Linear Cryptanalysis

In [18], Matsui presents an effective linear cryptanalysis method for DES. The attack

uses a known plaintext technique to extract key information by finding a linear equation
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consisting of plaintext, ciphertext, and key terms which is statistically likely to be satisfied.

The full 16–round DES algorithm is susceptible to the attack with  ��� known plaintexts

and it is shown that the attack can even be modified to be successful on an 8–round version

of DES with 
���

encrypted ASCII-coded English blocks using a ciphertext only attack.

In order to attack an SPN using the linear cryptanalysis technique, the cryptanalyst is

interested in the best � -round linear approximation of the form:

3 
� �  " # � 3  � � ��� � �  " # � ����� �
	�� � �  # " � 	���  (7)

If we let *�� represent the probability that equation (7) is satisfied, in order for the linear

approximation to be valid * ���� 021  and the best expression is the equation for which

� *�� � 0 1  � is maximized. If the magnitude
� *�� � 021  � is large enough and sufficient

plaintext-ciphertext pairs are available, the equivalent of one key bit, expressed by the

XOR sum of the key bits on the right side of equation (7) may be guessed as the value

that most often satisfies the linear approximation.

A basic linear attack, presented as Algorithm 1 in [18], may be executed using an

algorithm based on a maximum likelihood approach. If *���� 021  , then the sum of

the key bits is assumed to be 0 if the left side of equation (7) equals 0 for more than half

the known plaintext-ciphertext pairs tested, or the sum of the key bits is assumed to be

1 if the left side equals 1 for more than half the pairs. If * ��� 0 1  , then the sum of the

key bits is assumed to be 1 if the left side of equation (7) equals 0 for more than half

the known plaintext-ciphertext pairs tested, or the sum of the key bits is assumed to be

0 if the left side equals 1 for more than half the pairs.
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An appropriate linear expression is derived by combining a number of linear expressions

for different rounds such that any intermediate terms (i.e., terms that are not plaintext,

ciphertext, or key terms) are cancelled. Let the best linear approximation of an S-box,

in the form � ���)� �  # " � ��� � � ��� ���
	��������������� , be satisfied with probability ���
assuming input � is randomly selected. In this paper, we consider the probability that

a system linear expression is satisfied to be taken over the independent distributions of

plaintext and key. Hence, since the key bits XORed to the network bits prior to entering

the S-boxes are independent and uniformly random, the inputs to the S-boxes involved in

the linear approximation are independent and uniformly random. Under this assumption,

it then follows from Lemma 3 in [18] that

� ����� �"!"# ��$ #&%�'
	 � �(�)� �"!"# � % (8)

where * is the number of S-box linear approximations combined to give the overall

linear approximation.

In Lemma 2 of [18], Matsui develops an expression for the number of plaintexts required

by the basic linear attack (Algorithm 1 in [18]). From this it is shown that the number

of known plaintexts required to give a 97.7% confidence in the correct key bit may be

approximated by + � where

+ �-, � � � � �"!"# � '/.  (9)

It is obvious that +0� can be increased by decreasing
� ���1�2�3!4# � . Hence, selecting S-

boxes for which � �65 �3!"# will clearly aid in thwarting the attack. As well, the larger

the number of S-boxes, * , involved in the system equation, the smaller
� � � � �"!"# � and

the more known plaintexts required for the cryptanalysis.
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���
. S-box Design Criteria

In this section, we consider S-box design criteria that are relevant to the two attacks

and examine the procedures that may be followed to generate S-boxes that satisfy such

design constraints.

(a) Diffusion

As suggested in the previous section, S-boxes that effectively diffuse bit changes increase

resistance to differential cryptanalysis. The diffusion properties of an S-box can be

considered by examining the relationship between input and output XORs. Let �����	��

represent the Hamming weight of the specified argument and consider the following

definition.

Definition 1: An S-box satisfies a diffusion order of � , ���� , if, for ������� ��
���� ,

����������
��
� ��� � ������� � �!
 "����#�$� �!
�%&��� �

� "�'(��)+*-,.�0/�1�*  (10)

Note that all bijective S-boxes satisfy � , � and that DES S-boxes satisfy � , � [9]. As

well, the diffusion order is bidirectional, i.e., the inverse S-box 2 '
	

satisfies the same

diffusion order as S-box 2 .

Other properties related to the diffusiveness of an S-box are the strict avalanche criterion

(SAC) [31] and the propagation criterion [27] (also referred to as higher order SAC [1]).

An S-box satisfies SAC if, given that a single input bit is complemented, the probability

that each output bit changes is exactly 1/2. Similarly, an S-box satisfies the propagation

criterion order 3 if each output bit changes with a probability of 1/2 when 3 or less
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input bits are complemented. The SAC and propagation criterion properties of an S-box

imply that the expected number of output changes will not be small (i.e., on average,

half the output bits will change) even if the number of input changes is small. However,

unlike the diffusion order of an S-box, SAC and the propagation criterion can not be

used to guarantee a lower bound on the number of output changes given a small number

of input changes. As will be seen in Theorem 1, it is this guaranteed lower bound on

the number of output changes defined by the diffusion order which is useful in ensuring

low probability differential characteristics.

Let � represent the set of permutations for which no two outputs of an S-box are

connected to one S-box in the next round. Note that the set � will only be non-empty

if �  � .

Lemma1: Let ��� '
	

and ����� 	 represent the number of S-boxes included in a characteristic

from round , � � and round , � � , respectively. For an SPN with � �� S-boxes in

each round, using a permutation 	�
�� and S-boxes with a diffusion order of � ,

� � '
	 �� ��� 	 ���� #  (11)

Proof: Let ��� and ��� represent the number of input and output bit changes for a

particular S-box in round , selected such that � � �, � . From the constraint placed

on the permutations of � and considering that � �� and ����" ��� $ � , we see that

��� '
	  � � and ����� 	  � � . Hence,

� � '
	 �� ��� 	 �� � ��� �  (12)
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From the definition of diffusion order, � � ��� �  � � # and the inequality of (11)

follows. �
Theorem 1: Consider an SPN of � rounds of � S-boxes such that � is a multiple

of 4 and � ��� . Using a permutation ���
	 , the probability of an �������� -round

characteristic satisfies

����������� � ��� ���! #"$ "
%'&)(+*�,'-/.

(13)

where all S-boxes satisfy diffusion order 0 and � � represents the maximum S-box XOR

pair probability.

Proof: An upper bound on the most probable �1�2���� -round characteristic can be derived

by considering the concatenation of the most probable ����435� -round characteristic and

the most probable 3–round characteristic. Further, a bound on the most likely �1�2637� -
round characteristic can be determined as ����638�:9#3 iterations of the most probable

4–round characteristic, and, hence, the �������� -round characteristic probability satisfies

� ������� ��;<��=?>A@�5BDC ��� BE B ;<�5=F>G@�5HIC (14)

where � =F>G@� H and � =J>G@� B are upper bounds on the probability of 3 and 4–round character-

istics, respectively.

In general, an upper bound on a characteristic probability can be derived by determining

the characteristic which involves the fewest number of S-boxes. From Lemma 1, the

minimum number of S-boxes used by a characteristic in any 4 consecutive rounds is

K �L0NM K � and therefore

� =J>G@�5B O � � � �LP (<*#, P .RQ (15)
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As well, by considering that the constraint of Lemma 1 applies to the first and third

rounds of a 3–round characteristic and that the second round has only one S-box, the

minimum number of S-boxes used by a characteristic in any 3 consecutive rounds is

0 M �
. Therefore,

�5=J>G@�5H O � �5� � *#,�� Q (16)

Combining (14), (15), and (16) results in (13) and the theorem is proven. �
From Theorem 1 we see that S-boxes satisfying a high diffusion order can be used to

decrease the upper bound on characteristic probabilities and thereby strengthen a network

against differential cryptanalysis. One obvious approach to generate such S-boxes would

be to randomly select an ��� � bijective mapping and discard those which do not satisfy the

appropriate property. Unfortunately, we have found experimentally that S-boxes which

satisfy diffusion orders of 0 � � are extremely rare and cannot generally be found by

random search. The following lemma is useful in determining the likelihood of finding

such S-boxes.

Lemma 2: Assume that the event that an S-box XOR pair, ���
	����� � , violates diffusion

order 0 O � is independent of other XOR pairs violating 0 O � . Then, the probability

that a randomly selected ��� � bijective S-box satisfies diffusion order 0 O � is given by� �:0 O � � O
� K�� ��  �� K � �� � ��� P��

��� Q
(17)

Proof: Since the assignment of any two output values and their corresponding �
� is

random, the probability that the XOR pair ���
	���
� � satisfies 0 O � given ���A����	 � O �
16



� � ��
n � estimated���	��
��� � experimental������
��� �� � ��
3 � ����� �!�#"%$'& ( ) �+* �,�-"%$'&

* ./ 0 12
4 3 4 �+5 �!�#"%$'6 7 ) �98 �!�#"�$'6 :; < =>
5 ? @ � @ �!�#" $'A B C �+���!�#" $'A DE F GH
6 I 4 � C �!�#" $'J K �L� C �!�#" $'J MN O PQ
7 R 5S� ) �!�#" $UT�V W 5L�+���!�#" $XT�V YZ [ \]
8 ^ *S� @ �!�#"%$XT_6 ` 4 �+5��!�#"�$XT�6 ab c d

* Actual value is e	fgfghji�kglnm#oqpsrtevuxwzy .
Table 1. Probability of Randomly Selecting an S-box with

�{
|�
is simply ���~}��g�~���,�������z}��g��������
����
�� � �����z}��g�������������� ��� �����z}��g���������
�"S�
 ���������!� ¢¡�£ ��� ¤ (18)

Equation (17) follows by utilizing the independence assumption with the exponent

determined by considering the number of unique input pairs for which ¥�¦g§~¨�©«ª�¬ � .
Letting ©� and ©�q represent the S-box inputs such that ¨�© ¬|©�'®�©�q , it may be

seen that ¯±°U² © ´³ © q¶µ¸· ¥�¦ ² ¨�©¹¬º©  ®»© q¶µ ¬ �½¼ ¬ �±¾ ¡ £%¿XÀ (19)

and the lemma is proven. Á
We have found experimentally that (17) is a good approximation of the probability that

an S-box satisfies ÂÃ¬ � . Table 1 lists the estimated probability from equation (17) that

an S-box satisfies ÂÃ¬ � for a number of values of
�

, as well as the experimental value
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determined as described below. It is clear that, as
�

increases, S-boxes which satisfyÂ ¬ � become increasingly impractical to find by random search.

Consider S-boxes for which Â � � . An S-box which satisfies diffusion order Â must, by

definition, satisfy diffusion order Â ��� . Hence, the probability that a randomly selected

S-box satisfies Â � �
is less than or equal to the probability that the S-box satisfiesÂ�¬ � and we conclude that as

�
increases such S-boxes are also impractical to find

by random search.

In Figure 4, we present an algorithm to select the S-box output values using a depth-

first-search approach as an efficient method of generating S-boxes that satisfy a particular

diffusion order. In the algorithm of Figure 4, we use the variables � and ��§���ª to represent,

in decimal form, the S-box input and corresponding output, respectively. As well, ���
�	� § ¾ ª

represents the random selection of an element from the specified set.

Considering the algorithm of Figure 4 and letting 
�§��� · � À ��� ¤ ¤ ¤ ��� ¿XÀ ª represent the proba-

bility of iteration � being successful given iterations 1 to �
�t�

are successful, the probability

of a randomly selected S-box satisfying Â�¬ � can be determined using the chain rule:


�§�Â�¬ � ª ¬ ��� ¿XÀ�
��� À 
�§�� � · � À � � ¤ ¤¶¤ � � ¿XÀ ª ¤ (20)

Utilizing experimental values of 
�§�� � · � À � � ¤¶¤ ¤ � � ¿XÀ ª determined from executions of the

algorithm, it is possible therefore to derive an experimental estimate using equation (20).

The resulting experimental probabilities for different
�

are listed in Table 1.

There are limitations to the applicability of the depth-first-search algorithm. For example,

while the algorithm successfully found many ����� S-boxes which satisfied diffusion
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����
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�s§��	ª ¬ ���

� � § � �´ª� � ¬ � � � � �s§��	ª �
���§ §�� ³ ��§ ��ª ª����%¦ �������Â'ª ¦���� �� ¬ � � � ��§��	ª �

� ¬ ��� �� � ¬ �� �	� ���������
� ¬ �

���
� ¬ � ��� ��§��	ª �� � � ��¥ � �!�"��§��$# ¡ £ ��� ª��% ¦"& % ¦(' §�� ³ ��§ �	ª�ª� � �)�*# �+# ¡ £ ���

� � �
Figure 4. Algorithm to Find S-boxes Satisfying Diffusion Order Â

orders of Â�¬ �
and Â�¬ ¡ , it could not successfully find S-boxes with Â-,/. . In

the next section, we show that, although the algorithm is designed to find S-boxes that

satisfy a particular diffusion order, it is also valuable in generating S-boxes which are

cryptographically strong in other respects.

(b) Nonlinearity

An important cryptographic property for product ciphers is nonlinearity. Since the S-

boxes are the only nonlinear components of an SPN, it is crucial to consider the amount

of nonlinearity required in S-boxes to provide adequate overall SPN security. The
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linear cryptanalysis method of Matsui [18] is one basis for determining the amount of

nonlinearity required in an S-box.

Consider an SPN in which the lowest nonlinearity of an S-box is ����� � £ , i.e., ��� §���ª ,
��� � � £ for all S-boxes. Then the best linear approximation of an S-box occurs with

probability &�� where · & � ���	� ¡ · ¬ ¡ £�¿XÀ � ��� � � £
 ¡ £ ¤
(21)

Since there must be at least one S-box approximation included in the linear expression

of equation (7) for each round, the best possible linear approximation has ��¬� and

satisfies: · &�� ���	� ¡ · # ¡�� ¿XÀ · & � ���	� ¡ · �
# ¡ � ¿XÀ�� ¡ £�¿XÀ � ��� � � £� ¡�£ � � ¤ (22)

It is known that there are
�
�
�

bijective mappings for which ��� § ��ª(, ¡ £�¿XÀ � ¡ £�� � [23].

Assuming that S-boxes are used that have ��� § ��ª ¬ ¡ £�¿XÀ � ¡ £�� � , combining (9) and (22)

we see that the number of known plaintexts required to determine one bit of key is at

least
¡ £ � ¿ ��� � ¿XÀ�� . For example, if an 8–round SPN was constructed using � � � S-boxes

with ��� §�� ª ¬ �z� ¡ , it would take about
¡�� �

known plaintexts to determine one key bit.

In [24], O’Connor shows that, as
�

gets larger, the expected distance of a randomly se-

lected
�

-bit function (not necessarily balanced) from the nearest affine function increases

and & � approaches the ideal value of
�	� ¡

. In view of this, we expect that, as
�

gets large,

S-boxes with high nonlinearities will be plentiful and easy to find by random search.

In order to confirm this intuition, 200 � � � bijective S-boxes (i.e., Â�¬
� ) were randomly

generated and their nonlinearities examined. As well, 50 S-boxes were constructed using
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� � � � � �� Â � min NL � max NL 	 %NL=94 
 %NL=96 � %NL=98 � � � � � ��
0 � 86 � 98* � 38.5 � 23.5 � 5.5 �� � � � � � 
1 ! 86 " 96 # 48 $ 26 % 0 &' ( ) * + ,-
2 . 36 / 96 0 34 1 2 2 0 34 5 6 7 8 9

*S-boxes with :<;>=@?BADCFEHGIG have been found using a more thorough search.

Table 2. Nonlinearities of JLKMJ S-boxes

the depth-first-search algorithm for the diffusion orders of NPORQ and NSOUT . The results

are given in Table 2. We surmise that, as the diffusion characteristics become more

constraining, the S-box nonlinearities are adversely affected. However, for N = 0, 1, or

2, it is still reasonable to expect to find S-boxes with high nonlinearities of 94 or 96.

V
. Linear Transformations Between Rounds

The permutations of an SPN belong to a specialized class of the set of linear transforma-

tions that may be used to achieve Shannon’s diffusion effect. In this section, we consider

another class of invertible linear transformations that may be used between rounds of

S-boxes to increase the resistance to differential and linear cryptanalysis.

Let W be even and consider the class of invertible linear transformations defined by

X OUY[Z]\<Z_^a`b` (23)

where
X O cedgfhdji<klkmkndjoqp is the vector of input bits to a round of S-boxes, ^ O

csrtfhrui<klkmknr o p is the vector of bits from the previous round output, Ywv x , and

\<Zy^a`aO c{z|f}Z~^a`�klkmk�zto�Zy^a`~p . The set x is defined to be the set of permutations for

which no two outputs of an S-box are connected to one S-box in the next round and

zt��Zy^�`tOUr f�� kmklk � ru�l�������t���[���U�m�l���M�u��� (24)
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The linear transformation may be efficiently implemented by noting that each ��������� can

be simply determined by XORing � � with the XOR sum of all ��� , 	�
��
�� , i.e.,

� � ������� � � ��� (25)

where

��� ��
��� � � � � (26)

The following lemma illustrates the effect of the linear transformation on the diffusion

of bit changes within the network.

Lemma 3: Let � ��������� where ��� �!� is defined above and � �#"%$ � $�&<�l�m�'$ �)( . Let* � �+" * � � �m�l� * � � ( be the XOR difference between two arbitrary values of � , and* � �," * $ � * $�&<�l�m� * $ �-( is the resulting XOR difference for � . Then

* � �,. * � /�0-12� * �3�547684:9; � * �<� /�0-12� * �3�>=@?A? (27)

where B � * �<� is the complement of
* � .

Proof: Let
* �C�D�<ED�F�GEHE and

* � � � �)E� � �)EHE� . Therefore,* $ � �I� ��J � E!K ��� ��J � EHELK
�+M � E� ��� E%N �OMl� EHE� ��� EHE%N
� � E� �M� EHE� �P� E �P� EHE
� * � � � * �

(28)

where * ��� ��
��� � * � � � (29)
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If 0-12� * ��� is even, then
* � � �

and

* $ � � . 	 / * � � � 	� / * � � � � � (30)

If 0-12� * ��� is odd, then
* � � 	 and

* $ � � . 	 / * �u� � �
� / * � � � 	�� (31)

Equation (27) follows and the lemma is proven. �
Lemma 3 is useful in developing the following result.

Theorem 2: Consider an SPN of � rounds of � S-boxes such that � is a multiple

of 4 and � � 9 . Let 9�� � and each S-box satisfy diffusion order � such that

� 
 ��9
	�	 ���� . Using the linear transformation of equation (23), the probability of an

����	P	 � -round characteristic satisfies

��������� 
 � ��� ������� � !#"%$'& �[�)( (32)

where *,+ represents the maximum S-box XOR pair probability. Further, for -/.10 , the

characteristic probability can be more tightly bounded by

*�2�3�4�57698:* +�;�<= >@?#ACBED (33)

Proof: Consider separately the case for general - and the case for -/.F0 .
(i) General - : As in the proof of Theorem 1, consider determining the upper bound

on the most probable 8�GIHKJ ; -round characteristic from the concatenation of 8LGIHNM ;)O M
iterations of the most probable 4–round characteristic with the most probable 3–round

characteristic. Hence, a characteristic probability satisfies (14).
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Consider first the determination of the most likely 4–round characteristic in order to

determine *�� ���2�� of (14). Let
�	�

, J 6 �	� 6�
 , represent the number of S-boxes from

round � involved in the characteristic and  � represent the number of bit changes after

the substitutions of round � and before the linear transformation � 8�� 8�� ;�; . Consider two

cases for the values of  � for 4 consecutive rounds � to ����� .

In the first case, assume that at least one of �� , ������ , or ���� B are odd. Without loss of

generality assume that �� is odd. If we let
� �! "
 , this implies that

� �����$#&% , since,

from Lemma 3, the % bits from an S-box in round � with no output changes must result

in % bit changes after � 8�� ; , which, due to the nature of the permutation � , must then

affect % different S-boxes in round �'� J . Further, since, in general,
�(� #1J , then

� � � � ����� � � �)� B � � ���+* #,%-�.� D (34)

Since 
 #/% , (34) also holds if
� � .0
 .

Now consider the second case where all of  � ,  ����� , and  ��� B are even. From Lemma

3 and the definition of the permutation � , it may be seen that Lemma 1 may be applied

as in the proof of Theorem 1 and, therefore,

� � � � ����� � � ��� B � � �)�+* #,1 8 -2�.1 ; D (35)

Since - 6 83%
HKJ ;�O 1 , (35) holds always and

* � �4�2 � .18 * + ; B6587 � B�9 D (36)
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A bound on the probability of a 3–round characteristic may be determined similarly to

the 4–round characteristic. In this case, if at least one of  � or  ����� is odd, then

� � � � �����	� � �)� B #,%-� 1 D (37)

If both �� and ������ are even, then

� � � � ����� � � ��� B #I-2� � D (38)

Hence, since - 6�83%
HKJ ;�O 1 , (38) holds always and

* � �4�2 < .18'* +�; 7 �+* D (39)

From (14) in the proof of Theorem 1, we can now see that, for general - , (32) holds.

(ii) -I. 0 : From (35), we have

� �	� � �����	� � ��� B � � ���+*$# M D (40)

However, for the case where �� , ������ , and ���� B are all even,
� � �. J for any two

consecutive rounds since the permutation � spreads the effect of more than one output

change to more than one S-box. However, if
� �7.1J and �� . 1 , then

� ����� .,1 . Hence,

� � � � �)��� #/� and, consequently,

� � � � ����� � � ��� B � � ���+* #�� D (41)

From (34) we can see that (41) also holds for the case where one or more of  � ,  ����� ,

and ���� B is odd, as long as %&#/� .
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Similarly, it may be shown that

� � � � ����� � � ��� B # M (42)

and applying (14), we have now proven the case for -
. 0 . �

Note that for - . 0 the linear transformation has decreased the upper bound on the

characteristic probability and for -�� 0 the bound on the characteristic probability has

remained unchanged.

Consider now the effects of the linear transformation on the applicability of linear

cryptanalysis. Using the linear transformation ensures that there are a large number

of S-box approximations included in the system linear approximation, thereby increasing

the number of required plaintexts.

Theorem 3: Consider an SPN of G rounds of 
 S-boxes such that G is even and


 # % . Using the linear transformation of equation (23), the best possible G -round

linear approximation requires � .,��G O 1 S-box approximations and the probability of the

linear approximation satisfies

� *�� HKJ O 1 � 6 1 <� > ?#A � � *��%HKJ O 1 � <	 > ? (43)

where * � represents the probability of the best S-box linear approximation.

Proof: Using the linear transformation of equation (23), it is impossible to involve

only one S-box per round in the linear approximation. Let the number of S-boxes

from round � involved in the overall system linear approximation be represented by
� �

.

Consider round � to contribute only one S-box to the linear approximation, i.e.,
� � .1J .

The linear approximation of this S-box involves a linear combination of the input bits,
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� � � ��� � B � B � D'D:D � ��� � � , where � .�� � � D:D'D ���
	 , � ���� 0���J�� , and a linear combination

of the output bits, � ��� � ��� B � B � D'D:D ��� � � � , where �K.���� � D'D:D � � 	 , � � �� 0���J�� , so that

the probability of �� � ���� 
�"!#��$ %& � ���('

�*)+�
(44)

does not equal 1/2. (Note that the trivial case of , $.-
and / $.-

is of no use in linear

cryptanalysis and is ignored.)

Without loss of generality, assume that the S-box included in the system linear approxi-

mation from round 0 is the first S-box so that 1 $324! � !#5 676"6 ! %�8 $92;: � :<5 676"6 : %�8 where: �
is the = -th input bit to round 0 . The input to round 0 is determined by the permutation> so that

: � $�?�@ ACBEDGF where D is the vector of output bits from the S-boxes of round

0IH�J . Subsequently, we have

! � $LKM@ AON.P where P is defined in equation (26) and

each

KM@ A , JRQ�=SQ�T , comes from a different S-box (as a result of the definition of the

permutation > ). We now have%& � ���U 
�V!#��$ %& � ���U 

�XW B K @ A NYP F$ %& � ���  
� KM@ A N %& � ���  

� P
$ Z[[\ [[]

%^� ���  
�_K @ A NYP `�acb B , Fed
fgf%^� ���  
�_K @ A `�acb B , F�hji�h T 6

(45)

Hence, if akb B , F is odd, then the sum used for the input of the round 0 S-box is determined

by l�H akb B , F outputs of round 0SH.J since a term is removed from P when  
� $ J . If

acb B , F is even, then the sum used for the input of the round 0 S-box is determined by

acb B , F outputs of round 0�HmJ since a term is only included in the summation when  
�O$ J .
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If, for example, akb B , F $ J , then the corresponding S-box input bit used in the linear

approximation is a function of l H J output bits from round 0MH J and, hence,
����� � $ � .

If, however, acb B , F $ � , then
� ��� � $ � . Hence, considering other values for akb B , F ,

J#Q akb B , F Q3T , we may now conclude that given
� �

$ J , � ��� �	� � .
A similar analysis may be used to determine a lower bound on the number of S-boxes

included in the linear approximation from round 0�
3J , � �� � , given
� �

$ J . This is

possible due to the following easily verifiable observations: �
� ��� � , > � ����� , and

� B > B W F F � > B � B W F F . Hence, we have

D�� $ > � � B � B���� F F (46)

where D � is the vector of output bits of the round 0 substitutions and � � is the vector

of input bits to the round 0�
 J substitutions. Since (46) is of a similar form to (23),

we may determine the bound for
� �� � analogously to the bound for

� ��� � . Hence, it

follows that
����� � � � given

���
$ J .

We conclude, therefore, that the number of S-boxes involved in the linear approximation

from any 2 consecutive rounds must be at least 3 and for an � -round SPN, assuming �
is even, � � � �"! � . #
Note that results similar to Lemma 3, Theorem 2, and Theorem 3 can be derived for

� BED F defined as other invertible linear transformations where each

? � BCD F may contain

fewer than the l H3J terms of equation (24).

$&%
. Summary of Results

In Table 3, for SPNs of 8 rounds, we have summarized lower bounds on the values of l('
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� � � �� � � �
$�� 	
 ��

TYPE  � � l��
� %
' � l��

� %� �� � � �� �
0 � �

5�� �  
! "# $

1 % �'&)( * +, -. Permutation> B W F /
2 0 �21 5 3 �546& 7

8 9 : ;< =
0 > � &)( ? @A BC D
1 E � &)( F GH IJ Linear Transform> B � B W F F K
2 L �21 5 M � 1 ( N

O P Q R
Table 3. Resistanceto Cryptanalysisfor Networks

Using S�TUS S-boxeswith VXWZY\[^]`_ and a�bdcfehgiYkj2l
and anm (definedin equations(4) and(9), respectively).Thenetworksareassumedto be

composedof SoTpS S-boxeswherethemaximumS-boxXOR pair probability is V W Yq[ ]`_
andtheminimumS-boxnonlinearityis a�b crehg Yij2l . Resultsarepresentedfor networks

usingpermutationsfrom the set s andfor networksusinga linear transformationof the

form of equation(23). Note that the analysisof Table 3 is equally applicableto the

decryptionas well as the encryptionnetwork. (This is important since the decryption

network may alsobe attackedusingeithercryptanalysismethod.)

Considera 64–bit8–roundSPNthatusesa linear transformationof the form of equation

(23) and S�TtS S-boxeswith uvYw[ , V W Yw[ ]`_ , and a�b crehg Ywj2l . Assumethat the

networkis keyedusinga 64–bit key with XOR maskkeying. Applicationof thekey bits

at eachround is determinedby a key schedulingalgorithm. Sucha network hashigh

valuesof a cfehgx Yy[{z}| and a crehgm Yy[2z}~ , is comparablein size to DES (64–bit blocks,

56–bit key), but is implementedin half the numberof rounds.

29



�����
. Conclusion

In this paperwe havedevelopedboundson theprobabilitiesof adifferentialcharacteristic

anda linearapproximationfor substitution-permutationnetworks.It is importantto note

that the boundsare of interest,not becausethey give a provablelower bound on the

complexityof thecryptanalysis,butbecausetheysuggestthelevelof difficulty requiredin

implementingtheattacks.For example,in a differentialattack,thecryptanalysttypically

identifies a high probability input differenceto the last round by searchingfor high

probability differential characteristics.Similarly, for linear cryptanalysis,a good linear

approximationcan be practically usedby a cryptanalystto determinewhich subsetsof

plaintext and ciphertextbits to examinein the attack.

The analysispresentedin this papersuggeststhe following generaldesignprinciplesfor

substitution-permutationnetworks:

• large, randomlyselectedS-boxesarevery likely to havehigh nonlinearity,

• S-boxeswhich havegooddiffusion propertiesincreasethe resistanceto differential

cryptanalysis,and

• theuseof anappropriatelineartransformationbetweenroundsincreasestheresistance

to linear cryptanalysis.

Consequently,with an appropriateselectionof S-boxesand linear transformationsbe-

tweenroundsof substitutions,securityin relation to differentialand linear cryptanalysis

canbe improved,resultingin an efficient implementationwith fewer roundsrequiredto

provide adequatesecurity.
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