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Abstract: In this paper, we examine the avalanche characteristics of private-key block ciphers
constructed using a DES-like architecture. Avalanche is a desirable cryptographic property that
is necessary to ensure that a small difference between two plaintexts results in a seemingly ran-
dom difference between the two corresponding ciphertexts. In order to examine the behaviour
of DES-like ciphers in relation to the avalanche property, a model of the cipher is developed
which allows us to analyze the avalanche characteristics of the cipher for different cipher pa-
rameter values. In particular, the results suggest that large, symmetric S-boxes which satisfy
the guaranteed avalanche property are effective in combining efficiency and good avalanche

characteristics of the cipher.

I. Introduction

Private-key block ciphers are typically implemented as a product cipher, using a number of
rounds of substitutions and linear transformations. One such class of ciphers, introduced in [1]

and referred to as DES-like or Feistel ciphers, uses the general structure of the Data Encryption

Standard (DES) [2].

The concept of avalanche in block ciphers was informally introduced by Feistel [3] and Feistel,
Notz, and Smith [1], as the property of a small number of bit changes in the plaintext input
leading to an “avalanche” of changes in subsequent rounds resulting in a large number of
ciphertext bit changes. More precisely, in our analysis, we consider the following definition of

the avalanche criterion [4]:

Definition 1 : A cipher is said to satisfy the avalanche criterion if, for all keys, on average, half

of the ciphertext bits change when one plaintext bit is changed.

Note that this definition is very similar to (but a little looser than) the strict avalanche cri-



terion [5] which states that each ciphertext bit must change with a probability of exactly one
half given a particular one bit plaintext change. As a measure of a cipher’s adherence to the

avalanche criterion we define avalanche probability.

Definition 2 : The avalanche probability, P,,, of a cipher is the average fraction of ciphertext

bits that change when one plaintext bit is changed and the key remains fixed.

For a cipher which perfectly satisfies the avalanche criterion, P,, = 1/2. The avalanche proba-
bility can be used as one measure of the performance of a cipher: the fewer rounds it takes for
the avalanche probability to converge to 1/2, the stronger the cipher (with respect to avalanche),

implying a cipher of more efficient construction consisting of fewer rounds.

In [4], the avalanche characteristics of basic substitution-permutation networks (SPNs) (which
are not DES-like) are modelled and the effect of varying cipher parameters are examined. In
this paper, we extend this work and develop a model of the avalanche characteristics of DES-
like ciphers. The value of this model is that it allows us to examine the relationship between
avalanche and various parameters of a DES-like cipher such as the amount of expansion and
the S-box dimensions and properties. As well, the performance of DES-like ciphers and the

basic SPN ciphers of [4] are compared.

II. Modelling the Cipher

As shown in Figure 1, an R-round DES-like cipher encrypts by dividing the N-bit plaintext
input block into two halves: left half L; and right half R;. ' The right half block R is
transformed by the keyed round function f and XORed bit-by-bit to the left half block Lj to
form a new left half block. The right and left halves are then swapped. Consequently, for a
round 2, 1 < ¢ < R of the cipher, letting L; and R; represent the left and right half-blocks,
respectively, and K; represent the key bits applied to the round function, the DES-like algorithm

may be viewed as the following iterated operation:

L1 =R,
Riy1=L;& f(Rz Kz) (1)

After the last round, since the half-blocks are not swapped, we have Rpy1 and L1 represent-

!Note that the initial and final permutations of DES have been ignored.
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Figure 1: DES-like Cipher Structure

ing the left and right halves of the ciphertext, respectively.

As illustrated in Figure 1, there are generally three components in the round function f: the
expansion (E), the substitution (S), and the permutation (P). The cipher is keyed by applying
a subset of cipher key bits to the round function, typically by XORing with the data bits before

the substitution is performed.

(a) S-box Model

The substitution component operates by dividing the block into a number of smaller sub-blocks
and then replacing the bits of these sub-blocks according to a predefined mapping referred to
as an S-box. In this paper we consider S-boxes of dimension m X n, m > n, where m represents
the number of input bits and n represents the number of output bits. DES has eight 6 x 4

S-boxes which are used in the substitution component of the round function.

In general, we represent the input to an S-box as X = [X1 X»...X,,], Xi € {0,1}, and the output



as Y = [Y1Y2...Y,,], Vi € {0,1}. The input and output differences or change vectors of an S-box
corresponding to the bit-wise XOR of two different values for X and the bit-wise XOR of the

resulting two values for Y are represented by AX and AY, respectively.

We model the S-box in the cipher by treating the number of output changes of the S-box as
a random variable. Representing the Hamming weight operation by wt(:) and letting D =
wt(AY) represent the random variable corresponding to the number of output bit changes, the

model uses the probability distribution of D given by

1 ,wt(AX) =0
and
Po(D = d) 0 ,wt(AX) =0 3
i [ TS SES )
for1 <d<n.

To understand the origin of (2), consider that there are 2™ " times more input change vector
values for AX than output change vector values for AY. Hence, we expect a particular value
of the output change vector to occur 2™~" times more often than an input change vector value.
Clearly, if there are no input bit changes, then there are no output bit changes resulting the

2Mm—" _ 1 occurrences of the all-zeros

probability of 1 in the first case of (2). The remaining
output change vector can be expected to occur when there are input bit changes. Since there

are 2™ — 1 non-zero input changes, the probability of a zero output change given an input

change is given by the second case of (2).

Consider now the derivation of the probability distribution of D for D > 0 as given in (3).
The first case arises from the fact that if there are no input changes, then there are no output
changes and Pp(d) must be zero. If there is an input change, as in the second case, then the
total number of possible output changes corresponding to a weight of d is given by the number
of selections of the d changes from the n output bits multiplied by the factor 2™~" to account
for the ratio of possible inputs to outputs. This is divided by the total number of non-zero

input changes given by 2™ — 1.

Note that this stochastic model of the S-box is not intended to characterize the behaviour of

an actual, physically realizable S-box, but rather represents an aggregate behaviour over all



randomly selected S-boxes. In this sense, it represents a typical S-box.

(b) Permutation Model
The permutation component transposes the bits within the block. In DES, the 32-bit permu-
tation has the property that no two outputs of an S-box are connected to the input of the same

S-box.

To model the permutation component of the round function we represent the permutation by
a random variable where all possible permutations are considered equally likely. Hence, this
model does not make any assumptions about the permutation properties. Instead, we model
the cipher by averaging over all possible values that the permutation component can take on.
Therefore, it is quite reasonable to expect that a well chosen permutation might display better
characteristics than the averaging model used for the analysis. However, in general, the analysis
of specific permutations is very difficult and, since the permutation depends greatly on the block

and S-box sizes, it is not clear how to generalize an optimal permutation for the purposes of

our model of DES-like ciphers.

(c) Expansion Model

The expansion component duplicates an appropriate number of input bits before they are
presented to the substitution component and is required if asymetric m x n S-boxes with m > n
are used. The expansion factor, «, of the round function is given by the ratio of the number of
bits entering the substitution component to the block size at the input of the round function.
In DES, the round function input is 32 bits and the substitution takes 48 bits as its input.

Hence DES has an expansion factor of a = 1.5.

In our model of the avalanche characteristics of DES-like ciphers, we treat the expansion as a
random variable and average over all possible values of the random variable. It is assumed that
« is fixed and the expansion randomly selects the appropriate bits for duplication from the set
of all bits entering the round function. For example, for the parameter values of DES, 16 out of
32 bits are arbitrarily selected as the set of duplicated bits. The model updates the avalanche

characteristics based on averaging over all possible selections for those 16 bits at each round of



the cipher.

III. Computation of Avalanche

In this section, we detail the computational model that is used to examine the avalanche
characteristics of a cipher of R rounds. Since the avalanche probability is calculated iteratively
from 1 to R rounds, ciphers may be analyzed in relation to their satisfaction of the avalanche
criterion as a function of the number of rounds. Note that in the following development the

key is assumed fixed and, hence, is not a factor in the computation of avalanche probability.

Consider the determination of the distribution of the number of bit changes at the input to a
round given the distribution of the number of bit changes at the input to the previous round.
Let g and ng represent the number of bit changes in the left and right half blocks, respectively,
at the input to a round 7, i.e., n; = wt(AL;) and np = wt(AR;). Using the total probability
theorem, the probability of 7 and 7}, bit changes in the left and right half inputs to round

1+ 1 is given by
N/2 NJ2

P(ni.mp)= > > Pmi,nglne,nr) - P(nw,mg)- (4)
nr=0nr=0

Since, in a DES-like structure, 7 = ng, this can be simplified to

N/2

Pi.ni) =Y. Pglne.ne=mn3) - Plnr.nr =1n}). (5)
nr=0

Let ny represent the number of bit changes at the output of the round function. Then

N/2
P(nglnc.nr) = Y P(glnc.nr.ns) - P(nslnr.ng). (6)
ny=0

Since 73 is determined directly by 7, and 7y, and 7y is not affected by 77, we have

N/2

P(ngplnc.me) = Y P(glnc.ng) - P(nslng). (7)
ng=0

Let g = max(nr,ns) and X = man(nr,ns). Now P(np|nz,n¢) can be determined from

() (%)
P(nglnc,nf) = (“’§2>

0 , otherwise

MR =1L+ — 21
R f (8)



for all 2, 0 <4 < A. To understand the origin of (8), consider the general bit-wise XOR, of two
random b-bit vectors: w = u @ v where 7, = wt(w), 7, = wt(u), and 7, = wt(v). Without loss
of generality, assume that n,, > n, and that the first 7, bits of v are ones and the remaining bits
are zeroes. Consider now the placement of the ones in the vector v and the effect on the vector
w. If ¢ ones of the 7, ones of v are located in the first n, bits of v, the vector w will have 7, —1
ones in the first 7, bits and 7, — ¢ ones in the remaining bits. Hence, 7, = ny, + 7y — 22. The
probability of ny, = ny + 1y — 22 given 7, and 7, is determined as the fraction of arrangements
of 7, ones for which 2 ones are in the first 7, bits and the remaining 7, — ¢ ones are in the

remaining b — 1, bits. Equation (8) is derived by letting b = N/2, n, = p, 7, = A, and n,, = 0.

Consider now the probability of the number of output bit changes given the number of input
bit changes to the round function, P(n¢|ng). Let n. represent the number of bit changes at the
output of the expansion and let | represent the number of S-boxes which have at least one bit
change at the input. Using total probability and the chain rule, it can be shown that
T M
P(nglng) = Y Y Plusll) - P(l|ne) - P(nelng) (9)
7e=0 1=0
where T represents the number of bits at the output of the expansion component and M is the
number of S-boxes in the substitution component. Hence, T = « - (N/2) = M - m represents

the number of bits entering the substitution component.

The probability distribution of the number of changes at the output of the expansion given the
number of input changes is given by
T—N/2 N-T
(ﬂe—nR) ) (27713—776)
()
MR

where we have assumed that T' < N. The first term in the numerator represents the number of

P(nelnr) = (10)

selections of extra bit changes in the expanded vector from the bits that have been duplicated by
the expansion function. To compute the number of arrangements of 7, bits from 7y bit changes
at the expansion input, this is multiplied by the number of selections of the remaining bit
changes in the expanded vector from the bits in the round function input which have not been
duplicated. The probability is then calculated by dividing the number of suitable arrangements

by the total number of selections of g bits from the round function input of N/2 bits.



The probability P(I|n.) is the probability that I S-boxes are affected by changes given that
there are 7, changes at the output of the expansion component. This can be determined by
computing the fraction of the number of selections of 7, bit changes that affect only I S-boxes.
Letting A/ (ne) represent the total number of selections of 7, bit changes and N (1, 7¢) represent

the number of selections that have bit changes at the input to | S-boxes, we get

P(llne) = NI, me) /N (1e) (11)

where

N(ne) = ( T ) . (12)

e

From Lemma 2 in [4], N'(I,7.) may be determined by

M . .
N(lane) — Z (_1’)1'—(_M—l) < M'L_l ) < ]\ZJ ) ( (M;e'lz)m ) ‘ (13)

=M-I

The probability distribution of round function output changes given the number of affected S-
boxes, represented by P(n¢|l), can be determined by counting over all combinations of output
changes 7y from [ S-boxes. Let d = [d1d2...d;] where d; € {1,...,n} is the number of output

changes, wt(AY), in the i-th S-box that has a non-zero input change. Now define

[
A={d]> di =ny} (14)
=1

to represent the values of d for which there are a total of ny output bit changes. Hence,
Plisll) = Y P(d) (15)
dea
where P(d) represents the probability of a particular d occurring and is given by
l
P(d) =[] Pp(ds). (16)
=1
Using equations (4) to (16), we can now iteratively determine the probability distribution of
bit changes, P(nr,ng), for each round in the cipher and, subsequently, the expected number of
bit changes after each round. Consequently, letting E{-} represent the expectation operation,

the avalanche probability after a particular round can be determined from

Pay = E{nr +nr}/N (17)



given ny, = 1 and np = 0 at the input to round 1 if the one bit change occurs in the left half of
the plaintext, or n;, = 0 and nr = 1 at the input to round 1 if the one bit change occurs in the

right half of the plaintext.

IV. Analysis of the Results

In this section, we present the results of the computations of the preceding section for various

ciphers with different parameters. We shall use a 64-bit cipher as a basis for comparison.

When computing the avalanche probability, one might consider one bit changes on either the

left or right side of the plaintext. In fact, it can be shown that
Puulright] = Py, lleft] (1)

where P, and P}, represent the avalanche probabilities after + and ¢ + 1 rounds, respectively,
and the keywords left and right indicate which half of the plaintext has the one bit change. This
results from the fact that a one bit change on the left side manifests itself as a one bit change
to the right side of the input to round 2. Since a DES-like cipher will have weaker avalanche for
a bit change on the left, we shall consider the left side avalanche probability to be the property

of interest.

In Figure 2, we present a plot of the avalanche probability versus the number of rounds in the
cipher where the S-box dimensions are of the form m x 4. Three cases are illustrated: m = 4,
m = 6, and m = 8. All results presented are based on the plaintext bit change occurring in the
left half. In all three cases, the avalanche probability is converging towards the desired value
of 1/2. However, it is clear that the larger the value of m, the faster the convergence. Similar

results were observed for ciphers based on m X 8 S-boxes where m = 8, m = 12, and m = 16.

It is not surprising that performance is improved as m increases since a larger S-box input
increases the diffusion of bit changes. Note also that Figure 3, which compares ciphers using
8 x 4 and 8 x 8 S-boxes, suggests that the S-boxes with larger number of outputs improve
the avalanche probability convergence. Again this is perhaps not surprising and is due to
the improved diffusion of bit changes. However, Figures 2 and 3 suggest that the effects of
increasing the S-box input size appear to be more dramatic than an increase in the number

of output bits. Unfortunately, for cipher implementations where look-up tables are used for
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Figure 2: Theoretical Avalanche for DES-like Ciphers with m x 4 S-boxes

S-boxes, the amount of memory required increases exponentially in the size of S-box input and
only linearly in the size of the output. Hence, while the size of the S-box input is limited by
practical considerations, the output can be more freely expanded to improve the cipher security
properties. This suggests that the best combination of efficiency and security (in relation to

avalanche) is given by ciphers using symmetric n x n S-boxes.

Consider now a comparison between the performance of a DES-like cipher versus a basic
substitution-permutation network such as discussed in [4]. (Basic SPNs do not have the struc-
ture of Figure 1: each round consists of substitution on the entire block using N/n n x n
S-boxes followed by a permutation on the entire block.) The cases for 4 x 4 and 8 x 8 S-boxes
are illustrated in Figure 4. For 4 x 4 S-boxes there is little difference between the two ciphers.
In fact, considering the relationship of (18), if the change is on the right side, then the DES-like
cipher actually performs significantly better. This is perhaps surprising: since, in a basic SPN,
the round function operates on the full block and, in a DES-like cipher, the round function
only operates on half the block, it seems reasonable to assume that an SPN would display good
cryptographic properties in fewer rounds. For the case of the larger 8 x 8 S-boxes, the SPN

clearly has better performance than the DES-like cipher.

Of course, any cipher is a deterministic structure based on a fixed set of S-boxes, permutation

10
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Figure 3: Theoretical Avalanche for DES-like Ciphers with 8 x 4 and 8 x 8 S-boxes

and expansion. The effect of the model, which treats these components as random variables, is
to smooth out the advantages or disadvantages of particular fixed components. Although it is
impossible to exactly model all ciphers using a general model, it appears that the generalizations
made in this model are not only intuitively reasonable but experimental results suggest that
they provide a reasonable approximation of the behaviour of a DES-like cipher. Nevertheless, it
seems reasonable to expect that the model is, in fact, pessimistic and that the careful selection
of S-boxes, permutations, and expansion mappings is likely to improve the performance of the
cipher in relation to the avalanche characteristics [4]. In the next section, we examine the
modelling of “diffusive” S-boxes and demonstrate that, indeed, S-box properties can be utilized

to improve the avalanche characteristics of a DES-like cipher.

V. Improving Avalanche by Using Diffusive S-boxes

A discussion on improving the avalanche characteristics of an SPN by selecting diffusive S-boxes
is contained in [4]. In this section, we consider the application of such S-boxes to a DES-like
cipher. Consider the following S-box diffusion property referred to as guaranteed avalanche [4]

and note that guaranteed avalanche order 2 is an acknowledged DES S-box criterion [6].

Definition 3: An S-box satifies the property of guaranteed avalanche of order v if, for a one bit

11
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Figure 4: Theoretical Avalanche of DES-like Ciphers vs. Basic SPN Ciphers

input change, at least vy output bits change, i.e., wt(AX) =1 = wt(AY) > 7.

Consider now the development of a model for an S-box satisfying guaranteed avalanche order
v, v > 1. The probability distribution Pp(d) can be replaced by probability distributions
for the number of output bit changes conditioned on the number of input changes. Clearly,
Pp(D = 0lwt(AX) = 0) = 1 and Pp(D = djwt(AX) = 0) = 0 for d > 0. Now let P}, (d) =
Pp(D = d|lwt(AX) = 1) and P}(d) = Pp(D = d|wt(AX) > 1). The conditional probabilities

for the number of output changes is then given by

0 ,d <
Pp(d) = (1) (19)
n 7d Z
Zi:'y (Tzl) ’y
and
e —— ,d=0
Pp(d) = { (2 ——mpp(@) (20)
: 2’”717771‘[) ’d > L.

Counsider first the expression for P}, in (19). The case of d < v arises simply from the definition
of guaranteed avalanche; the case for d > v is derived by assuming that the selection of AY is
uniformly distributed over the set of values such that D = wt(AY) > v. Considering now the
expression for P}, the denominator of (20) represents the number of values of AX for which
wt(AX) > 1 and the numerator represents the number of values of AY for which wt(AY) = d,

scaled by factor 2™ ™ and adjusted to remove the expected number of AY values used for the

12
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values of AX for which wt(AX) < 1.

The iterative computation of the avalanche probability follows similarly to the previous devel-
opment: equations (4) through (8) are equally applicable. However, (9) must be modified to
consider separately the cases of one bit input changes and more than one bit input changes to
the S-boxes. Let I’ represent the number of S-boxes for which wt(AX) = 1 and, as before, let

[ represent the number of S-boxes for which wt(AX) > 1. Hence, (9) becomes

P(nlng) = ZT: ZM: zl: Pgll', 1) - P, Une) - P(nelnr)- (21)
—01=01'=0
The probability P(n.|nr) may be computed as previously outlined in equation (10).
The probability P(I’,1|n.) can be determined by
Pl Une) = N 1ne) [N (ne) (22)

where N(7,) is the number of selections of 7. bit changes and N'(I',1,7.) is the number of
selections of changes of 7. bits such that [ S-boxes are affected by changes and I’ S-boxes have a
exactly a one bit input change. N (7,) is given by (12) and, based on Lemma 4 in [4], N (I, 1, 7¢)

is computed by

l .
N(l/,l7‘f}e) _ < J\ZJ > Z(_l)i—l' < l'L, ) ( . ) m Z 1)] ( ; ) ( (l —nl:_z)ﬂl > ' (23)
i=l' ¢
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In order to determine P(ns|l',1), define the vector d’' = [d|d}...dp] such that d; € {v,...,n}
represents the number of output changes, wt(AY), of the i-th S-box for which wt(AX) = 1.
Similarly, define the vector d” = [dd5...d]_;] such that d] € {1,...,n} represents the number
of output changes, wt(AY), of the i-th S-box for which wt(AX) > 1. Then
Pugt = Y P, (20)
(d', d"yeA*

where
I8 -
= {(d',d")lzdi' +> di = Uf} (25)
=1 =1

with the probability P(d’,d”) given by
Py = {H Py, } [H a } 26)

Methods for improving the efficiency of the computation are given in [4].

Similarly to the previous development, (4) can be used to iteratively compute the avalanche
probability given a plaintext bit change in either the left or right half. For example, results have
been computed for a 64-bit cipher using 6 X 4 S-boxes, both for the original S-box model with
no diffusion (i.e., v = 0) and for the S-box model based on guaranteed avalanche order v = 2.
This is illustrated in Figure 5. There is a clear improvement in the avalanche performance
for the cipher constructed using diffusive S-boxes over a cipher without difffusive S-boxes. As
well, for comparison, since DES S-boxes satisfy v = 2, experimental results for DES based
on 10* pairs of plaintexts are also shown. While the theoretical and experimental results for
DES are close, it is not surprising that experimental results on DES are slightly better than
the theoretical model with diffusive S-boxes. To more accurately model DES, the model would
have to incorporate a fixed representation of the DES expansion and permutation instead of

treating the expansion and permutation as random and averaging over all possibilities, good

and bad.

VI. Conclusion

We have modelled the avalanche characteristics for DES-like block ciphers and, consequently,

analyzed the performance of the ciphers in response to variations in parameters such as the

14



S-box dimensions and properties. The results suggest that large, symmetric S-boxes provide

the best combination of cipher efficiency and the strength of a cipher’s avalanche. As well, the

model is extended and used to demonstrate that selecting diffusive S-boxes is also effective in

improving the avalanche characteristics of a DES-like cipher.
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