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ABSTRACT

In this paper, we investigate the burst error properties of the block cipher mode of operation referred to as statistical cipher

feedback (SCFB) mode. SCFB was introduced as an efficient method of providing physical layer security by configuring a

block cipher to operate as a self-synchronizing stream cipher. The self-synchronization property of a stream cipher allows

the system to recover from data losses that might occur in the communication channel. The research presented in this

paper investigates the properties of the post-decryption output of the cipher in response to bit errors in the communication

channel. In particular, the probability distribution of the length of error bursts is investigated through simulation and a

theoretical analysis is given for an upper bound on the probability of a burst longer than a given length. The results can be

used to determine appropriate selections for parameters of the cipher mode and the specifications of the communication

system, such as the error correction scheme and packet size.
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1. INTRODUCTION

Statistical cipher feedback (SCFB) mode, proposed in [1],

can be used as a physical layer encryption scheme to

configure a block cipher to process plaintext data as a

stream of bits, rather than in fixed size blocks. Because

the mode is self-synchronizing, the system can recover

from the loss of data in the channel (eg. bit slips due

to timing errors), whereas for other conventional block

cipher modes, such as cipher block chaining (CBC) or

counter mode [2], recovery from data loss is not readily

possible. Further, although SCFB mode is modified from

the conventional mode of cipher feedback (CFB) [2], it is

shown in [3] to be much more efficient to apply than CFB,

resulting in much higher throughputs for a hardware based

implementation of a block cipher such as the Advanced

Encryption Standard (AES) [4]. In fact, it can be shown

that SCFB mode and the derived mode of pipelined

SCFB (PSCFB) [5]∗ can approach efficiencies of 100%.

In contrast, conventional CFB mode, when implemented

to recover from any size of data loss in the channel, has an

efficiency of less than 1% when used with AES.

In [3] and [5], the error propagation characteristics of

SCFB and PSCFB were analyzed. The analysis focused on

a simple metric, referred to as the error propagation factor

∗PSCFB mode was proposed to allow statistical self-synchronization to approach
the throughput of a fully pipelined hardware implementation of a block oriented
cipher mode like counter mode.
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(EPF), by considering both simulations and theoretical

analysis. EPF is defined as the average number of

bit errors following decryption of an SCFB/PSCFB

system, in response to a single channel bit error. While

informative, this metric does not capture all the necessary

characterizations of errors that occur post-decryption. In

this paper, we investigate the burst error properties of

SCFB mode, through simulation and analysis. Specifically,

we examine the probability distribution of the length of

a burst of errors, where the burst is generated following

decryption of ciphertext affected by an individual channel

bit error. In our work, we define the length of a burst to

be the number of bits in the span from the first to the

last bit error in the recovered plaintext resulting from the

individual bit error in the ciphertext. As well, we develop

a theoretical upper bound on the probability that the error

burst exceeds a given length.

2. BACKGROUND

SCFB mode configures a block cipher to operate as a

stream cipher by combining two block cipher modes:

counter mode† and CFB mode. Stream ciphers encrypt

plaintext data at a transmitter by XORing with the bits

from a keyed pseudorandom sequence, referred to as the

keystream. The resulting ciphertext is decrypted at the

receiver by XORing the ciphertext bits with a keystream

identical to the one used in the encryption process.

The basic concept of SCFB is have the block cipher

(eg. AES) to operate in counter mode, which generates

keystream by processing a counter value, until a special

short sequence of n bits, the sync pattern, is recognized

in the ciphertext. Following the recognition of the sync

pattern, the subsequent B bits (where B is the cipher

block size) are collected and used as an initialization vector

(IV) to reset the counter. Following the collected IV bits,

subsequent bits are encrypted using counter mode until

the sync pattern is again recognized in the ciphertext. This

process is illustrated in Figure 1 where the “E” component

represents a block cipher such as AES.

Since both the transmitter (which is executing

encryption) and receiver (which is executing decryption)

†The original proposal for SCFB [1, 3] uses output feedback (OFB) mode in
place of counter mode.

 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

counter 

E 

register 

counter 

E 

register 
plaintext 

transmitted 
ciphertext communications 

channel 

received 
ciphertext 

recovered
plaintext 

sync  
pattern 
found? 

sync  
pattern 
found? 

B B n n 

key key 

keystream keystream 

Figure 1. Conventional SCFB Mode Using Counter Mode

 1 

 
 
 
 
 
 
 
 
 
 
 
 

sync sync IV scanning period 

n 
bits 

B 
bits 

k 

bits 
n 

bits 

sync scanning             
disabled 

sync cycle 

Figure 2. Synchronization Cycle for SCFB Mode

are able to observe ciphertext, if some ciphertext is

lost in the communications channel, there is no need

for the receiver to take special action since eventually

a sync pattern will be received in the ciphertext and

used in combination with the following IV bits to re-

synchronize the two ends of the communication. Although

loss of data in the channel will result in temporary loss

of synchronization, thereby causing temporarily random

output of the decryption, synchronization will be typically

recovered at the next sync pattern (or certainly at a

subsequent sync pattern). An illustration of the ciphertext

stream associated with the mode is presented in Figure 2,

which displays an interpretation of the ciphertext. The

period from the end of one IV, until the next IV is all

encrypted using counter mode as initialized by the IV

preceding the period labelled as scanning period. During

the IV period, both ends of the communication refrain

from scanning for the sync pattern and must wait until

the reinitializing of the counter mode before resuming

scanning for the sync pattern.

SCFB is capable of recovering from bit losses in the

communication channel regardless of the number of bits

lost. In comparison, using CFB to allow recovery from

2
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Figure 3. Synchronization Cycle for PSCFB Mode

any number of lost data bits requires a configuration such

that to encrypt each plaintext bit uses the generation of

an entire block of data from the block cipher. Hence, it

is only possible to run CFB mode at a rate of 1/B times

the throughput of the block cipher, which results in an

efficiency of less than 1% for AES which uses a block

with B = 128 bits. Here, we have defined efficiency as

the fraction derived from the number of bits of ciphertext

produced for every block cipher output divided by the

block size, B. Hence, efficiency represents the throughput

relative to the throughput possible using the block cipher

to produce B bits of ciphertext for every B bit block

generated at the block cipher output.

Sync patterns are assumed to be a modest number of

bits, in the range of 6 to 16. Using a large sync pattern

can result in a long delay before a resynchronization

occurs following lost bits; a short sync pattern causes

inefficiencies due to frequent resynchronizations [3].

PSCFB [5] is a more generalized form of SCFB. PSCFB

mode is designed to allow for efficient application of

statistical self-synchronization for implementations based

on pipelined implementations of a block cipher. However,

PSCFB can be thought as a simple extension of SCFB

mode with an extra window of ciphertext following the

end of the IV bits during which no scanning for the sync

pattern is allowed. The window during which sync pattern

scanning is not allowed is referred to the blackout period.

The ciphertext stream of PSCFB is illustrated in Figure 3.

The duration of the blackout period is defined to be a

multiple of the block size, with the parameter L used to

denote this multiple. In a pipelined implementation of the

block cipher,Lwould represent the number of stages in the

pipeline. Of course, when L = 1, then PSCFB degenerates

simply to the conventional SCFB mode.

Using the more general PSCFB model, we can define

the concept of a synchronization cycle of SCFB to consist

of the sync pattern (n bits), blackout period (L ·B bits,

including the first B bits which contain the IV) and the

scanning period. The duration of the scanning period is

a random variable since the ciphertext stream may be

assumed to be random. A sliding window is used during

the scanning period to examine the ciphertext data for the

sync pattern. Since the windows overlap and are therefore

clearly not independent, the selection of the specific sync

pattern affects the length of the scanning period. However,

using many sync patterns, such as “100...00”, it can

be shown that the duration of the scanning period can

be approximated by the geometric distribution, with an

expected length of 2n − 1 bits [3].

Although the first formal presentation of statistical

self-synchronization appears to be given in [1], the

mode was considered in other contexts previously. For

example, reference to products making use of the self-

synchronization concept appears earlier in [6]. As well,

other authors have proposed similar self-synchronizing

modes, such as optimized cipher feedback (OCFB) mode

[7, 8]. Other papers have analyzed these modes [9, 10], but

no previous work characterizes the post-decryption error

behaviour of self-synchronization as is done by this paper.

3. MOTIVATION FOR THE ANALYSIS

In [3, 5], the implementation issues of SCFB and PSCFB

mode are described, with structures given to ensure that

an efficient implementation can be achieved. As well, the

characteristics of the system in response to channel errors

are presented. Specifically, the synchronization recovery

delay (SRD) and error propagation factor (EPF) are

examined through both simulation and analysis. SRD is

defined to be the expected time from occurrence of a

bit slip until the receiver has resynchronized. There is a

strong dependence between the sync pattern size and the

SRD, since the SRD is determined from the length of

the scanning period which is random with an expected

length that is exponential in the sync pattern size. EPF

is defined to be the expected number of post-decryption

bit errors caused by a single, isolated bit error in the

communication channel and it is shown that EPF is quite

close to (n+B)/2 for the range of n from 4 to 16 for

3
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SCFB mode [3], while for PSCFB mode, EPF is roughly

(n+B)/2 for large n and small L and somewhat larger

for small n and large L [5].

In this paper, we investigate further the behaviour at the

output of the SCFB/PSCFB system in response to single bit

channel errors. This is motivated by the fact that, since it is

an average, EPF often underestimates the effect of certain

channel bit errors. Consider conventional SCFB (that is,

L = 1) where an error occurs in the scanning period. For

moderate and larger n (eg. n ≥ 8), most errors will be

of such a nature and most of these errors will simply

result in one ciphertext bit error causing one bit error in

the recovered plaintext, since plaintext is recovered at the

receiver using the XOR operation between the keystream

and the ciphertext data‡. Hence, for this specific, common

instance, the error propagation is 1.

Consider now a second scenario where an error occurs

during the sync pattern in the ciphertext transmitted

through the channel. Since it is corrupted, the sync pattern

is not recognized at the receiver and the receiver cannot

resynchronize properly until the next sync pattern to appear

in the ciphertext. This means that, since L = 1, the error

propagation for this scenario is 1 + (k + n+B)/2 where

k is the length of the scanning period. This results from

the fact that resynchronization will occur following the IV

after the next sync pattern and, until resynchronization,

half of the post-decryption bits are expected to be in

error. As discussed in [3], k is a random variable, with

an expected value of E{k} ≈ 2n. So we expect the error

propagation to be about 1 + (2n + n+B)/2 for this

scenario. For n = 8 and using AES as the block cipher

where B = 128, the expected error propagation for this

scenario is about 200 bits and can be much larger if k is a

value above the mean. In comparison, EPF is substantially

smaller, being only about 70.

For PSCFB, where L 6= 1, EPF can be quite large even

for small n, since the sync cycle involves a blackout period

of L ·B bits. For example, a pipelined implementation

of AES in PSCFB mode might have L = 10 [5] and the

error propagation may be many hundreds of bits for some

channel bit errors.

SCFB/PSCFB is designed for use at the physical

layer of communication and, hence, at the receiver the

‡It is also possible, although unlikely, that a ciphertext error occurring during
the scanning period causes a false sync pattern to appear, which is subsequently
improperly recognized at the receiver as a legitimate sync pattern.

decryption is performed prior to error detection and

correction. Although EPF does give an idea of the average

effect of errors on the outcome of the decryption, the

distribution of the post-decryption bit errors in response

to a channel bit error is an important consideration when

investigating the behaviour of the system. For example,

when communication protocols organize data into packets,

protected using ARQ protocols which make use of CRCs

to detect errors, a one bit error in a packet results in a

retransmission, as can a burst of errors occurring in a

packet. However, for SCFB/PSCFB, if a long burst of

errors results from a single channel error, then this may

cause the retransmission of many packets, significantly

magnifying the effect of a single channel error. The

probability of occurrence of such long post-decryption

error bursts is not captured by EPF and in order to

understand the resulting behaviour of the communication

system that uses SCFB/PSCFB, knowledge of the post-

decryption error burst distribution is needed.

4. DISTRIBUTION OF BURST LENGTHS

In order to investigate the probability distribution of the

length of post-decryption error bursts, we have simulated

SCFB and PSCFB systems. In our work, we consider

the length of a burst to be the number of bits between

(and including) the first post-decryption bit error and the

last post-decryption bit error, due to a single ciphertext

bit corrupted in the channel. Following the injection of

isolated channel errors, we have counted the burst error

lengths and examined the characteristics of the resulting

experimental probability distribution. Parameters such as

the sync pattern size, n, and the blackout period length in

blocks, as indicated by L, are varied to investigate their

influence on the distribution. All the simulation results

presented in this paper use AES as the block cipher with

block sizeB = 128 and involve the generation of 1010 bits

of ciphertext data with the injection of about 106 channel

bit errors.

4.1. Average Burst Length

The most obvious characteristic to consider is the average

burst length. Table I presents the average burst length,

found from simulations, for varying values of n and L. In

4
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addition, for all scenarios, EPF is given in brackets. Several

observations can be made from the data in the table.

Consider first variations in n. For SCFB (where L = 1),

there is noticeable variation in average burst length, which

tends to be shorter for larger n. For small values of n, the

scanning period is much shorter and the probability that

a channel error occurs during a sync pattern is increased.

When the sync pattern is corrupted and missed by the

receiver, a long burst of errors will result because the

receiver will become unsynchronized with the transmitter

until a subsequent sync pattern is detected. Although this

is offset somewhat by the fact that the long bursts, while

more frequent, are potentially shorter for smaller n (since

the scanning period is shorter), with smaller n, often

resynchronization can take several sync cycles (since false

synchronizations at the receiver can frequently cause the

next sync pattern to be missed). Hence, smaller n with

frequent long bursts, results in an increase in the average

burst length. Note that while varying n has notable effect

on the average burst length, it does not significantly affect

EPF.

As L varies, the average burst length is significantly

affected and increases with increasing L. This is

particularly true for smaller n. With small n and large L,

the phenomenon of taking several sync cycles to resync

when a sync pattern is corrupted is pronounced. Also,

when a false sync pattern occurs as the result of a bit

error, the blackout period is longer for large L and this can

cause a missed legitimate sync pattern and prolonged delay

before resynchronization. For large L such as L = 14 and

L = 16, there is only a marginal increase in average burst

length. In general, the EPF is only very slightly affected by

varying L.

4.2. Distribution of Burst Lengths

We have also investigated in detail, the probability

distribution of burst lengths. This has been done by

categorizing bursts lengths from the simulation results

into ranges. We first explore this distribution for different

values of sync pattern size, n, for conventional SCFB

mode (i.e., L = 1). The resulting plots of burst length

distributions for different values of n = 6, 8, 10, and 12 are

presented in Figure 4. For all values of n, as burst length

increases, its likelihood decreases. This is most dramatic

for large values of n which have a large fraction of bursts

being very short (due to the high probability of a channel

n L = 1 L = 2 L = 5 L = 10

6 194.6 239.9 300.0 363.2
(73.6) (78.3) (93.5) (119.4)

8 169.9 201.2 246.0 283.0
(72.6) (73.7) (77.6) (85.5)

10 156.3 170.5 199.6 230.1
(74.1) (74.4) (74.7) (76.8)

12 152.7 157.4 170.3 186.5
(75.6) (75.7) (76.4) (76.6)

14 155.2 158.7 161.8 166.9
(77.8) (78.9) (78.8) (78.7)

16 154.8 164.6 160.8 162.0
(77.8) (82.5) (80.2) (80.0)

Table I. Average Burst Length (EPF in brackets)
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Figure 4. Probability Distribution of Bursts for Different n (L =

1)

error coinciding with the long scanning period which has

an error propagation of only 1). Note that for all values

of n the probability of burst lengths longer than 1000 bits

becomes very small.

Next we explore the effect of varying the size of the

blackout period, L, assuming fixed size n = 8. This is

illustrated in Figure 5. From the graph, it can be seen

that, for all values of L, the majority of bursts are short

(less than 300). In fact, the majority of bursts are only of

length 1 and are the result of a channel error occurrence

during either the blackout period (excluding the IV) or

during the scanning period (such that the error does not

cause a false sync pattern at the receiver). It can also be

observed that a secondary peak of burst lengths occurs

around 2LB + 2n. This corresponds to scenarios where

the channel error occurs during either the sync pattern or

the IV. In such a scenario, synchronization will be lost

at the end of the blackout period between the keystream

of the transmitted ciphertext stream and the keystream of

5
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the receiver and will not be corrected until the recovery of

the next sync pattern and the completion of the following

blackout period. Hence, the span from the occurrence of

the channel error until the end of the burst will encompass

roughly two blackout periods and a scanning period.

5. PROBABILITY OF LONG BURSTS

In this section, we consider the likelihood of long bursts

in an SCFB/PSCFB scheme versus the system parameters

of n, L, and B. Specifically, we consider (1) the value of

the burst length which corresponds to a given fraction of

longest bursts and (2) the probability of burst exceeding a

certain length. Our investigations use simulations for (1)

and simultations and theoretical analysis for (2).

5.1. Simulation Results for Long Bursts

We first consider simulation results to characterize long

bursts. For this purpose, we define a long burst as

having a burst length which is one of the longest 0.1%

bursts. Figure 6 presents the length of burst above which

represents the 0.1% longest bursts. These results are

presented as a function of n, with L = 1 (i.e., conventional

SCFB). It can be seen from the graph that there is a

general trend of increasingly long bursts for larger n.

For example, for n = 16, 0.1% of bursts are longer than

56286 bits (alternatively, 99.9 % of bursts are shorter than

56286 bits), while for n = 8, 0.1% of bursts are longer

than 1679 (alternatively, 99.9% of bursts are shorter than

1679). The only exception to this general trend is that the

long bursts for n = 6 are longer than for n = 7. In this
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Figure 6. Long Bursts for Different n (L = 1)

scenario, for n = 6, the issues associated with frequent

resynchronizing, which can result, for example, in several

missed sync patterns as discussed in Section 4.1 cause

longer bursts than for n = 7.

Now consider the long burst limits for fixed n = 8 and

16 and varying L. When n = 8, as shown in Figure 7,

long bursts (as defined by the longest 0.1% of bursts)

increase as L increases. This is a reasonable expectation

since long burst scenarios correspond to channel errors

leading to post-decryption errors spanning a complete sync

cycle (such as when a channel error occurs in the sync

pattern or IV). Since the length of the sync cycle is on the

order ofLB + 2n, long bursts will clearly increase withL.

However, when n = 16, as shown in Figure 8, there is no

discernable relationship between L and the length of long

bursts, which vary between about 56000 and 62000 bits.

In this scenario, the length of bursts resulting from channel

errors leading to post-decryption errors spanning a sync

cycle, are largely determined by the length of the scanning

period (averaging about 216), which dominates over the

blackout period length of L ·B (which varies from 128

to 1280).

5.2. Analysis of Probability of Exceeding Given
Burst Lengths

We now consider the probability of exceeding given

burst lengths. Specifically, we examine the theoretical

development of an upper bound on the probability of

a burst greater than a given threshold. The analysis

presumes an isolated, individual bit error occurs in the

6
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communication channel and, as a result, a burst of one or

more errors occurs at the output of the decryption process.

In our analysis, we consider five possible cases for the

occurrence of a bit error in the channel. The cases are

defined based on the location of the bit error within the

sync cycle of SCFB/PSCFB mode; the cases are listed in

Table II and illustrated in Figure 9. Note that cases C3 and

C4 are both divided into two sub-cases, which reflect that

the effect of a bit error in the scanning period of the sync

cycle can vary based on whether the error generates a false

sync pattern. A false sync pattern is created, for example,

for n = 8 with sync pattern “10000000”, if a pattern in the

ciphertext of “10001000” occurs with the fifth bit having

an error in the channel, thereby causing the “1” to become a

Case Description
C1 Error in IV (B bits)
C2 Error during blackout following IV

((L− 1)B bits)
C3 Error in first k − (n+ LB) bits

of scanning period
(C3a) error does not create false sync
(C3b) error does create false sync

C4 Error in last n+ LB bits
of scanning period
(C4a) error does not create false sync
(C4b) error does create false sync

C5 Error in sync pattern

Table II. Cases for Bit Errors
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Figure 9. Illustration of Bit Error Cases

“0” and the resulting sequence detected as a sync pattern at

the receiver. Obviously, there are many such combinations

of ciphertext data patterns and bit errors that can result in

false sync patterns being detected at the receiver.

In our analysis, we make use of the following two

lemmas.

Lemma 1: Let S = {1, 2, 3a, 3b, 4a, 4b, 5} define the set

of cases in Table II. As well, define N to represent the

length of the post-decryption error burst given a 1 bit

error in the communication channel and N∗ to represent

a threshold of interest for N . Then, an upper bound on the

probability that N is greater than N∗ is given by

P (N > N∗) ≤
∑
i∈S

Pmax(N > N∗|i) · Pmax(i), (1)

where i represents one of the elements in set S, P (N >

N∗|i) ≤ Pmax(N > N∗|i) and P (i) ≤ Pmax(i) with

Pmax representing an upper bound on the identified

probability. Typically, we are interested in scenarios for

which N∗ � 1.

The Lemma simply follows from the total probability

theorem. Its significance is that, using upper bounds for the

occurrence of each case and the probability conditioned on

each case, we are able to derive an upper bound on the

probability that N > N∗.

7
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Lemma 2: Assume that length of the scanning period in

the sync cycle, k, follows the geometric distribution based

on the probability that any n bits of ciphertext data has a

probability of 1/2n of matching the sync pattern. Hence,

the probability that the number of bits in the scanning

period exceeds a threshold θ is given by

P (k > θ) =

(
1− 1

2n

)θ+1

(2)

for θ ≥ 0. For θ < 0, P (k > θ) = 1.

Consider now each case.

5.2.1. Case C1
For case C1, with a channel error occurring in the

IV section of the sync cycle, a single post-decryption

error will occur in the IV, followed by full sync cycle of

corrupted bits following the end of the blackout period.

Hence, the span of the error burst must encompass a full

sync cycle of k + n+ LB bits plus the (L− 1)B bits

of the blackout associated with the IV which experiences

the channel error. Some number of bits, 1 to B, of the

corrupted IV will also be included in the span, resulting

in the length, N , of the burst error to be bounded as in

1 + (L− 1)B + k + n+ LB ≤ N

≤ B + (L− 1)B + k + n+ LB (3)

Of course, k is a random variable depending on the

occurrence of the sync pattern within the ciphertext stream.

Now, in order for the error burst length to exceed a value

N∗, then k > kmin, where kmin = N∗ − n− 2LB.

Hence, P (N > N∗|C1) ≤ P (k > kmin|C1) where

P (k > kmin|C1) is the conditional probability that the

length of the scanning period exceeds the kmin bits given

that the bit error has occurred in the IV portion of the sync

cycle (i.e., case C1). This probability can be calculated

using Lemma 2.

The probability of case C1 occurring is determined by

the fraction of ciphertext that appears as IV in the mode.

Hence,

P (C1) =
B

n+ LB + E{k} (4)

where E{k} represents the expected value of the length of

the scanning period and is given to be E{k} = 1/2n − 1

assuming the geometric distibution for k.

5.2.2. Case C2
Case C2, where it is assumed that the channel error

occurs in the (L− 1)B bits of the blackout period

following the IV, results in only one bit error after

decryption. This occurs because, since scanning for the

sync period is disabled at the receiver, the only affected

bit after decryption is the bit corresponding to the channel

error. Hence, P (N > N∗|C2) = 0 for N∗ > 1 and this

case can be ignored in the overall calculation of the

probability of the upper bound of (1) for the scenarios of

interest.

5.2.3. Case C3
Case C3 is the scenario which assumes that the channel

error occurs in the first k − (n+ LB) bits of a scanning

period for which k > n+ LB. When an error occurs

during the scanning period, two general phenomena can

occur leading to two sub-cases: (a) the channel error does

not cause a false sync to be recognized in the ciphertext

stream and (b) the channel error results in a false sync

being detected at the receiver.

In case C3a, the individual channel bit error results in

one post-decryption bit error and, hence, as for case C2,

P (N > N∗|C3a) = 0 for N∗ > 1 and this case has no

influence of the calculation of the upper bound for P (N >

N∗) for scenarios of interest.

In case C3b, the receiver, having falsely detected a

sync pattern due to the channel error, will proceed with

resynchronization by disabling scanning for LB bits,

collecting IV and then resetting the counter value and

entering again into the scanning period. In case C3b, the

channel error causes the false sync to occur early enough

in the correct scanning period that the receiver has finished

the resynchronization due to the false sync pattern and is

therefore back scanning for the sync pattern and able to

detect the next correct sync pattern when it arrives. Hence,

for case C3b, the length for the error burst satisfies

1 + n+ LB + n+ LB ≤ N ≤ k + n+ LB (5)

where k > n+ LB. Letting k = n+ LB + k0, it can

be seen that N > N∗ when k0 > kmin, where kmin =

N∗ − 2(n+ LB), so that P (N > N∗|3b) ≤ P (k0 >

kmin|C3b), which can be calculated using Lemma 2.

Now, we must consider the likelihood of case C3b,

P (C3b). In [3], it is noted that the probability of detecting

8
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a false sync due to a single channel bit error is upper

bounded by n
2n−1

assuming that the distribution of k

follows the geometric distribution. As a result,

P (C3b) ≤
∞∑

k=n+LB+1

P ∗(k) · k − (n+ LB)

n+ LB + k
· n

2n − 1

(6)

where the first term, P ∗(k), represents the probability

that the channel error occurs in a sync cycle with a

scanning period of length k, the second term represents

the probability that the channel error occurs within the first

k − (n+ LB) bits of a sync cycle with a scanning period

of length k, and the third term represents the upper bound

on the probability of a false sync pattern being created due

to the channel error. It can be shown [3],

P ∗(k) =
n+ LB + k

n+ LB + E{k} · P (k) (7)

where P (k) = (1− 1/2n)k(1/2n) and E{k} = 2n − 1

as given by the geometric distribution.

Now noting that

∞∑
k=n+LB+1

(
1− 1

2n

)k
= 2n ·

(
1− 1

2n

)n+LB+1

(8)

and

∞∑
k=n+LB+1

(
1− 1

2n

)k
· k

= 2n · (n+ LB + 2n) ·
(

1− 1

2n

)n+LB+1

, (9)

leads to

P (C3b) ≤ n

n+ LB + E{k} ·
(

1− 1

2n

)n+LB

. (10)

5.2.4. Case C4
Case C4 refers to scenarios where the channel bit error

occurs in the last n+ LB bit of the scanning period of a

sync cycle. As with case C3, there are two sub-cases.

Case C4a refers to the scenario where the channel error

does not cause a false sync and, as a result, only one

bit error occurs in the post-decryption stream of data and

P (N > N∗|C4a) = 0 for N∗ > 1, resulting in this case

having no meaningful contribution to P (N > N∗) for

scenarios of interest.

Case C4b is substantially more complex and represents

scenarios where the channel error results in a false

sync pattern detected at the receiver. When a false

sync is detected at the end of a scanning period, a

resynchronization may occur at the subsequent proper sync

pattern or, if the next sync pattern falls within the blackout

period associated with the false sync, the next sync patten

may be missed. Subsequently, another false sync may

occur when the receiver erroneously detects a sync pattern

in the ciphertext, which in fact was supposed to fall in a

blackout period. This may result in another missed proper

sync pattern and this behaviour may repeat many times.

When a sync pattern is missed, the corresponding sync

cycle must have a scanning period of less than n+ LB

bits, otherwise the proper sync pattern is guaranteed to

not fall within the blackout period of the false sync

detection. Hence, associated sync cycles which have the

subsequent sync pattern missed must have k < n+ LB

and overall the sync cycle length must be between n+ LB

and 2(n+ LB)− 1. Resynchronization will not occur

until a proper sync does not fall into the blackout period

of a false synchronization, which is only guaranteed to

happen when k ≥ n+ LB in a sync cycle. In addition,

there are between 1 + n+ LB and 2(n+ LB) bits before

the scanning period of the first sync pattern and k +

n+ LB bits from the start of the last unsynchronized

scanning period to the point where the receiver properly

resynchronizes.

Letting λ represent the number of times a proper

sync pattern is missed following the first missed sync

pattern, from the point of the channel error to the point

of resynchronization, the error burst length, N , satisfies

βmin + φmin + k + n+ LB

≤ N ≤ βmax + φmax + k + n+ LB, (11)

where βmin = n+ LB + 1, βmax = 2(n+ LB),

φmin = λ(n+ LB), and φmax = λ[2(n+ LB)− 1]

and k is the length of the scanning period in the last

unsynchronized cycle. Note that, after the original sync

cycle affected by the channel error, a legitimate sync

pattern can only be missed at the receiver when the length

of the scanning period is less than n+ LB.

9
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Based on the upper bound of N , it can be shown that

N > N∗ implies that k > kmin where

kmin = N∗ − 3(n+ LB)− λ · (2(n+ LB)− 1)

(12)

for a given λ. So, now P (N > N∗|λ,C4b) ≤ P (k >

kmin|λ,C4b) where P (k > kmin|λ,C4b) can be calcu-

lated using Lemma 2 for given values of λ. Considering

all possible values for λ, we can derive P (N > N∗|C4b)

using

P (N > N∗|C4b) =

∞∑
λ=0

P (k > kmin|λ,C4b) · P (λ).

(13)

This summation can be broken into two parts by

considering the maximum value of λwhich can be realized

for values of N less than N∗. That is, the maximum

number of sync cycles that can occur in N∗ bits. We

represent this value as Γ and note that

Γ = bN
∗ − (n+ LB + 1)− (n+ LB)

n+ LB
c. (14)

Also, an upper bound on P (λ) is calculated using

P (λ) ≤ (1− α)λ (15)

where

α = P (k ≥ n+ LB) =

(
1− 1

2n

)n+LB

. (16)

As a result, we can now write P (N > N∗|C4b) as

P (N > N∗|C4b) = Σ1 + Σ2 (17)

where

Σ1 =

Γ∑
λ=0

P (k > kmin|λ,C4b) · P (λ) (18)

and

Σ2 =

∞∑
λ=Γ+1

P (k > kmin|λ,C4b) · P (λ). (19)

The sum Σ1 can be computed using Lemma 2 and (15).

An upper bound on the sum Σ2 can be determined by

considering that P (N > N∗) ≤ 1. Hence,

Σ2 ≤
∞∑

λ=Γ+1

P (λ) =

∞∑
λ=Γ+1

(1− α)λ =
(1− α)Γ+1

α
.

(20)

Consider now the likelihood that case C4b occurs.

An upper bound on this probability can be determined

by averaging across all scenarios for the length of the

scanning period, k, resulting in

P (C4b) ≤
n+LB∑
k=0

P ∗(k) · k

n+ LB + k
· n

2n − 1

+

∞∑
k=n+LB+1

P ∗(k) · (n+ LB)

n+ LB + k
· n

2n − 1

(21)

where P ∗(k) is given by (7) and we have broken the

calculation into scenarios where k ≤ n+ LB and k >

n+ LB. This can be manipulated to become

P (C4b) ≤ n

2n − 1
· 1

n+ LB + E{k} · [
n+LB∑
k=1

k · P (k)

+

∞∑
k=n+LB+1

(n+ LB) · P (k)]. (22)

Solving for closed form representations of the series inside

the square brackets leads to

P (C4b) ≤ n · (1− α)

n+ LB + E{k} (23)

where α = P (k ≥ n+ LB) and is given by (16).

5.2.5. Case C5
The last scenario, case C5, refers to the occurrence

of a channel error in a sync pattern. In this scenario,

the behaviour of resynchronization at the receiver is very

similar to case C4b. In this case, it is also quite possible to

miss several sync patterns before resynchronization at the

receiver due to sync patterns falling within the blackout

periods of false synchronizations. Hence, we can write

P (N > N∗|C5) =

∞∑
λ=0

P (k > kmin|λ,C5) · P (λ)

(24)

where now kmin = N∗ − 2(n+ LB)− λ · (2(n+

LB)− 1). This summation can be broken into two

10
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summations, Σ1 and Σ2 as in case C4b with now

Γ = bN
∗ − (LB + 1)− (n+ LB)

n+ LB
c. (25)

Finally, the probability of this case occuring is

straightforwardly given by

P (C5) =
n

n+ LB + E{k} . (26)

5.2.6. Results of Analysis
In Table III, we present the theoretical bound and the

corresponding simulation results for varying values of

burst length thresholds (N∗), for n = 8 and L = 1, a

typical scenario for conventional SCFB mode. Note that

the theoretical result is an upper bound on the probability

of the burst exceeding N∗, while the simulation result

is an experimental determination of the exact probability

that the burst exceeds N∗. There is good correspondence

between the theoretical and experimental results, where,

as expected, the experimental probability falls below the

theoretical upper bound. As implied by the results, as

the burst length increases, the probability (and its upper

bound) decrease. For example, the probability that a burst

exceeds 1000 bits is upper bounded to be about 0.030

and experimentally found to be about 0.016, while the

probability that a burst exceeds 3000 bits is expected to

be less than about 3.4× 10−5 and is experimentally found

to be 8.0× 10−6.

Results for a typical scenario for PSCFB mode

with n = 16 and L = 10 are shown in Table IV. For

this scenario, the theoretical upper bound is relatively

tight, when compared to the experimentally determined

probability. It is apparent, however, that there is not as

dramatic a decrease in the probability as the length of

the burst increases. For example, when N∗ = 20, 000,

the probability is about 1.8× 10−3, while for N∗ =

200, 000, the probability has only decreased by an order

of magnitude to about 1.2× 10−4. This occurs because

this scenario is dominated by case C1 in Table II and the

probability is therefore roughly proportional to ε, where

ε = (1− 1/2n)N
∗

, since the burst length, for such a large

n, is roughly proportional to the length of the sync cycle,

which is dominated by the scanning period whose length

is given by the geometric distribution. For N∗ � 2n, such

as 20,000, ε is not much less than 1 and increasing N∗ to

200,000, decreases ε by a power of 10, which means that,

N∗ Theoretical Experimentally
Upper Bound on Determined
P (N > N∗) P (N > N∗)

500 1.633e-01 1.169e-01
1000 2.971e-02 1.5862e-02
1500 5.352e-03 2.091e-03
2000 9.792e-04 2.82e-04
2500 1.821e-04 4.5e-05
3000 3.441e-05 8e-06
3500 6.533e-06 1e-06
4000 1.247e-06 0

Table III. Upper Bound on Probability of Exceeding Given Burst
Length for n = 8 and L = 1

N∗ Theoretical Experimentally
Upper Bound on Determined
P (N > N∗) P (N > N∗)

20000 1.839e-03 1.839e-03
40000 1.355e-03 1.313e-03
60000 9.990e-04 9.45e-04
80000 7.362e-04 6.99e-04
100000 5.426e-04 5.19e-04
120000 3.999e-04 3.81e-04
140000 2.947e-04 2.93e-04
160000 2.172e-04 2.02e-04
180000 1.601e-04 1.51e-04
200000 1.180e-04 1.14e-04

Table IV. Upper Bound on Probability of Exceeding Given Burst
Length for n = 16 and L = 10

since ε is close to 1, ε is only decreased by an order of

magnitude. As ε gets small (that is, ε� 1 which occurs

when N∗ ≥ 2n), increasing N∗ by an order of magnitude

will have a much more dramatic effect.

Although the scenarios presented above result in

reasonably tight upper bounds, there are scenarios for n

and L, for which the upper bound is very loose and,

therefore, not as effective as a measure for the probability

of long bursts. This occurs, for example, for small n and

large L, such as n = 8 and L = 10 where cases C4b and

C5 dominate the theoretical upper bound and these cases

are formulated with looser restrictions, resulting in the

overall bound being quite loose.

6. CONCLUSION

In this paper, we have investigated the post-decryption

error burst characteristics of SCFB mode and its derivative,

11
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PSCFB mode. Simulation results examining the burst error

length distribution confirm the dominance of single bit

error bursts, with only small probability for longer bursts.

The burst distribution is characterized through simulations

for various sync pattern sizes, n, and blackout durations,

represented in terms of the number of blocks, L, which

is also the number of pipeline stages. In general, larger

n leads to more likelihood of shorter (1 bit) bursts, but

the potential for longer bursts due to scenarios where loss

of synchronization occurs. Increasing L also results in

scenarios for which longer bursts are more significant.

Theoretical analysis is presented giving an upper bound

on the probability bursts are longer than a given length.

The appropriateness of this bound is confirmed through

simulations and simulations are also used to explore the

distribution of long bursts (defined as the longest 0.1%

bursts) as a function of n and L. For L = 1, the length

of long bursts increases with n and, for n = 8, the length

of long bursts increases with L. However, for large n (eg.

n = 16), there was found to be no correlation between L

and long burst length.

The value of this paper is that through characterizing

the burst lengths, it is possible to recommend values for n

and L based on the requirements of the communication

system. For example, for small L (eg. L = 1 as in a

non-pipelined conventional SCFB system), using a modest

size sync pattern, such as n = 8, will minimize the

likelihood of long bursts. As another example, in a PSCFB

system that will implement a pipelined architecture of

the block cipher, it may be desirable to use a large sync

pattern size (eg. n = 16) to minimize the frequency of

resynchronizations and, in this scenario, there is little

identifiable impact from the selection of the number of

pipeline stages, L, on the long burst length and, hence, L

can be selected based on the implementation constraints

and the efficiency of the system. Another valuable outcome

of this work is that, using the theoretical upper bound on

the probability of bursts exceeding a given value, it would

be possible to design and analyze the error detection and

correction aspects of a communication system which uses

SCFB/PSCFB in the underlying physical layer security.
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