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I. Introduction

The classof productciphersconsideredn this paperis basedon principlesintroduced
by Shannon[28]. Shannonsuggestedhat secure,practical product ciphers may be
constructedusing a “mixing transformation’consistingof a numberof layersor rounds
of “confusion” and “diffusion”. The confusioncomponentis a nonlinearsubstitution
on a small sub-blockand the diffusion components a linear mixing of the sub-block

connectiondgn order to diffuse the statisticsof the system.

Feistel [13] and Feistel, Notz, and Smith [14] were the first to introducea practical
architecturebasedon Shannon’sconceptswith a network structure consisting of a
sequenc®f roundsof small substitutiongreferredto asS-boxes) easilyimplementedy
table lookup and connectedy bit position permutationsor transpositions Suchciphers
aregenerallyreferredto assubstitution-permutationetworksor SPNs. The fundamental
principlesof an SPN form the foundationfor many modernproductciphers,including

DES [20], FEAL [29], and LOKI [10].

Recentcryptanalysistechniqueshave had a notableeffect on the perceivedsecurity of
many productciphers. For example,DES hasbeenfound to be theoreticallycryptana-
lyzable by differential cryptanalysisusing a chosenplaintextapproach5] andby linear
cryptanalysisusing a known plaintextapproach18]. In this paper,we examinethe se-
curity of SPNswith respectto thesetwo powerful cryptanalysisgechniquesand suggest
structuresthat aid in resistingthe attacks. In particular,we developupperboundson
the probability of a differentialcharacteristiandon the deviationof the probability of a

linear approximationfrom the ideal value of 1/2. The objectiveof suchan analysisis to



determinea flexible architecturehat canbe efficiently implementedn asfew roundsas
possibleto provide suitably small probabilitiesfor differential characteristicand linear

approximations.

II. Background

We shall considera general N-bit SPN as consistingof R roundsof n x n S-boxes.
The numberof S-boxesusedin eachround is representecby M where M = N/n.
The plaintext and ciphertext are N-bit vectors denotedas P = [P} P, ... Py| and
C = [C1 Cy ... Cy], respectively. An S-box in the network is definedas an n-bit
bijective mappings : X — Y whereX = [X; X7 ... X;,JandY = [\ ¥, ... Y, ]. A

simple exampleof an SPNis illustratedin Figurel with N = 16, R = 4, andn = 4.

In generalS-boxesmay be keyedusing one or both of the following methods:

(1) selectionkeying: key bits areusedto selectwhich mappingfrom a setof mappings
is to be usedfor a particular S-box, and
(2) XOR maskkeying: key bits are XORed with the network bits prior to entering

an S-box.

Note that method2 may actuallybe consideredasa specialcaseof methodl. Method 2,
however,ensureghatall mappingsn the setof possiblemappingsfor an S-boxarefrom
the samecryptographicequivalenceclass[30]. We shall assumen our discussionthat
the networkis keyedusing XOR maskkeying by XORing N bits of key (asdetermined

by the key schedulingalgorithm) beforethe first substitution,after the last substitution,
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ciphertext

Figure 1. SPNwith N = 16, R = 4, andn = 4.

and betweenall substitutions.Decryptionis performedby applying the key scheduling

algorithmin reverseand using the inverse S-boxes.

Ratherthan strictly confining ourselvesto the basicform of substitutionsconnectedy
permutationsin this paperwe consideithe moregeneraimodelof substitutioncconnected

by invertible linear transformationsHowever,for consistencywe still refer to the more

generalarchitectureas an SPN.

Many papershaveexaminedhe cryptographicallydesirablepropertiesof SPNsandtheir

components Acknowledgeddesigncriteriafor the network S-boxesinclude nonlinearity
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[26][19][3][21] and information theoretic properties[15][12]. Preferredpermutation
structurespromotethe influenceof input bits [16][4][11].

Of particularimportanceto our discussions the notion of nonlinearityandwe shall use
the following nonlinearity measuresvhen referringto a booleanfunction or an S-box.
The nonlinearityof an n-input booleanfunction, f : {0,1}" — {0, 1}, is defined asthe

Hamming distanceto the nearestaffine function:

NL(f)=  min #{X | J(X) # _efal UiX; @ v}. 1)

Consequently, the nonlinearity of an n x n bijective mapping or S-box S is defined as

the minimum nonlinearity of al non-zero linear combinations of output functions:

NL(S) = min NL<_ Wi fl) )
Wy ,....,Wn €{0,1}, all W;#0 =1

where f; represents the n-input function of the i-th output of the S-box. Letting 5!

represent the inverse S-box of S-box S, it can be shown that NL(S™') = NL(S) [22].

III. Two Important Classes of Cryptanalysis

In this section we discuss two important classes of cryptanalysis which have had signif-
icant success against product ciphers.

(a) Differential Cryptanalysis

In a series of papers [5][6][7][8], Biham and Shamir successfully demonstrate the sus-
ceptibility of several product ciphers to differential cryptanalysis. Notably, differential
cryptanalysis has been successful in breaking weakened versions of DES and can theo-

retically compromise the security of the full 16—round DES algorithm using 2*7 chosen
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plaintexts. As well, differential cryptanalysis has been successfully applied to the FEAL

cipher for up to 31 rounds of substitutions.

Differential cryptanalysis is an attack which examines changes in the output of the
cipher in response to controlled changes in the input. In general, we are interested
in bit changes or XOR differences within the network when two plaintexts, P’ and
P" are selected as inputs. We represent the XOR difference of the two plaintexts by
AP = P'®P”. Let theinput and output difference to a particular round : be represented
by AU; and AV;, respectively. Differential cryptanalysis relies on the existence of
highly probable “characteristics® where an r-round characteristic, (2,, is defined as a
sequence of difference pairs: Q, = {(AU,AVy),...,(AU,,AV,)}. Theagorithm tries
an appropriate number of chosen plaintexts with AP = AU; and counts the number of
times that a sub-key consisting of a subset of the key bits is consistent with the ciphertext
difference, AC, assuming that the characteristic has occurred. If the characteristic occurs
with probability pq,, the correct sub-key bits are consistent with a probability of at |east
pa,. After an appropriate number of trials (typically several times more than 1/pq,
chosen plaintext pairs) the correct sub-key will be counted significantly more times than

incorrect sub-keys.

In this paper, we shall assume that a characteristic probability is determined by the
product of the probabilities of the occurrence of a one round difference pair. Letting

P(AU;, AV;) represent the probability of occurrence of the :-th round difference pair,
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then

o, = [[ P(AU, AV;). ©)
1=1

Equation (3) gives exactly the characteristic probability taken over the independent
distributions of plaintext and key. Hence, it strictly applies only when the plaintext
and the keys applied at each round are independent and uniformly randomly selected
for the encryption of each plaintext pair. In practice, equation (3) has been found to
provide a reasonable estimate of the characteristic probability in ciphers with mutualy

dependent round keys.

Differential cryptanalysis of a basic SPN can be applied similarly to the attack on
DES-like ciphers. For a DES-like cipher, differential cryptanalysis determines key bits
associated with the input to the last round function by using knowledge (directly available
from the right half of the ciphertext) of the two input values (and their difference) to
the last round function combined with probabilistic knowledge of the output difference
of the last round function. Similarly, differential cryptanalysis of a basic SPN can be
used to determine the key bits XORed to the output of the last round of S-boxes by
using knowledge of the two ciphertext values (and their difference) and the probabilistic
knowledge of the input difference to the last round of S-boxes.

Hence, a differential attack of an SPN may be successful if the cryptanalyst is aware of
a highly probable characteristic for the first ® — 1 rounds, Qz_,. The attack targets the
round R S-boxes that are affected by the output changes of the characteristic, AVp_;.
The targeted sub-key contains the key bits which are XORed with the output of the

targeted S-boxes. Consequently, trying all sub-key values, the cryptanalyst can use the
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known ciphertext values to decrypt the portion of round R associated with the target
S-boxes. (Ciphertext pairs which have bit changes in the output of non-targeted S-boxes
may be discarded since they can not be generated by characteristic 2z _1.) If the XOR
difference of the target S-box inputs determined by the partial decryption corresponds to
AV p_q, then the corresponding sub-key count is incremented. The actual sub-key may

be deduced as the key which is consistent most frequently over a number of trials.

Similarly to the analysis of the differential cryptanalysis of DES by Biham and Shamir
[5], it can be assumed that, in circumstances where a highly likely (R — 1)-round
characteristic of probability pq,_, is known, the number of chosen plaintexts required to

determine the sub-key may be approximated by Np where

Np =1/pas_,- 4

In practice, the number of chosen plaintexts required will be greater than Np since we
have neglected the factor of 2 (which arises from the fact that the chosen plaintexts are
encrypted in pairs) and since many incorrect sub-keys, as well as the correct sub-key,

are counted at least once.

Let AX and AY represent the input and output XOR differences, respectively, to an
S-box when a plaintext difference AP is applied to the cipher. The existence of highly
probable characteristics depends on two factors: the distribution of S-box XOR difference
pairs, (AX,AY ), and the diffusion of bit changes within the network. We define the
probability of an S-box XOR pair (AX,AY) to be the probability that AY occurs

given that one of the input values for X is randomly selected and the other is related by
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Figure 3. High Probability Characteristics

the difference AX. Let the probability of the most likely S-box XOR pair (other than
(AX = 0,AY = 0)) be ps.

Characteristics derived from S-box XOR pairs with high probabilities will typically occur
with high probability. Several authors [12][21][2] have related the information theoretic
and nonlinear (bentness) properties of S-boxes to minimizing ps and suggest that S
boxes based on these principles provide resistance to differential cryptanalysis. In [25],
O’ Connor shows that, for large n, the S-box XOR pair probability is expected to be
at most n/2"~!. Hence, the expected maximum XOR pair probability decreases as the
size of the S-box is increased. For 8 x 8 S-boxes, the expected maximum XOR pair

probability satisfies ps < 274,
High probability characteristics will also occur when poor diffusion of bit changes results
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in a characteristic involving a small number of S-boxes [17][25]. Consider, for example,
a 4—round characteristic for an SPN with 4 x 4 S-boxes that have a maximum XOR pair
probability of ps = 1/4. It is possible that a characteristic might exist with only one
S-box affected in each round, i.e., an input change of one bit leads to an output change
of one bit in all rounds. This is illustrated by the highlighted lines in Figure 3(a). Since
such a characteristic involves the fewest number of S-boxes possible, it is clear that the

probability of a 4—+round characteristic is bounded by

pa, < (1/4)" =275, ©)

Assume now instead, that all S-boxes are such that a one bit input change must cause at
least two output bits to change and that the permutation used in the network is such that
no two outputs of an S-box are connected to one S-box in the next round. The 4—round
characteristic which affects the fewest number of S-boxes is similar to that shown in
Figure 3(b). Assuming ps = 1/4, we now find that the characteristic probability is

bounded by
pa, < (1/4)° =212 (6)

which is a significantly smaller characteristic probability than the previous case.
(b) Linear Cryptanalysis

In [18], Matsui presents an effective linear cryptanaysis method for DES. The attack

uses a known plaintext technique to extract key information by finding a linear equation
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consisting of plaintext, ciphertext, and key termswhich is statistically likely to be satisfied.
The full 16—round DES agorithm is susceptible to the attack with 247 known plaintexts
and it is shown that the attack can even be modified to be successful on an 8—+ound version

of DES with 22° encrypted ASCII-coded English blocks using a ciphertext only attack.

In order to attack an SPN using the linear cryptanalysis technique, the cryptanalyst is

interested in the best R-round linear approximation of the form:

Py®..OP,®C®..0Cj =Ky @ .. ® K. 7)

If we let p; represent the probability that equation (7) is satisfied, in order for the linear
approximation to be valid p; # 1/2 and the best expression is the equation for which
lpr, — 1/2] is maximized. If the magnitude |p; — 1/2| is large enough and sufficient
plaintext-ciphertext pairs are available, the equivalent of one key bit, expressed by the
XOR sum of the key bits on the right side of equation (7) may be guessed as the value

that most often satisfies the linear approximation.

A basic linear attack, presented as Algorithm 1 in [18], may be executed using an
algorithm based on a maximum likelihood approach. If p; > 1/2, then the sum of
the key bits is assumed to be O if the left side of equation (7) equals O for more than half
the known plaintext-ciphertext pairs tested, or the sum of the key bits is assumed to be
1 if the left side equals 1 for more than half the pairs. If py < 1/2, then the sum of the
key bits is assumed to be 1 if the left side of equation (7) equals O for more than half
the known plaintext-ciphertext pairs tested, or the sum of the key bits is assumed to be

0 if the left side equals 1 for more than half the pairs.
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An appropriate linear expression is derived by combining a number of linear expressions
for different rounds such that any intermediate terms (i.e., terms that are not plaintext,
ciphertext, or key terms) are cancelled. Let the best linear approximation of an S-box,
in the form a1 X; @ ... ® @, X, = 01Y1 ® ... D b, Y, be satisfied with probability p.
assuming input X is randomly selected. In this paper, we consider the probability that
a system linear expression is satisfied to be taken over the independent distributions of
plaintext and key. Hence, since the key bits XORed to the network bits prior to entering
the S-boxes are independent and uniformly random, the inputs to the S-boxes involved in
the linear approximation are independent and uniformly random. Under this assumption,

it then follows from Lemma 3 in [18] that

pr—1/2] <277 |pe — 1/2) (8)
where « is the number of S-box linear approximations combined to give the overal
linear approximation.
In Lemma 2 of [18], Matsui develops an expression for the number of plaintexts required
by the basic linear attack (Algorithm 1 in [18]). From this it is shown that the number

of known plaintexts required to give a 97.7% confidence in the correct key bit may be

approximated by N; where

Np=lpr —1/2]7". 9)
It is obvious that Ny can be increased by decreasing |p; — 1/2|. Hence, selecting S-
boxes for which p. — 1/2 will clearly aid in thwarting the attack. As well, the larger

the number of S-boxes, «, involved in the system equation, the smaller |p; —1/2| and

the more known plaintexts required for the cryptanalysis.
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IV. S-box Design Criteria

In this section, we consider S-box design criteria that are relevant to the two attacks
and examine the procedures that may be followed to generate S-boxes that satisfy such
design constraints.

(a) Diffusion

As suggested in the previous section, S-boxes that effectively diffuse bit changes increase
resistance to differential cryptanalysis. The diffusion properties of an S-box can be
considered by examining the relationship between input and output XORs. Let wi(-)
represent the Hamming weight of the specified argument and consider the following
definition.

Definition 1: An S-box satisfies a diffusion order of A, A > 0, if, for wt(AX) > 0,

A+ 1—wt(AX) | wt(AX) <A +1

0 , otherwise.

wt(AY) > { (10)

Note that al bijective S-boxes satisfy A = 0 and that DES S-boxes satisfy A = 1 [9]. As
well, the diffusion order is bidirectional, i.e., the inverse S-box S~ satisfies the same
diffusion order as S-box 5.

Other properties related to the diffusiveness of an S-box are the strict avalanche criterion
(SAC) [31] and the propagation criterion [27] (also referred to as higher order SAC [1]).
An S-box satisfies SAC if, given that a single input bit is complemented, the probability
that each output bit changes is exactly 1/2. Similarly, an S-box satisfies the propagation

criterion order £ if each output bit changes with a probability of 1/2 when & or less
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input bits are complemented. The SAC and propagation criterion properties of an S-box
imply that the expected number of output changes will not be small (i.e., on average,
half the output bits will change) even if the number of input changes is small. However,
unlike the diffusion order of an S-box, SAC and the propagation criterion can not be
used to guarantee a lower bound on the number of output changes given a small number
of input changes. As will be seen in Theorem 1, it is this guaranteed lower bound on
the number of output changes defined by the diffusion order which is useful in ensuring
low probability differential characteristics.

Let IT represent the set of permutations for which no two outputs of an S-box are
connected to one S-box in the next round. Note that the set TT will only be non-empty
if M > n.

Lemmal: Let¢,_; and ), represent the number of S-boxesincluded in acharacteristic
from round » — 1 and round r + 1, respectively. For an SPN with M > n S-boxes in

each round, using a permutation = € Il and S-boxes with a diffusion order of A,

¢r—1 + ¢r+1 Z A + 2. (11)

Proof: Let wx and wy represent the number of input and output bit changes for a
particular S-box in round r selected such that wx # 0. From the constraint placed
on the permutations of II and considering that M > n and wx,wy < n, we see that

7#r—l > wx and 77/J1”—+-1 > wy. Hence,

Yr—1 + Yrp1 > wx + wy. (12
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From the definition of diffusion order, wx + wy > A + 2 and the inequality of (11)
follows. O
Theorem 1. Consider an SPN of R rounds of M S-boxes such that R is a multiple
of 4 and M > n. Using a permutation = € II, the probability of an (R — 1)-round
characteristic satisfies

A2 R (A+1
Pan, < (ps) 2 FOFD

(13)
where al S-boxes satisfy diffusion order A and ps represents the maximum S-box XOR
pair probability.

Proof: An upper bound on the most probable (  — 1)-round characteristic can be derived
by considering the concatenation of the most probable (R — 4)-round characteristic and
the most probable 3—round characteristic. Further, a bound on the most likely (R — 4)-

round characteristic can be determined as (R — 4)/4 iterations of the most probable

4—round characteristic, and, hence, the (R — 1)-round characteristic probability satisfies

R—4

Pars < (p317) " (p3e") (14)
where p** and p$y** are upper bounds on the probability of 3 and 4—round character-
istics, respectively.

In general, an upper bound on a characteristic probability can be derived by determining
the characteristic which involves the fewest number of S-boxes. From Lemma 1, the
minimum number of S-boxes used by a characteristic in any 4 consecutive rounds is

2(A +2) and therefore

pEar = (pg)? M2, (15)



As well, by considering that the constraint of Lemma 1 applies to the first and third
rounds of a 3—round characteristic and that the second round has only one S-box, the
minimum number of S-boxes used by a characteristic in any 3 consecutive rounds is

A + 3. Therefore,

pEar = (ps)*Fo. (16)

Combining (14), (15), and (16) results in (13) and the theorem is proven. O
From Theorem 1 we see that S-boxes satisfying a high diffusion order can be used to
decrease the upper bound on characteristic probabilities and thereby strengthen a network
against differential cryptanalysis. One obvious approach to generate such S-boxes would
be to randomly select an n x n bijective mapping and discard those which do not satisfy the
appropriate property. Unfortunately, we have found experimentally that S-boxes which
satisfy diffusion orders of A > 1 are extremely rare and cannot generally be found by
random search. The following lemma is useful in determining the likelihood of finding
such S-boxes.

Lemma 2: Assume that the event that an S-box XOR pair, (AX, AY), violates diffusion
order A = 1 is independent of other XOR pairs violating A = 1. Then, the probability
that a randomly selected n x n bijective S-box satisfies diffusion order A = 1 isgiven by
o 1 n] n2

(17)

P(A:l):[ o

Proof: Since the assignment of any two output values and their corresponding AY is

random, the probability that the XOR pair (AX, AY) satisfies A = 1 given wt(AX) = 1
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N estimated experimental
P(A=1) P(A=1)
3 1.2 x 1073 3.6 x 10737
4 4.9 x 107° 3.8 x 107
5 7.7 x 1077 5.2 %1077
6 4.5 % 107° 2.5 x 107°
7 9.3 x 10712 9.2 x 10712
8 6.7 x 10715 4.9 x 10715

" Actual valueis 144/8! ~ 3.6 x 1073,
Table 1. Probability of Randomly Selecting an S-box with A = 1
is simply
P(wt(AY) > 1 | wt(AX) =1)

_ #H{AY Jwi(AY) > 1}

T H{AY | wi(AY) # 0} (18)
2" —1—n

R

Equation (17) follows by utilizing the independence assumption with the exponent
determined by considering the number of unique input pairs for which wt(AX) = 1.
Letting X' and X" represent the S-box inputs such that AX = X' ¢ X", it may be

seen that
#{ (X X") |wt(AX =X'@X") =1} =n-2""! (19

and the lemma is proven. O

We have found experimentally that (17) is a good approximation of the probability that
an S-box satisfies A = 1. Table 1 lists the estimated probability from equation (17) that

an S-box satisfies A = 1 for a number of values of n, as well as the experimental value
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determined as described below. It is clear that, as n increases, S-boxes which satisfy

A = 1 become increasingly impractical to find by random search.

Consider S-boxes for which A > 1. An S-box which satisfies diffusion order A must, by
definition, satisfy diffusion order A — 1. Hence, the probability that a randomly selected
S-box satisfies A > 1 is less than or equal to the probability that the S-box satisfies
A = 1 and we conclude that as n increases such S-boxes are also impractical to find

by random search.

In Figure 4, we present an algorithm to select the S-box output values using a depth-
first-search approach as an efficient method of generating S-boxes that satisfy a particular
diffusion order. In the agorithm of Figure 4, we use the variables : and S(¢) to represent,
in decimal form, the S-box input and corresponding output, respectively. Aswell, rand(-)
represents the random selection of an element from the specified set.
Considering the algorithm of Figure 4 and letting P(7; | I112...1;—1) represent the proba-
bility of iteration « being successful giveniterations1to:—1 are successful, the probability
of arandomly selected S-box satisfying A = 1 can be determined using the chain rule:
2" -1
P(A=1)=[[ P | Ilz...Iioy). (20)
i=1
Utilizing experimental values of P(7; | I;1;...I;—1) determined from executions of the
algorithm, it is possible therefore to derive an experimental estimate using equation (20).

The resulting experimental probabilities for different » are listed in Table 1.

There are limitations to the applicability of the depth-first-search algorithm. For example,

while the algorithm successfully found many 8 x 8 S-boxes which satisfied diffusion
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do
if (A; # {0}) then
S(i) = rand(A;)
Ai = Az - {S(Z)}
if ((¢,5(2)) satisfy A) then
I'=T-{5@)}
i=1+1
A =T
endt f
else
r=1—1
=T+ {5()}
endi f

while (1 < 2" —1)
output : (¢, 5(2)) for 0 < <2" —1
end

Figure 4. Algorithm to Find S-boxes Satisfying Diffusion Order X

orders of A = 1 and A = 2, it could not successfully find S-boxes with A > 3. In
the next section, we show that, although the algorithm is designed to find S-boxes that
satisfy a particular diffusion order, it is also valuable in generating S-boxes which are

cryptographically strong in other respects.
(b) Nonlinearity

An important cryptographic property for product ciphers is nonlinearity. Since the S
boxes are the only nonlinear components of an SPN, it is crucial to consider the amount

of nonlinearity required in S-boxes to provide adequate overall SPN security. The
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linear cryptanalysis method of Matsui [18] is one basis for determining the amount of
nonlinearity required in an S-box.

Consider an SPN in which the lowest nonlinearity of an S-box iS N Ly, i.e., NL(S) >
N Ly for al S-boxes. Then the best linear approximation of an S-box occurs with

probability p. where

2n—1 — NLpin

[pe — 1/2| = on (21)

Since there must be at least one S-box approximation included in the linear expression
of equation (7) for each round, the best possible linear approximation has « = R and

satisfies: R »
Ipr —1/2] < 2% pe —1/2]
2n—1 - Nme
217,

R (22)

< 2R—1

It is known that there are n. x n. bijective mappings for which NL(S5) > 271 —27/2 [23].
Assuming that S-boxes are used that have N L(S) = 2"~ —2"/2, combining (9) and (22)
we see that the number of known plaintexts required to determine one bit of key is at
least 2"R—2(R—1) For example, if an 8-round SPN was constructed using 8 x 8 S-boxes
with NL(S) = 112, it would take about 2°° known plaintexts to determine one key bit.
In [24], O Connor shows that, as n gets larger, the expected distance of a randomly se-
lected n-bit function (not necessarily balanced) from the nearest affine function increases
and p,. approaches the ideal value of 1/2. In view of this, we expect that, as n gets large,
S-boxes with high nonlinearities will be plentiful and easy to find by random search.

In order to confirm this intuition, 200 8 x 8 bijective S-boxes (i.e., A = 0) were randomly

generated and their nonlinearities examined. As well, 50 S-boxes were constructed using
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A min NL max NL %NL=94 %NL=96 %NL=98
0 86 08" 38.5 23.5 5.5

1 86 96 48 26 0

2 36 96 34 2 0

"S-boxes with N L(S) = 100 have been found using a more thorough search.

Table 2. Nonlinearities of 8 x 8 S-boxes

the depth-first-search algorithm for the diffusion orders of A = 1 and A = 2. The results
are given in Table 2. We surmise that, as the diffusion characteristics become more
constraining, the S-box nonlinearities are adversely affected. However, for A = 0, 1, or

2, it is till reasonable to expect to find S-boxes with high nonlinearities of 94 or 96.

V. Linear Transformations Between Rounds

The permutations of an SPN belong to a specialized class of the set of linear transforma-
tions that may be used to achieve Shannon’s diffusion effect. In this section, we consider
another class of invertible linear transformations that may be used between rounds of

S-boxes to increase the resistance to differential and linear cryptanaysis.
Let NV be even and consider the class of invertible linear transformations defined by
V = 7(L(U)) (23)

where V. = [V} V; ... Vy] is the vector of input bits to a round of S-boxes, U =
(U1 Uy ... Uy] is the vector of bits from the previous round output, = € II, and
L(U) = [L1(U) ... Ly(U)]. The set II is defined to be the set of permutations for

which no two outputs of an S-box are connected to one S-box in the next round and

Ll‘(U) :Ul@---@Ui—l@Ui-l-l@---@UN- (24)
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The linear transformation may be efficiently implemented by noting that each Z;(U) can

be smply determined by XORing U; with the XOR sum of &l U;, 1 < j < N, i.e,
Li(U)=U;®dQ (25)

where

N
Q=D (26)

J=1

The following lemma illustrates the effect of the linear transformation on the diffusion
of bit changes within the network.

Lemma 3: Let W = £(U) where £(-) is defined above and W = [V} W, ... Wy]. Let
AU = [AU; ... AUy] be the XOR difference between two arbitrary values of U, and

AW = [AW; AW, ... AWy] is the resulting XOR difference for W. Then

AU L wt(AU) even
AW = { (AU) ,wi(AU) odd @0

where (AU) is the complement of AU.
Proof: Let AU = U’ @ U” and AU; = U! @ U!. Therefore,
AW; = Li<UI) &) LZ'(U”>

= [LYZI D QI] D [Uz” D Q”]

(28)
_ Uz{ @ Ul(/ @QI ®QII
= AU; ® AQ
where
N
AQ = @ AU;. (29)

j=1
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If wt(AU) is even, then AQ = 0 and

1 JAU; =1
AW = { 0 ,AU; =0. (30)
If wt(AU) is odd, then AQ = 1 and
1 JAU; =0
AW; = {0 AU =1, (3D
Equation (27) follows and the lemma is proven. O]

Lemma 3 is useful in developing the following result.

Theorem 2. Consider an SPN of R rounds of M S-boxes such that R is a multiple
of 4and M > n. Let n > 3 and each S-box satisfy diffusion order A such that
A < (n—1)/2. Using the linear transformation of equation (23), the probability of an

(R — 1)-round characteristic satisfies

M2p
Pan, < (ps) 7 B (32)

where ps represents the maximum S-box XOR pair probability. Further, for A = 0, the

characteristic probability can be more tightly bounded by

v

Pan, < (ps)? "% (33)

Proof: Consider separately the case for general A\ and the case for A = 0.

(i) General A: As in the proof of Theorem 1, consider determining the upper bound
on the most probable (R — 1)-round characteristic from the concatenation of (R — 4)/4
iterations of the most probable 4—+ound characteristic with the most probable 3—round

characteristic. Hence, a characteristic probability satisfies (14).
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Consider first the determination of the most likely 4—round characteristic in order to
determine p;** of (14). Let b, 1 < ¢; < M, represent the number of S-boxes from
round : involved in the characteristic and 7; represent the number of bit changes after
the substitutions of round : and before the linear transformation =(£(-)). Consider two
cases for the values of »; for 4 consecutive rounds r to r + 3.

In the first case, assume that at least one of »,, 1,41, Or 1,42 ae odd. Without loss of
generality assume that », is odd. If we let ¢, < M, thisimplies that ¢,+1 > n, since,
from Lemma 3, the n bits from an S-box in round » with no output changes must result
in n bit changes after £(-), which, due to the nature of the permutation =, must then

affect n different S-boxes in round » + 1. Further, since, in genera, »; > 1, then

br + Yrp1 + Yryo + Yryz 2 0+ 3 (34)

Since M > n, (34) aso holds if ¢, = M.
Now consider the second case where al of 7, n,4+1, and n,42 are even. From Lemma
3 and the definition of the permutation 7, it may be seen that Lemma 1 may be applied

as in the proof of Theorem 1 and, therefore,

?*/)T + 77Z)1”+1 + 77Z)r—|—2 + ?,/Jr_}_g > 2()\ + 2). (35)

Since A < (n—1)/2, (35) holds aways and

P = (ps)? A2, (36)
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A bound on the probability of a 3—round characteristic may be determined similarly to

the 4—+ound characteristic. In this case, if at least one of n, or n,4; is odd, then

Ur + 1 + Yry2 > 0+ 2. (37)
If both », and 7,41 are even, then

br + rp1 + rp2 2 A+ 3. (38)

Hence, since A < (n —1)/2, (38) holds always and

maxr

pEeT = (ps)* . (39)

From (14) in the proof of Theorem 1, we can now see that, for general A, (32) holds.

(i) A = 0: From (35), we have
br + 1 + Yrga + Urys > 4 (40)

However, for the case where »,, 7,41, and 7,42 are al even, ; # 1 for any two
consecutive rounds since the permutation = spreads the effect of more than one output
change to more than one S-box. However, if ¢, = 1 and n, = 2, then ¢,;1 = 2. Hence,

Yy + tr41 > 3 and, consequently,
Q/)r + ‘L,L/JT—‘rl + 7~,L/)r—|—2 + Q/)r—l—i& Z 6. (41)

From (34) we can see that (41) also holds for the case where one or more of 7,, 7,41,

and 7,42 isodd, as long as n > 3.
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Similarly, it may be shown that

Ipr + 77Z)1”-|—1 + 77Z)1”—}-2 Z 4 (42)

and applying (14), we have now proven the case for A = 0. ]
Note that for A = 0 the linear transformation has decreased the upper bound on the
characteristic probability and for A > 0 the bound on the characteristic probability has
remained unchanged.

Consider now the effects of the linear transformation on the applicability of linear
cryptanalysis. Using the linear transformation ensures that there are a large number
of S-box approximations included in the system linear approximation, thereby increasing
the number of required plaintexts.

Theorem 3: Consider an SPN of R rounds of M S-boxes such that R is even and
M > n. Using the linear transformation of equation (23), the best possible R-round
linear approximation requires o = 3R/2 S-box approximations and the probability of the

linear approximation satisfies
3 3
pr—1/2| < 2377 p —1/2|2" (43)

where p, represents the probability of the best S-box linear approximation.

Proof: Using the linear transformation of equation (23), it is impossible to involve
only one S-box per round in the linear approximation. Let the number of S-boxes
from round : involved in the overall system linear approximation be represented by ;.
Consider round r to contribute only one S-box to the linear approximation, i.e., ¢, = 1.

The linear approximation of this S-box involves a linear combination of the input bits,
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a1 X1 ® aeXo @ ... D apX,, Wherea = [ay ... ay)], a; € {0,1}, and a linear combination
of the output bits, b1Y1 @ b2Y2 @ ... @ by Yy, Where b = [by ... by], b; € {0,1}, so that
the probability of
é a; X; = é bY; (44)
i=1 i=1
does not equal 1/2. (Note that the trivial case of a =0 and b = 0 is of no use in linear
cryptanalysis and is ignored.)
Without loss of generality, assume that the S-box included in the system linear approxi-
mation from round r is the first S-box so that X = [X; X3 ... X,,] = [V V2 ... V] where
V; isthe i-th input bit to round ». The input to round r is determined by the permutation
7 so that V; = L;,(U) where U is the vector of output bits from the S-boxes of round
r — 1. Subsequently, we have X; = U;, ® @ where () is defined in equation (26) and
each Uj,, 1 <@ < n, comes from a different S-box (as a result of the definition of the

permutation 7). We now have
P aXi=Pai- (U 0 Q)
i=1 i=1
=D ati o Pa
=1 =1

P ailU;, dQ ,wit(a) odd
— iil

D a;U;, ,wt(a) even.

=1
Hence, if wt(a) isodd, then the sum used for the input of the round » S-box is determined

(45)

by N — wt(a) outputs of round r — 1 since a term is removed from @ when a; = 1. If
wt(a) is even, then the sum used for the input of the round » S-box is determined by

wt(a) outputs of round r — 1 since aterm is only included in the summation when a; = 1.
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If, for example, wt(a) = 1, then the corresponding S-box input bit used in the linear
approximation is afunction of NV —1 output bits from round » — 1 and, hence, ¢, = M.
If, however, wit(a) = 2, then ¢,y = 2. Hence, considering other values for wt(a),
1 < wt(a) < n, we may now conclude that given ¢, = 1, ¢,_1 > 2.

A similar analysis may be used to determine a lower bound on the number of S-boxes
included in the linear approximation from round r + 1, ¢, 41, given ¢», = 1. Thisis
possible due to the following easily verifiable observations: £~! = £, =—! € II, and

L(x(-)) = =(L(-)). Hence, we have
U* =77 1(L(VY)) (46)

where U* is the vector of output bits of the round r substitutions and V* is the vector
of input bits to the round » + 1 substitutions. Since (46) is of a similar form to (23),
we may determine the bound for ¢, analogously to the bound for ,_;. Hence, it
follows that .11 > 2 given ¢, = 1.

We conclude, therefore, that the number of S-boxes involved in the linear approximation
from any 2 consecutive rounds must be at least 3 and for an R-round SPN, assuming R
iseven, o > 3R/2. O]
Note that results similar to Lemma 3, Theorem 2, and Theorem 3 can be derived for
L(U) defined as other invertible linear transformations where each L;(U) may contain

fewer than the N — 1 terms of equation (24).

VI. Summary of Results

In Table 3, for SPNs of 8 rounds, we have summarized lower bounds on the values of Np

28



TYPE

Permutation

()

Linear Transform

m(£(-))

NITFRP]JOIDN]|RFRL]O| >
[N}
5
]

Table 3. Resistanceo Cryptanalysisfor Networks

Using 8 x 8 S-boxeswith ps = 2% and N L, = 96

and N, (definedin equationg4) and(9), respectively).The networksareassumedo be
composeaf 8 x 8 S-boxeswherethe maximumS-boxXOR pair probabilityis ps = 274

andthe minimum S-boxnonlinearityis N L,,;, = 96. Resultsarepresentedor networks
using permutationdrom the setIl andfor networksusing a linear transformatiorof the
form of equation(23). Note that the analysisof Table 3 is equally applicableto the
decryptionas well as the encryptionnetwork. (This is importantsince the decryption
network may also be attackedusing either cryptanalysismethod.)

Considera 64—bit8—roundSPNthat usesa linear transformatiorof the form of equation
(23) and 8 x 8 S-boxeswith A = 2, ps = 27*, and NL.;, = 96. Assumethat the
networkis keyedusinga 64—bitkey with XOR maskkeying. Application of the key bits
at eachroundis determinedby a key schedulingalgorithm. Sucha network has high
valuesof Nmin = 252 and N'* = 250, is comparablen sizeto DES (64—bit blocks,

56-bit key), but is implementedin half the numberof rounds.
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VII. Conclusion

In this papemwe havedevelopedoundson the probabilitiesof a differentialcharacteristic
anda linear approximationfor substitution-permutationetworks. It is importantto note
that the boundsare of interest,not becausethey give a provablelower boundon the
complexityof the cryptanalysisbut because¢heysuggesthelevel of difficulty requiredin
implementingthe attacks.For example,n a differentialattack,the cryptanalystypically
identifies a high probability input differenceto the last round by searchingfor high
probability differential characteristics.Similarly, for linear cryptanalysis,a good linear
approximationcan be practically usedby a cryptanalystto determinewhich subsetsof

plaintext and ciphertextbits to examinein the attack.

The analysispresentedn this papersuggestghe following generaldesignprinciplesfor

substitution-permutatiometworks:

» large, randomlyselectedS-boxesare very likely to havehigh nonlinearity,

* S-boxeswhich havegood diffusion propertiesincreasethe resistanceo differential
cryptanalysis,and

» theuseof anappropriatdineartransformatiorbetweerroundsincreasesheresistance

to linear cryptanalysis.

Consequentlywith an appropriateselectionof S-boxesand linear transformationse-
tweenroundsof substitutionssecurityin relationto differentialandlinear cryptanalysis
canbe improved,resultingin an efficient implementationwith fewer roundsrequiredto

provide adequatesecurity.
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