A Timing Attack on RC5
Howard M. Heys

Faculty of Engineering and Applied Science
Memorial University of Newfoundland
St. John’s, Newfoundland, Canada A1B 3X5

email: howard@engr.mun.ca

Abstract: In this paper, we examine the application of a timing attack to the RC5
symmetric block cipher. The analysis is motivated by the possibility that a naive im-
plementation of RC5 could result in the data-dependent rotations taking a time that
is a function of the data. Such implementations are possible, for example, in a digital
hardware or 8-bit microcontroller environment. Based on the assumption that accurate
timing measurements are available for individual encryptions, the methodology of deriv-
ing key bits using timing information from a set of ciphertexts is outlined and it is shown
that, for the nominal version of RC5, with only about 2000 ciphertexts and their associ-
ated timings, the cryptanalysis can be applied to determine 5 bits of the last half-round
subkey with high probability. Further, using a set of about 64000 random ciphertexts,
the attack can be applied to determine the entire subkey of the last half-round with high
probability and, if 10° random ciphertexts and their timings are available, the attack has

a significant likelihood of breaking the cipher by determining all subkeys of the cipher.

I. Introduction

The RC5 encryption algorithm [1] was introduced by Rivest as a symmetric block cipher
designed to be efficiently implemented in software by making use of three basic operations:
exclusive-OR, addition, and data-dependent rotations. An RC5 cipher is designated as
RC5-w/r /b where w represents the word size of the target processor in bits, r is the
number of rounds of the cipher, and b is the number of bytes of key. The block size of

the cipher is fixed at 2w bits. We shall focus the discussion in this paper on the nominal

version of the cipher, RC5-32/12/16, which has a 64-bit block size, an 80-bit key, and 12

rounds.

The application of the two powerful attacks of differential and linear cryptanalysis to
RC5 is considered by Kaliski and Yin [2], who show that the 12-round nominal cipher
appears to be secure against both attacks. In [3], Knudsen and Meier extend the analysis
of the differential attacks of RC5 and show that, by searching for appropriate plaintexts
to use, the complexity of the attack can be reduced by a factor of up to 512 for a typical
key of the nominal RC5. As well, it is shown that keys exist which make RC5 even weaker
against differential cryptanalysis. Recently, in [4], new differential cryptanalysis results
imply that 16 rounds are required for the cipher with w = 32 to be secure. The results
on linear cryptanalysis are refined by Selcuk in [5] and, in [6], it is shown that a small
fraction of keys results in significant susceptibility to linear cryptanalysis. Despite these
results, from a practical perspective RC5 seems to be secure against both differential and

linear cryptanalysis.

In [7], Kocher introduces the general notion of a timing attack. The attack attempts
to reveal the key by making use of information on the time it takes to encrypt. The
applicability of the attack on asymmetric systems is demonstrated by examining timing
variations for modular exponentiation operations. As noted by Kocher, implementations
of RCH on processors which do not execute the rotation in constant time are at risk from

timing attacks.

In this paper, we examine the application of timing attacks to RC5 by considering an
implementation for which the time it takes to encrypt (or decrypt) is non-constant and
is a function of the data in each round. Although software implementations of RC5
would typically use processors for which the data-dependent rotation is performed in
constant time, a naive digital hardware or 8-bit microcontroller implementation of RC5
could result in rotations with timing dependent on the size of the rotation. In such
circumstances, timing attacks are applicable to RC5 and, as we shall demonstrate, have

the potential to seriously compromise the security of the cipher.

I1. Description of the Cipher

In our description of the cipher, all words are represented with the most significant bit
at the left: the (i 4+ 1)-th least significant bit of a word X is represented by X|[i] and
the block of bits from the (i + 1)-th down to the (j + 1)-th least significant bit, i > j, is

represented by X[i... j].

The RC5 algorithm consists of r rounds involving the application of 2r 4+ 2 subkeys.
Alternatively, the cipher can be viewed as the mixing of 2 subkeys with the plaintext,
followed by 2r half-rounds. Let Ly and Ry represent the left and right half of the plaintext
input, respectively, each half consisting of w bits. We use the notation L and Rj to
represent the left and right half, respectively, of the cipher data at the input to the k-th
half-round. Also, Ski; represents the (k + 1)-th subkey consisting of w bits associated
with the k-th half-round and generated by the key scheduling algorithm as detailed in [1].
Letting Lo, and Rs,y;1 represent the left and right half of the ciphertext, respectively,
the RC5 encryption algorithm is given by:

L1 - Lo + So

R1 - RO + 51

for k =1to 2r do (1)
Ly = Ry,
Riey1 = (L @ Ry) < Ri) + Skt

where “4”7 represents addition modulo-2", “@” represents bit-wise exclusive-OR, and
“X «— Y7 is the rotation of X to the left by the log, w least significant bits of Y. For
example, if w = 32, X is rotated to the left the number of positions indicated by the

value of Y[4...0].

To decrypt, the operations of the algorithm must be appropriately reversed to generate
the data for each half-round by essentially going backwards through the encryption al-
gorithm. For example, data is rotated right and the subkeys are applied by subtracting

modulo-2% from the data.

IT1. Basic Principles of the Attack

The timing attack of RC5 is applicable to implementations where the data-dependent

rotation is executed in non-constant time and where it is possible to measure accurately

3

L R
32
32
/ \ 32
clock 5
32
‘ N
‘ SHIFT REGISTER sl o COUNE
load 2
count=0
S load
. dlock j STORAGE REGISTER
32 -
R L

Figure 1: Naive Hardware Implementation of RC5 Half-Round

the timing associated with each encyption. For example, this is possible for an im-
plementation of the cipher in synchronous, sequential digital logic hardware or for an
implementation on an 8-bit microcontroller such as found on smartcards. Comments on
the applicability of the attack to an 8-bit microcontroller are given in Section VII. In the
remainder of the paper, we shall base our discussion on the implementation of the cipher

in digital hardware.

Consider the block diagram of one potential hardware implementation of the nominal
version of the algorithm as shown in Figure 1. The diagram represents a straightforward
synchronous, sequential logic implementation of an RC5 half-round where in the k-th half-
round the shift register contains the value of L, & Ry, the storage register contains the
value of Ry, and the counter contains Ry[4...0]. The rotation operation of the half-round
is executed by shifting the data in the shift register by one bit in each clock cycle until
the appropriate number of shifts is accomplished. The number of shifts is determined
by decrementing the counter once each clock cycle until the counter is decremented to
zero. When the counter is decremented to zero, the registers and counter are loaded with
new values corresponding to half-round k& 4+ 1. The design represented in the diagram
is not efficient - the rotations could be implemented using a barrel shifter to shift any
number of bits in one clock cycle - but it does convey a simple, straightforward mapping

of the algorithm into hardware. However, as we shall see, the time-varying nature of

the rotations is clearly unsound from the perspective of cipher security and should be

avoided.

For the implementation of Figure 1, the total time to encrypt is directly proportional to
the total number of clock cycles required to setup data for the first half-round, retrieve
data from the last half-round, and execute 24 half-rounds. Hence, the number of clock
cycles is of a format

jvcycle =a+]Vrot (2)

where a is a constant and N, is the total number of single-bit rotations (i.e., shifts of
the shift register) required for the encryption. (Note that we have excluded the time
required to generate subkeys, assuming that these are generated once and then saved for

use with each encryption.) For the 12-round nominal cipher, N, is given by

24
j\rrot = Z Nk (3>
k=1

where 7 represents the size of the rotation in bits required in half-round k& and may be
viewed as a random variable determined by the data at half-round k. For the nominal
version of RC5, 0 < 7, < 31 and, if it is assumed that all values are equally likely, the

expected value of 7, is p,, = 15.5 and the variance of 7 is given by 0727 = 85.25.

Consider now how information about timing can be used to extract key bits from the
cipher. For simplicity, assume that each 7 is deterministic with a value of a. Assume
that the cryptanalyst acquires a ciphertext (and the associated timing of the encryption)
which has the 5 least significant bits of the left half to be all zero, i.e., Los[4...0] = 0.
We can expect that the cryptanalyst knows the structure of the implementation and the
period of the clock. Hence, the ciphertext timing information can be used to determine
Neyele and the effects of the constant a may be factored out. The cryptanalyst can then
work with knowledge of the number of rotations, N,., for each acquired ciphertext. If it
is known that the first 22 rounds takes 22« rotations and the last round has a rotation
value of 0, then the size of the rotation for half-round 23 is 13 = N,.os — 22a. However,
it can seen that

T3 = R25[4 P 0] - 525[4 P 0] (4)

ot

where the subtraction is modulo-32 and Rg5[4...0] is the 5 least significant bits of the
ciphertext right half. Hence, Sa5[4...0] = Ras[4...0] — (Nt — 22cx) and 5 bits of the last

half-round subkey are determined with just one ciphertext and its timing information.

Of course, it is an artificial argument to consider the size of the rotation in each half-
round of the cipher to be deterministic when it is actually a random variable and the
actual sum of the rotations of the first 22 half-rounds is unknown to the cryptanalyst. In
the next section, we consider a probabilistic model for deriving the expected value and

variance of the timing for the first 22 half-rounds of the cipher.

IV. Encryption Timing Model

Since the total number of single-bit rotations for the first 22 half-rounds of the cipher
is random, we now consider a probabilistic model which is useful in understanding the
statistical nature of the attack. We use the model to get an estimate of the number of
ciphertexts required to determine, with a high probability, the 5 bits of subkey represented

as Sz;[4...0]. The model assumes that

e the number of single-bit rotations in round &, n, € {0,1,2,...,31}, is a uniformly

distributed random variable and

e the rotations in different rounds are independent.

Under these assumptions, the sum of the number of rotations for the first 22 rounds of
the cipher, which we shall represent as v = Y22, 1, is a random variable with a mean of
fy = 22+ ji, = 341 and variance of 02 = 22 (I% = 1875.5. As well, based on the central

limit theorem, v is approximately Gaussian distributed.

An effective way to determine the correct value of the partial subkey Sos[4...0] is to
use a number of ciphertexts to test each possible value for the 5 bits and to determine
which value is most consistent with the expected statistical distribution of the timing
information. One method to do this would be to use a number of ciphertexts for which
Lys[4...0] = 0 to compute an estimate of the variance of v based on the value of each

candidate partial subkey: it is expected that the variance estimate when the correct value

for the partial subkey is selected will be smaller than the estimate when an incorrect
partial subkey is assumed. Let K represent the actual key bits Sys[4...0] and let K
represent the guess of the partial subkey K. The candidate key K can be represented by

K = (K + 7) mod 32 (5)

where —15 < 7 < 16. The estimate of the variance of v for a particular candidate key K
is given by

6 =E{el,} (6)
where e, represents the difference between the measured number of rotations for the

entire 24 rounds and the expected number of rotations given the assumed candidate key

for a ciphertext with Ry5[4...0] = 2. The difference e., is composed as follows:
e = (0 7) = (s +) (7)

where r represents the actual value of the rotation in the 23rd half-round (i.e., 7 = 123)
and 7., represents the guess of the rotation in the 23rd half-round (corresponding to the
candidate key K) given Ros[4...0] = x. Using ciphertexts for which Ls[4...0] = 0,
the size of the rotation in the 24th half-round is 0. Therefore, v + 71 = N, and N,
can be derived from the ciphertext timing information. The value of 7, is determined
from 7., = (z —]i') mod 32. Hence, for a given ciphertext and candidate key, the value
of e., can be calculated. We can also view equation (7) by letting Av = v — 1, and
Ar;, =1 —7,, and we get

ery = Av+ Arp . (8)

Now assume that the cryptanalyst has available n ciphertexts for which Los[4...0] =0
and, hence, for large n, the number of ciphertexts corresponding to a particular value z
for Ros[4...0] is given by n, ~ n/32. For each ciphertext and candidate key K ry 1S
computed and the mean of the square of e, , is calculated. The result is equivalent to

1 31 n.
(/57' = 5 Z Z[Avm,i + ATT,CL’]2 (9)

C =0 i=1

where Aw, ; represents the i-th value of Av for Ry5[4...0] = x. For the correct guess of

the key (i.e., 7 =0), Ar,, = 0 since 7, = r and, hence, ¢ = (1/n) Y3 S (Av,)

7

For incorrect candidate keys, for which |7| > 1, Ar,, # 0, and it can be shown that
E{¢;} > E{¢o}. The cryptanalyst can therefore collect ciphertexts and timing informa-
tion (implying rotation information) and determine the key K by picking the candidate

key K which minimizes Q.

We now determine the probability that an incorrect key is selected over the correct key.
For this to happen, we must have ¢, < ¢y or, alternatively, ¢, — ¢g < 0. Hence, the
cryptanalyst must acquire enough ciphertext timings to ensure that ¢, — ¢g > 0 for all

7 # 0. From (9), it can be seen that

131 Ne

Or— o= — D> [2Ar,Avy; 4+ (Ar,)7 (10)

N a=0i=1
We can consider ¢, — ¢y to be a Gaussian distributed random variable with an expected
value given by
‘ 1 31 .
E{o: — ¢o} = o5) _(Arrs) (11)
32 =

where we have used n, =~ n/32 and E{Av} = 0. As well, ¢, — ¢y has a variance given by

1 3L ne o2 31 ‘ ‘
Var{o. — ¢o} = = > D [(2Ar) %00 = = Y (Arg,). (12)
ne o z0i=1 8n 125
It can be shown that
31
D (A,)? =71(32 = [7])? + (32 = |7])|7|* = 32|7|(32 — |7]) (13)

=0

and, consequently, it can be easily verified that
mTaXP(qST —¢p <0)=P(¢, — ¢ <0) (14)

where w = —1 or +1. For n = 2000 ciphertexts for which Ly5[4...0] = 0, based on the
Gaussian distribution, we get P(¢; — ¢p < 0) = 0.0021 and the probability of being able

to determine the correct 5 bits of subkey, Sp5[4...0], is given by
P(Sy5[4...0] correct) = 1 — P(AK|7 # 0, ¢, < &) (15)

where

P(3K|7 # 0,6, < ¢p) <31 P(¢1 — ¢y < 0) = 0.0651. (16)

Therefore, the probability of picking the correct 5 bits of subkey is greater than 93.5%
with 2000 ciphertexts under the assumption that the rotations in all rounds are indepen-
dent. Note that the ciphertexts must be chosen such that Los[4...0] = 0, which is true
on average for 1 in 32 random ciphertexts. Hence, the correct 5 bits of subkey can be

derived with high probability using about 64000 random ciphertexts and their timings.

As we shall see in Section VI, in fact, there are some dependencies in the rotations
of different rounds which result in the probabilities of successfully deriving the key in
practice being somewhat lower than expected from the model. Nevertheless, experimental

evidence confirms that the approach works well when applied to the actual cipher.

V. Determining All Subkey Bits

In the previous sections, we illustrated how it is possible to determine 5 bits of the last
half-round subkey S35 with high probability using a set of random ciphertexts and their
timing information. Fortunately, it is straightforward to apply the techniques on the same
ciphertexts to determine the remaining bits of subkey S35 and, with enough ciphertexts,

it is possible to derive all the bits of the subkeys S;,3 < k£ < 24, as well.

Consider first the derivation of all subkey bits of the final half-round. To determine the
subkey bits S95[9...5|, the cryptanalyst must use ciphertexts for which Los[4...0] =5
so that the key bits of interest are involved in determining the rotation of half-round 23.

In this case, the total number of rotations is given by

22

Nyot = an+7723+5 (17>
k=1

where 13 = M[4...0] @ 5 for M = [(R25[9...0] — S95[9...0]) — 5] with “X — Y
representing the rotation of X by Y positions to the right and the subtraction is taken
modulo-2'Y. Assuming the key bits So5[4...0] are already known, it is not difficult to
apply the techniques of the previous section to determine the value of the bits Sy;[9. .. 5]
which minimize the computed ¢,. In this case, however, the candidate key K is a guess
of S95[9...5] and the guess for 793 corresponding to K, which we now represent as 7., is
determined by computing M, where M. is the value of M corresponding to the candidate

key K. The value of 7, is then given by M,[4...0] ® 5.

9

In general, the techniques can be applied to determine Sps[i+4 .. . 7] using the previously
determined key bits Sos[i —1...0] where ciphertexts are used which have Los[4...0] =

and 7, = M,[4...0] @ i. The value of M, is given by
M, = [(Ros[i +4...0] — Sps[i +4...0]) — 1] (18)

where subtraction is modulo-2+2, Sys[i —1...0] = Sys[i—1...0], and Sys[i+4...1] = K.
To determine Sys, for each value of ¢, ¢ € {5,10,15,20,25}, ¢, is calculated using the
measured N,,; and 7,. The candidate key K for which the minimum value occurs is
selected as the correct partial subkey Sos[i + 4...¢]. This determines 30 bits of the
subkey, S95[29...0], and the last 2 bits of Sy; can be derived by determining the bits
So5[31...27] using ciphertexts for which Los[4...0] = 27.

The set of random ciphertexts required to determine the first 5 bits can be used to derive
the complete subkey Sy;. Each partial subkey Sos[i +4...4], i € {5,10,15,20,25}, is
attacked by selecting from the set ciphertexts with Los[4...0] = 4. It can be shown
that, under the assumptions of the model, 2000 ciphertexts with the appropriate value
for Los[4...0] are sufficient to determine any partial subkey with high probability and
the set of 64000 random ciphertexts used to determine Sy;[4...0] can be used to derive

the subset of about 2000 ciphertexts needed to determine any partial subkey.

Once So; is derived, the remaining subkeys associated with each half-round £,2 < k < 23,
may be determined using the same set of ciphertexts. Once the subkey for a round £ is
determined, the ciphertext may be partially decrypted for one round so that the output
of round k£ — 1 is known. Correspondingly, the timing of the partial encryption of the
first £ — 1 rounds may be determined by subtracting the time to execute the k-th round
from the time to encrypt the first k£ rounds of the cipher. The new ciphertext and timing
information may then be used to extract the subkey for round k£ — 1 in exactly the same

manner as for the subkey for round £.

The remaining subkeys, Sy, S7, and S5, are applied to the cipher by addition to the
plaintext left half, plaintext right half, and the output of the rotation operation in the first
half-round. All three of these subkeys cannot be determined using timing information but

are trivially determined using only a modest number of known plaintexts and ciphertexts:

10

Number of Probability of Success

Random Ciphertexts | Sos[4...0] | Sas | S3...S95
10* 0.611 0.083 0.00
10° 0.893 0.794 0.009
106 0.901 0.827 0.024

Table 1: Experimental Results for 1000 Keys

S is simply determined using one known plaintext and using the relationship S| = Ly —
Ry, S5 can be determined with a modest number of known plaintexts using, for example,
linear cryptanalysis [2], and Sy can be easily derived once Sy and Sy are determined using

So = [((R2 — S2) — L2) & La] — Ly.

V1. Experimental Results

In this section we present the experimental results which validate the effectiveness of the
attack. The model of the previous sections assumes that the values of the rotations in
different rounds are independent. This assumption, however, is not strictly correct. Con-
sider, for example, the following scenario: Soq = 0 and Sa5[4 . ..0] = 0. Suppose the crypt-
analyst is attempting to determine Sy;[4 ... 0] and is therefore considering ciphertexts for
which Los[4...0] = 0. If Ros[4...0] = 2 = 16, then 1y9 = Roy[4...0] = Lo5[20...16]H 16
and, since Ly5[20...16] is a uniformly distributed random variable, 7799 behaves as antic-
ipated by the model. However, if Ros[4...0] = 2 = 0, then 799 = Ras[4...0] = 0 and 79

is not a uniformly distributed random variable as suggested by the model.

These discrepancies from the model add inaccuracies to the process of statistically de-
riving the subkeys. However, experimental results demonstrate that the cryptanalytic
technique is still very effective and the model provides a rough approximation of the
effectiveness of the attack to determine 5 key bits of the last half-round subkey. For
2000 ciphertexts with Los[4...0] = 0 (equivalent to about 64000 random ciphertexts),
experiments on the nominal RC5 for 1000 random keys resulted in an 86.2% chance of the
partial subkey So5[4...0] being correctly determined. Using 64000 random ciphertexts,

the complete subkey Sy5 was correctly determined for 69.7% of the keys.

11

The effectiveness of the timing attack as determined in experiments is further illustrated
in Table 1. It is clear from the table that few random ciphertexts are required to deter-
mine the bits of the last half-round subkey with a high probability. The correct derivation
of all subkeys S3... S5 does not occur with nearly as high a probability: even modest
deviations in probability from 1 when determining subkeys significantly reduces the prob-
ability that all 23 subkeys will be successfully determined. However, it is apparent that
the attack can be very effective in determining subkeys for a large fraction of keys and
should be seriously considered to ensure that an implementation of the cipher is not

vulnerable.

VII. Applicability of the Attack to 8-bit Microcontrollers

To this point, we have focussed the discussion of the attack on a digital hardware im-
plementation of RC5. However, for other environments where the rotations are not
performed in constant time, the attack is also applicable. One such environment is
an assembly language implementation on an 8-bit microcontroller such as the Motorola

MG68HCO05, a popular processor used on smartcards.

For the M68HCO05, any shifting of a byte must be performed by shifting one bit at a
time. Hence, all operations of RC5 could easily be implemented to be constant in time,
except for the data-dependent rotation. A straightforward implementation of the 32-bit
rotation using 8-bit words would shift bytes one bit at a time using the carry bit to move
the most significant bit from one byte to the least significant bit of the next byte. In
such an implementation, it can be assumed that the k-th half-round operation will take

a time (in terms of number of clock cycles) that can be represented as:
]\/Thr = C+d77k (19)

where ¢ and d are constants and 7, is the integer value of Rg[4...0]. Therefore, the total

number of clock cycles required to encrypt is given by an expression
]\’Tcycle =a+b- Nyot (20)

where a and b are constants and N,,; represents the total number of byte rotations (by

one bit) for all half-rounds and is dependent on the 5 least significant bits of the right half

12

of the data in each half-round. Note the similarity to (2). The values of @ and b can be
determined if detailed information of the implementation is known. As a result, the only
variable is the number of rotations which can be determined by an accurate measurement
of N¢yere. Hence, using techniques similar to those outlined in the previous sections, the
5 least significant bits of the last half-round subkey can be determined. Subsequently,

similarly to Section V, the last half-round subkey can be fully determined.

VIII. Conclusion

In this paper, we have demonstrated the potential effectiveness of timing attacks on RC5
implementations where the time to encrypt is proportional to the sum of the rotational
values in each half-round. Such a situation could easily result from a naive, straightfor-
ward implementation of the cipher in digital hardware or an implementation on an 8-bit

microcontroller which executes byte-wise rotations one bit at a time.

Admittedly, the cryptanalysis presented in this paper assumes accurate timing measure-
ments of individual encryptions - an assumption which would likely be difficult to achieve
in practice. However, the analysis clearly demonstrates the susceptibility of some imple-
mentations to cryptanalysis if such measurements could be made and suggests that it is
vital for designers to be aware of the cryptographic issues when implementing RC5. For-
tunately, the attack can be thwarted by ensuring that the rotations operate in constant
time. For example, in the case of the digital hardware implementation, a barrel shifter

could be used to perform any size rotation in one clock cycle.

13

References

1]

R.L. Rivest, “The RC5 Encryption Algorithm”, Proceedings of Fast Software En-

cryption 1994, Springer-Verlag, pp. 86-96, 1995.

B.S. Kaliski and Y.L. Yin, “On Differential and Linear Cryptanalysis of the RC5
Encryption Algorithm”, Advances in Cryptology - CRYPTO 95, Springer-Verlag,
pp- 171-184, 1995.

L.R. Knudsen and W. Meier, “Improved Differential Attacks on RC5”, Advances in
Cryptology - CRYPTO 96, Springer-Verlag, pp. 216-228, 1996.

b

A. Biryukov and E. Kushilevitz, “Improved Cryptanalysis of RC5”, Advances in

Cryptology - EUROCRYPT 98, Springer-Verlag, pp. 85-99, 1998.

A.A. Selcuk, “New Results in Linear Cryptanalysis of RC5”, Proceedings of Fast
Software Encryption 1998, Springer-Verlag, pp. 1-16, 1998.

H.M. Heys, “Linearly Weak Keys of RC5”, IEE FElectronics Letters, vol. 33, no. 10,
pp. 836-837, 1997.

P.C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems”, Advances in Cryptology - CRYPTO 96, Springer-Verlag, pp.
104-113, 1996.

14

