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Abstract

In this paper, we examine a recently proposed mode of operation for block ciphers which
we refer to as statistical cipher feedback (SCFB) mode. SCFB mode configures the block
cipher as a keystream generator for use in a stream cipher such that it has the property
of statistical self-synchronization, thereby allowing the stream cipher to recover from bit
slips in the communication channel. Statistical self-synchronization involves feeding back ci-
phertext to the input of the block cipher similar to the conventional cipher feedback (CFB)
mode, except that the feedback only occurs when a special synchronization pattern is rec-
ognized in the ciphertext. In the paper, we examine the efficiency, resynchronization, and
error propagation characteristics of SCFB and compare these to conventional modes such as
CFB and output feedback (OFB). In particular, we study these characteristics of SCFB as
a function of the synchronization pattern size. As well, we examine implementation issues
of SCFB, focussing on the buffer requirements and resulting delay for a practical realization
of the cipher. We conclude that SCFB mode can be used to provide practical, efficient,
self-synchronizing implementations for stream ciphers. In particular, SCFB mode is best
used in circumstances where slips are a concern and where implementation efficiency is a
high priority in comparison to encryption latency.

Keywords: cryptography, stream ciphers, block cipher modes, synchronization, error propa-
gation
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I. Introduction

In this paper, we discuss a structure for self-synchronizing stream ciphers, recently proposed
in [1]. Stream ciphers are used to encrypt one symbol, typically one bit, at a time. They
are usually used when error propagation must be minimized or when the communication
channel suffers from periodic slips. The basic form of a stream cipher involves the generation
of a keystream - a keyed, pseudo-random, unpredictable sequence of bits - that is XORed
bit by bit with the plaintext to generate the ciphertext at the transmitter [2]. At the
receiver, the plaintext is recovered by generating the identical keystream such that it is
exactly synchronized with the received ciphertext stream. Hence, the XOR of the keystream
bits and received ciphertext bits produces the original plaintext bits.

We shall concern ourselves with stream ciphers which are derived from block ciphers
such as the Data Encryption Standard (DES) [3] and the Advanced Encryption Standard
(AES) [4]. Unlike stream ciphers, which conceptually operate on bits individually, block
ciphers operate on a fixed size block of plaintext bits to produce a block of ciphertext bits.
When configuring a block cipher for use as a stream cipher, the keystream is generated by
the output of the block cipher. There are several conventional modes of operation of block
ciphers that allow their use as stream ciphers including output feedback (OFB) mode and
cipher feedback (CFB) mode [2]. In this work, we focus on an unconventional mode which we
shall refer to as statistical cipher feedback (SCFB) mode. SCFB mode has been proposed [1]
to provide physical layer security for a SONET/SDH environment and is suitable for many
other applications as well. It has the benefits of being self-synchronizing and yet being more
efficient in its implementation than conventional cipher feedback mode. In this paper, the
characteristics of SCFB mode are thoroughly examined and its merits are discussed.

II. Background

There are several conventional block cipher modes of operation that may be applied to
derive a stream cipher, each with its own advantages and disadvantages. We briefly review
the important modes of output feedback and cipher feedback here. In our notation, we let
B represent the block size in bits of the block cipher. For example, for DES, B = 64, and
for AES, B = 128.

Output feedback (OFB) mode, a standardized mode of operation for block ciphers such
as DES [5], generates the keystream by directly feeding back the B-bit output of the block
cipher to the input. An implementation of OFB is parameterized by j, 1 < j < B, where
every block cipher operation produces j bits of keystream which can be XORed with j bits
of plaintext to produce j bits of ciphertext. For efficiency purposes, it is convenient to let
j = B, thereby making use of all possible B output bits of the block cipher for every block
cipher operation. This basic configuration is illustrated in Figure 1. The primary advantage
of output feedback mode is that error propagation is minimized. In fact, a single bit error in
the ciphertext in the communication channel results in only a single bit error in the recovered
plaintext.
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Figure 1: OFB Mode

The most significant disadvantage of OFB is that the system relies on the maintaining of
synchronization between the transmitter and receiver. For example, if a slip occurs (i.e., one
or more bits are eliminated from the received ciphertext stream), synchronization loss will
occur between the transmitter and receiver and half the bits following the slip are expected
to be in error until synchronization is recovered. Resynchronization can be achieved by
periodically sending an initialization vector (IV) from the transmitter to the receiver through
the signaling channel of the communication system. Obviously, the price of such a scheme
involves extra messaging overhead and the associated delays while synchronizing. As well,
the rate at which synchronization messages are sent must balance the overhead of sending
such messages frequently with the penalty of losing synchronization for a long period of
time should the messages be sent too infrequently. However, OFB (not considering the
resynchronization messaging overhead) can be implemented as efficiently as straight block
encryption by having B bits of keystream produced from one block cipher output.

Cipher feedback (CFB) mode [5] allows for automatic resynchonization should slips occur
in the communication channel and, hence, CFB stream ciphers fall into the category of
self-synchronizing stream ciphers. There are several parameters that may be set for an
implementation of CFB, however, a typical application would have the input to the block
cipher driven by ciphertext data which is fedback into a shift register at the input of the
block cipher in groups of m (< B) bits at a time as shown in Figure 2. The plaintext is
encrypted by XORing m bits with m bits of the block cipher output.

Since the input to the block cipher is being generated from the ciphertext which is
available to both ends of the communication, it is possible to recover from slips using CFB.
For example, if any single or multiple bit slip occurs, the CFB cipher with m = 1 can recover
synchronization since the next B bits will be shifted into the register at the input to the
block cipher and at this point the receiver will again be synchronized with the transmitter.
Resynchronization therefore requires only B bits in CFB mode with m = 1.

Unfortunately, the self-synchronization property achieved by CFB mode is costly in
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Figure 2: CFB Mode

terms of implementation efficiency. For CFB with m = 1, only one keystream bit is generated
from a B-bit block cipher output and, hence, the cipher is only capable of operating at 1/B
times the rate of block encryption and, consequently, can only be implemented at 1/B
times the best rate of OFB. This can be improved by increasing m but, if m > 1 and a
single bit slip occurs, the input to the block cipher at the receiver will become misaligned
and resynchronization will not occur. In fact, slips must occur as multiples of m bits or
resynchronization will not occur. Hence, usually for CFB mode, m = 1 is the desirable
configuration®.

Finally, it should be noted that the error propagation advantage of OFB is no longer
applicable to CFB mode. This occurs because at the receiver a bit error must work its way
through the shift register at the input to the block cipher. As a result, for CFB mode with
m = 1, a single bit error in the communication channel will result in the corrupted bit plus
the next B bits being randomly decrypted due to the receiver’s corrupted keystream. So a
bit error is expected to result, on average, in B/2 + 1 errors in the recovered plaintext.

ITI. Description of SCFB

In [1], the concept of statistical self-synchronization is proposed as a mechanism to provide
physical layer security for a SONET/SDH environment.? Operation of the mode is illustrated
in Figure 3, where E represents the block cipher encryption operation with block size B and
both the encryption and decryption of SCFB mode are illustrated. Essentially, the concept

!There are cases where m > 1 make sense. For example, CFB with m = 8 can be used to encrypt an
asynchronous communication link so that an 8-bit character can be encrypted with each block cipher output.
Here CFB mode is used to recover from losses of synchronization due to asynchronous characters being lost,
as opposed to individual bit slips.

2This scheme appears to have also been invented earlier and is referred to in [6].
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Figure 3: SCFB Mode

of statistical self-synchronization involves a hybrid of OFB? and CFB modes: the cipher
operates in OFB mode, while scanning the ciphertext for a special sync pattern of n bits in
length. When this pattern is recognized, the next B bits are stored for a new initialization
vector (IV) and, after all B bits have been collected, the input register for the block cipher
is loaded with the new IV. The cipher then proceeds in OFB mode until the next n bit sync
pattern is received. During the collection of B bits for the new IV, the sync pattern scanning
is turned off so that any n bits matching the sync pattern are ignored until the IV collection
phase is complete. This process follows for both encryption and decryption and, since both
the transmitter and receiver are examining the ciphertext, synchronization is achieved.

To provide enough detail for precise clarity of the operation of SCFB mode, a pseudocode
representation for encryption at the transmitter using SCFB is given in Figure 4. The sync
pattern is given by Qo ...Q,—1 and Wy... W, _; represents the window of n bits that is
currently being compared to the sync pattern. In order for the algorithm, as presented,
to work with the initialization of Wy ... W,,_; to all zeroes, () must be 1. The function
Ex(-) represents the block cipher encryption (using key K). Zy...Zp 1 is used to collect
the IV bits. The flags loading IV and new_IV are used to indicate that IV is currently
being collected (and sync pattern scanning is therefore suspended) and collection of IV
has just completed, respectively. Note that the initial block cipher input X;,...Xpg 1 is
given an initial value known to both the transmitter and receiver at the beginning of the
communication.

From the pseudocode, it may be seen that the encryption of a bit would encounter a
significant delay whenever a new block encryption is required since Ex can be expected to
take much longer than any other operation in the algorithm. Hence, in practice, for an
efficient synchronous system, an implementation would need a buffer in order to ensure that
plaintext bits can be accepted at a uniform rate and ciphertext bits can be produced at a
uniform rate at the output of the encryption process.

3SCFB can also be implemented as a hybrid of counter mode [2] and CFB mode. However, in this paper,
we focus our description on the OFB-based configuration only.
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loading IV <+ false
Xp...Xp_1 < initial value
Wo... Wp—1+0...0
j<0
do
Y() . Yp EK(XO . XB—I)
new_IV <« false
140
do
Ciyi+ Pj @Y
if loading 1V then
Zk, < Ciyg
k+—Ek+1
if Kk = B then
loading IV <+ false
new_IV + true
X()...XB,1 — Z()...ZB,1
Wo... Wyu1+0...0
else
Wo... WpoWy_1 < Wi... Wn_1Cj+i
if W() ce Wn—l = QO ‘e Qn—l then
loading IV <+ true
l—j+i1+1
k<0
14 1+1
if 1 = B and not new_IV then
Xo...XB_1 — YE)---YB—l
while ¢ < B and not new_IV
J—g+1
while true

Figure 4: SCFB Pseudocode

Since both the transmitter and receiver are using recognized bits within the ciphertext
as a cue to resynchronize the stream cipher, SCFB mode is capable of self-synchronization
and will clearly perform better in an environment where slips occur than OFB mode. Also,
although individual bit errors will typically only cause one bit error if the bit is not part of
the sync pattern or the initialization vector, there is the possibility that a bit error will cause
a synchronization to be missed, an incorrect IV to be used, or a false synchronization to be
detected at the receiver. In these cases, a single bit error in the communication channel
will result in many bit errors at the output of the decryption as synchronization will be
lost until the next sync pattern is properly detected. Hence, clearly the error propagation
characteristics of SCFB will be worse than OFB mode.

It should be noted that a mode similar in nature to SCFB was recently proposed in [7] and
is referred to as Optimized Cipher Feedback (OCFB). As in SCFB, OCFB uses recognition
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of a synchronization pattern in the ciphertext to resynchronize the states of the transmitter’s
and receiver’s keystream generators. Hence, the characteristics of SCFB and OCFB are very
similar and, in our work, we focus on SCFB.

Although SCFB mode was proposed in [1], the cipher characteristics were not fully
examined. Notably, the effect of the sync pattern size on the cipher properties was not
discussed. In the following sections, we shall consider the efficiency, resynchronization, and
error propagation characteristics of SCFB and, in particular, make a comparison to other
conventional cipher modes. Further, we shall discuss the implementation issues associated
with a practical realization of the SCFB cipher mode and briefly comment on the security
of the scheme in relation to the likelihood of the keystream repeating.

IV. Theoretical Efficiency

The principal advantage of implementing SCFB versus conventional CFB is that the effi-
ciency (and hence the potential speed) of the implementation can approach that of straight
block encryption, depending on the sync pattern size. Letting D represent the number of
bits transmitted, we can define the theoretical efficiency for a stream cipher based on a block
cipher core as:
. D/B
n= lim - : : (1)
D—oo E{# block cipher operations for D bits}

where E{-} represents the expectation operator. The numerator represents the number of
block cipher operations required for straight block encryption and the denominator represents
the expected number of block cipher operations required in SCFB mode (or other mode of
interest). Hence, the theoretical efficiency is essentially a measure of the rate at which the
stream cipher can encrypt in comparison to block encryption. In reality, the theoretical
efficiency represents an upper bound on the efficiency: as we shall see in Section VII, real
implementations place constraints on the system so that the practical efficiency (which we
shall refer to as full-queue efficiency) is marginally smaller.

For OFB mode, when all B bits are used in the XOR operation, n = 1, and for conven-
tional CFB with m = B, n = 1. However, if we are to be guaranteed to correct slips of any
number of bits, conventional CFB must operate with m = 1, and in this case, n =1/B < 1.
So conventional CFB is very inefficient in comparison to block encryption.

Consider now SCFB. We can assume that for SCFB, the ciphertext bits transmitted in
the communication channel can be categorized as illustrated in Figure 5, where it is clear
that some bits belong to the sync pattern (n bits), some belong to the subsequent IV (B
bits), and the remaining bits, which we shall refer to as the OFB block, occur between the
end of the IV and the beginning of the next sync pattern. We shall refer to the set of
bits from the beginning of the sync pattern to the beginning of the next sync pattern as a

synchronization cycle and, hence, a synchronization cycle consists of n + B + k bits, where
k is the size of the OFB block.

The size k of the OFB block is variable and dependent on the position of the next sync
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Figure 5: Synchronization Cycle

pattern. Since we assume that the block cipher used in the SCFB configuration displays
strong randomness properties (or else it would be insecure), k is a random variable with a
probability distribution determined by assuming that each bit of ciphertext is equally likely
to be a 0 or 1 and that each bit is independent. Strictly, the distribution of & is dependent
on the sync pattern used (eg. 11...11, or 10...00, etc.).

The value of £ is determined by the process of taking samples of n bits and comparing
each to the sync pattern where k is the number of samples taken before the sync pattern is
found. Now if we assume that each n-bit sample is independent, then the value of k£ follows
the geometric distribution where the probability that the sync pattern occurs in a sample is
1/2™. In this case, we have the probability distribution for & given by

P(k)=(1-1/2")*-1/2", (2)
the expected value of £ given by
E{k} =2"—1, (3)
and the second moment of £ given by
E{k*} =2>"t1 —3.2" + 1. (4)

Based on the geometric distribution, we can define the average synchronization cycle size to
be represented by u, where
p=n+B+2"—1. (5)

For SCFB mode where k actually represents the size of the OFB block as determined
by the next occurrence of the sync pattern, consecutive samples overlap in n — 1 bits and,
hence, samples are not independent and k£ does not follow the geometric distribution ex-
actly. However, we have verified experimentally that, for most sync patterns, the probability
distribution of k£ can be approximated by the geometric distribution. We therefore use this
distribution in our development and defer a more detailed discussion of the effect of the
selection of the sync pattern on the distribution of £ to the Appendix.

Consider now the scenario for Figure 5 where k£ + n + B is not a multiple of B. In
this case, after the second IV is collected, the input register of the block cipher will be
loaded and a new block cipher output will be produced after a block cipher operation that
is used for encrypting only a subset of a full B-bit block of plaintext. For example, let
k+n+ B = aB + v where a and + are integers and v < B. Hence, the block cipher must
execute o + 1 block encryptions from the beginning of the OFB block to the end of the
second IV, producing (« + 1) B bits, to encrypt only B + « plaintext bits (i.e., only 7 bits



Published in IEEE Transactions on Computers, January 2003 8

of the last block cipher output are used in the XOR). Therefore, in SCFB mode the block
cipher must be run at a rate slightly greater than for straight block encryption and a buffer
must be used to accommodate scenarios where only partial outputs of the block cipher are
used by the XOR operation.

Using (1) as the basic definition, it is possible to define the theoretical efficiency of SCFB

as
E{sync cycle size}/B

- E{# block cipher operations per sync cycle}’

n (6)

This leads to
u/B

=S, P() - [(ktn+ BB (7)

n

Consider now the computation of the denominator of (7). The expression for the de-
nominator can be rewritten to be

s k
denom = Y P(k)- [ i n-‘ +1. (8)
k=0 B
Further, considering the effect of the ceiling operator, it may be shown that
denom =d4 +dp + 1 9)
where
B—n
da= ) P(k) (10)
k=0
and

jB—n

b=y Y P (1)

j=2k=(j—1)B—n+1

Recall that P(k) is given by (2). Letting o = (1 — 1/2") and noting that d4 is represented
by the sum of a geometric series, it is easily derived that

dA =1— O_Bfn+1' (12)
As well, it can be shown that
dg =332,7- (gU=DB-n+1 _ 5iB-ntl)
— (2o rr ot 19

=(1-08)g B nt! [ﬁ - O'B] .

Now substituting for d4 and dp leads to the denominator of (7) given by

UB—n-l—l

denom = 2 + (14)

1—0B"
Finally, the efficiency of SCFB mode can be straightforwardly computed from n and B using
p/B

1—1/2n)YB—n+1 *°
2+ S

n= (15)
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Figure 6: Theoretical Efficiency vs. Sync Pattern Size

We have computed the theoretical efficiency n for block sizes of 64, 128, and 256 bits
and these are plotted in Figure 6 as a function of the sync pattern size. It is obvious from
the graph that, as n increases, the efficiency of the implementation increases and, for large
n, the efficiency approaches 100%, implying that the stream cipher can be run at a rate very
nearly equivalent to the speed of block encryption. In fact, a cipher can be run at a rate
approaching 7 times the block encryption rate with a suitably large enough buffer to account
for the scenario of several resynchronizations within a short time frame. This is discussed in
detail in Section VII.

Note that all efficiencies for SCFB mode are greater than 50%. This occurs because at
least one full block is used in each synchronization cycle since B bits are associated with the
IV. For small values of n, SCFB is significantly less efficient than straight block encryption.
For example, for n = 1, the cipher is resynchronizing after an expected OFB block size of 1
and as a result virtually every second block cipher output is used only for a small number
of bits in the XOR operation. Hence, the efficiency is only about 50%. For conventional
CFB mode with m = 1 to accommodate sync recovery from a slip of any number of bits, the
efficiency would be < 2% and < 1% for a block size of B = 64 and B = 128, respectively.
In contrast, for OFB mode, efficiencies are 100% when all B bits of block cipher output are
used in the keystream.

Also from the graph, it is clear that SCFB mode applied to a block cipher with a large
block size suffers in efficiency. For example, for n = 8, the theoretical efficiencies are 91.1%,
85.3%, and 78.1% for 64, 128, and 256 bit blocks, respectively. However, these efficiencies
are still many times more than conventional CFB mode and, in fact, the ratio of SCFB
efficiency to conventional CFB efficiency increases as B increases.
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V. Resynchronization

A fundamental requirement of a self-synchronizing stream cipher is that resynchronization
occurs quickly to minimize the corruption of data due to a sync lost condition. Conventional
CFB mode with m = 1, for example, will synchronize within B bits of the end of a slip of
one or more bits. Resynchronization delay for an OFB cipher relying on signaling messages
to provide synchronization information will generally be very large since synchronization is
usually relying on a low rate signaling channel and synchronization messages are exchanged
relatively infrequently.

In this section, we examine the resynchronization properties of SCFB mode. We shall
consider the metric of interest to be the synchronization recovery delay (SRD), defined as
the expected number of bits following a sync loss due to a slip before synchronization is
regained. It is important to note that, in our analysis, when we refer to the occurrence of a
slip, we are referring to the position representing the termination of the bits lost in the slip.
Hence, we consider SRD to represent the number of bits for which the receiver is out of sync
following the termination of the slip. That is, SRD does not include the bits that are lost
directly due to the slip and no explicit assumptions are made about the number of bits lost
in the slip.

In our work, we will present lower and upper bounds on SRD and experimental mea-
surements of SRD for varying values of n. Our analysis shows that, except for very small
sync pattern sizes (i.e., n < 4), SRD is approximately 2", a value that can be significantly
larger than SRD for CFB for large n. This fact encourages the use of modest size values of
n in SCFB mode.

A. Lower Bound on SRD

We begin by considering a lower bound on the sync recovery delay. Assume that a slip
randomly occurs such that there are no other slips in the synchronization cycle in which the
slip terminates. The probability that the slip occurs within a synchronization cycle of size

n+ B + k is given by

Pr(k) = (n+B+k)-P(k) (16)

1

where P(k) and p are given by equations (2) and (5), respectively. Assuming that the
receiver resynchronizes at the next sync pattern, i.e., at the end of the next IV, it will take
an average of (n + B + k)/2 + n + B bits to resynchronize. This is determined by the
average position of a slip within the synchronization cycle plus the n + B bits required at
the beginning of the next synchronization cycle to resynchronize. Now if we consider the
average over all synchronization cycle sizes then the synchronization recovery delay is lower
bounded as in

SRD > Y2, 2Bk . pr(k)
n 2
— %(n + B) + % EZO:O ( +B)kP(Lc)+Ic P(k) (17)

= 3(n+ B) + 5, [(n+ B)E{k} + E{k*}]
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where E{k} and E{k*} are given by (3) and (4), respectively. For large n, the sync recovery
delay lower bound of (17) is approximated by 2".

Equation (17) represents a lower bound because it is possible that the position of the
slip can result in scenarios which prevent resynchronization at the next sync pattern. For
example, a slip could occur in such a way that the new sequence of ciphertext bits results
in a false synchronization. It is possible for this to occur near the end of the OFB block
so that the receiver will interpret the next valid sync pattern bits as part of the false IV
and will ignore them. As a result, resynchronization will be delayed until the next sync
pattern. For small OFB block sizes, this could even happen in a manner such that several
proper sync patterns are misinterpreted as part of the initialization vectors of several false
synchronizations. This phenomenon is particularly prevalent for small values of n since small
OFB block sizes are much more likely.

B. Upper Bound on SRD

Now consider an upper bound on SRD. In our analysis, we consider two regions in which
a slip may occur within a sync cycle of size n + B + k as illustrated in Figure 5. If a slip
occurs such that the first bit following the slip is not within n + B bits of the sync pattern
for the next cycle, then synchronization is lost until the valid sync pattern is detected for the
next cycle. The probability of a slip occurring in this region is k/(n + B + k). When a slip
occurs within the last n + B bits of a sync cycle, one must consider the possibility that the
resulting bit sequence at the receiver could result in a false synchronization. The probability
of a slip occurring in this region is given by (n + B)/(n + B + k) and, for simplicity, in
deriving the upper bound for SRD, we shall assume that any such occurrence of a slip causes
a false synchronization. Once a false synchronization has occurred, we assume that the next
valid synchronization will be missed due to a portion of the valid sync pattern lying within
the false IV. Subsequently, false synchronizations may occur at the receiver if the receiver
misinterpretes a sync pattern appearing within an actual IV to be a proper sync pattern.
However, we can say that synchronization must be regained when the OFB block size &
exceeds n + B, as the end of a false IV must then fall within an OFB block and the next
valid sync pattern will be properly detected and synchronization regained. Synchronization
will also be regained when the sequence of bits in the actual IV does not contain the sync
pattern causing a false synchronization: however, since we are considering an upper bound,
to make the problem tractable we shall ignore this possibility and consider the likelihood
that a synchronization is regained based on the probability that a sync cycle has k£ > n+ B.

Based on these concepts we derive an upper bound on SRD as given by

° k k n+ B
D SmtB 4 L omaB) ) D
Sh <ZK (n+B) + >n+B+k+((n+ VN B

> . P'(k)  (18)

where \ represents the expected number of sync cycles before £ > n + B and is given by
)\ = = L
Ek:iH-B P(k) (19)

= (172%)“_’_3.
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Figure 7: Sync Recovery Delay vs. Sync Pattern Size (B = 64 bits)

Making use of (16), the sum of (18) can be manipulated and the upper bound given as

SRD < i 2n + B)E{k} + %E{kZ} +2(n+ B) + pA(n+ B)] . (20)

For small values of n, many sync cycles occur before £ > n + B and in reality resyn-
chronization will be achieved much more rapidly since it is possible that the end of a false
IV lies close to the end of an actual IV and it is likely, in this case, that no sync pattern
is detected before the OFB block begins. Hence, the upper bound is very loose for small
values of n but is much tighter for larger values of n. It can be shown that, as n gets large,
the upper bound on SRD approaches 2.

C. Experimental Results for SRD

We have examined experimentally the sync recovery delay versus different values of n by
running simulations with a sync pattern of the form 10...00. It is reasonable to assume that
slips are infrequent so that it is very unlikely to have more than one slip in a synchronization
cycle, and, in our simulations, we have used a slip rate of 1 bit slip every 10° bits. For
convenience, we have simulated individual bit slips only. However, the results for multiple
bit slips would be no different. The results of the simulations for B = 64 (using DES) and
B = 128 (using AES) are shown in Figures 7 and 8, respectively. The lower and upper
bounds of (17) and (20) are also illustrated in the figures. For convenience, the graphs
present a plot of the logarithm base-2 of the sync recovery delay.

We can conclude that the synchronization recovery delay increases in an exponential
manner. As n gets large, the synchronization recovery delay simulation results and the lower
and upper bounds converge. It should be noted that the bounds are based on the geometric
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Figure 8: Sync Recovery Delay vs. Sync Pattern Size (B = 128 bits)

distribution for k, whereas the simulations are based on a sync pattern for which & follows
closely, but not exactly, the geometric distribution. (See the Appendix for discussion of this
point.) Also, as expected, the upper bound on SRD is very loose for small values of n but
appears to be quite tight for n > 10.

For values of n < 4, the effects mentioned previously cause resynchronization problems
and we find from the simulation results that the sync recovery delay is actually minimized,
in both cases, for a value of n = 5 with SRD values of 126 and 225 for B = 64 and
B = 128, respectively. This may be compared to the synchronization recovery delay of B
for conventional CFB mode with m = 1. For large values of n, the synchronization recovery
delay is much greater than for conventional CFB. For example, for n = 10, the sync recovery
delay for SCFB is about 2'° bits irrespective of the block size.

V1. Error Propagation

In this section, we consider the effect of SCFB mode on the error characteristics at the
output of the decryption. As we shall observe, the error propagation is on the same order
as for conventional CFB mode and, hence, is much poorer than OFB mode.

We shall consider the error propagation factor (EPF) to be the bit error rate at the out-
put of the decryption divided by the probability of a bit error in the communication channel
(i.e., in the ciphertext). It is assumed that bit errors occur randomly and independently in
the communication channel. In our work, we outline a lower bound, an upper bound, and
simulation results for EPF for varying values of n.
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A. Lower Bound on EPF

We consider first a simple lower bound on the error propagation factor. Let P, represent the
probability of a bit error in the ciphertext. The probability of an error occurring in either
the sync pattern or the IV of a synchronization cycle is given by

P(sync/IV error) =1-— (1 — P,)"™B

~(n+B)-P, (21)

where the approximation is valid if n + B < 1/P,, which would typically be true for reason-
able values of n, B, and P,. When an error occurs in the sync/IV portion of a synchronization
cycle, it is expected that half of the bits corresponding to the OFB block and the bits cor-
responding to the next sync/IV bits will be in error. This is irrespective of the size k of the
OFB block portion of the synchronization cycle, and so we may conclude that the expected
bit error rate at the output of the decryption process at the receiver will be lower bounded
as

B)-P,
P(error after decrypt) > % (22)
Hence, the lower bound on the error propagation factor is given by
B
EPF > "; . (23)

We might expect that other scenarios for bit errors (other than in the sync/IV bits)
will only result in one bit error, in which case, this simple lower bound will suffice as a
good estimate of EPF. However, this is not necessarily the case. Consider the list of error
scenarios and the resulting effects as shown in Table 1. Note that Cases 3 and 4 involve
false detection of the sync pattern. This can occur if a bit error results in a sync pattern
in the received ciphertext. The probability that a bit error causes a false synchronization is
less than n/(2™ — 1). For small values of n, Cases 3 and 4 become much more likely and the
lower bound for the error propagation factor of (n + B)/2 is very loose. But as n increases,
Cases 1 and 2 become the most significant since the probability of a bit error occurring such
that false sync patterns are generated decreases dramatically as n increases. Clearly, the
most likely scenario becomes Case 2, since most of the ciphertext bits will correspond to the
OFB block. However, it is actually Case 1 which is the cause of the majority of bit errors
after decryption. Although the occurrence of a bit error corresponding to Case 1 becomes
significantly less likely than Case 2 for larger n due to the larger OFB block sizes, this is
offset by the fact that the number of bit errors produced at the output of the decryption
due to Case 1 increases in proportion to the decrease, i.e., about 1/2 of the bits in the larger
OFB block are in error. Hence, Case 1 becomes the significant factor in determining the
error propagation factor for larger n.

B. Upper Bound on EPF

Consider now, an upper bound on EPF based on approximating bounds on the likelihood
and effects of the cases in Table 1. Consider a sync cycle of size n + B + k. The probability
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‘ Case ‘ Error Scenarios ‘ Effect
1 error in n + B bits of sync/IV block sync lost for entire cycle (~ W
expected bit errors)
2 error in OFB block such that no sync | one bit error generated in recovered
pattern is falsely generated plaintext
3 error in OFB block such that false i/2 bit errors generated, where i is
sync generated in first £ — (n + B) bits | number of bits between end of false
of OFB block IV and end of next IV
4 error in OFB block such that false next sync pattern can be missed because
sync generated in last n + B bits it is interpreted to be part of false IV
of OFB block causing 1/2 bits in error until next valid sync
5 error while sync already lost at generates a possible bit error at the
receiver corresponding position of recovered
plaintext

Table 1: Effects of Different Error Scenarios

that a bit error belongs to Case 1 is

n+ B
P (k)= ——— 24
) = Bk (24)
and the resulting expected number of bit errors is given by
B+ k
5 (k) = 1+%_ (25)

For Case 2, the expected number of bit errors is d2(k) = 1 and the probability is typically
quite high and, hence, for simplicity, we assume that the probability that Case 2 occurs is
bounded by Py (k) < 1.

In order to determine the probabilities for Cases 3 and 4, we make use of the upper
bound on the probability that a bit error results in a sequence of bits identical to the sync
pattern, given by n/(2" — 1). This is useful in determining the upper bound on EPF since
the more likely that a false synchronization occurs, the larger EPF. Hence, Case 3 occurs
with a probability upper bounded by

n k

Pk . ; 26
) < 1wy Bk (26)
The expected number of bit errors caused in Case 3 is upper bounded as in
k
d3(k) <n+ B+~ (27)

4

where the bound arises from the bits in the remainder of the synchronization cycle and the
bits of the sync pattern and IV associated with the next cycle.
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The upper bound on the probability that Case 4 occurs is given by

n n+ B
2 —1 n+B+k

For this scenario, we assume that at least the next sync pattern is missed and it could take
several sync cycles to recover synchronization (similarly to the loss of sync due to a slip in
the last n + B bits of an OFB block). Hence, the expected number of errors caused by a
Case 4 bit error can be large and is upper bounded by

n+B p-A

9 + 5 (29)

da(k) <

where p and A represent the expected number of bits in a sync cycle and the excepted number
of cycles until resync is achieved and are given in (5) and (19), respectively. The (n + B)/2
term represents an upper bound on the expected number of bit errors between the end of
the false IV and the end of the IV of the next sync cycle.

In our analysis, we assume that errors and slips are infrequent enough that an error
occurs in isolation. Hence, the effect of an error is not influenced by other errors or slips
and we, therefore, ignore Case 5. As a result, an estimate of the upper bound on the error
propagation factor is given by

EPF =~ ¥ S P*(k) - Pi(k) - 6i(k)
<mB By o [(n+ B)E{k} + 1E{k?} + L(n+ B)? + uA(n + B)|.
(30)
From this expression, it may be shown that, as n gets large, the upper bound approaches
n+ B/2+ 1.

C. Experimental Results for EPF

We have investigated the error propagation factor experimentally and the results are illus-
trated in Figures 9 and 10, where the error propagation factor is given as a function of n
for a value of P, = 10~ for B = 64 and B = 128. The simulation results are generated
by randomly generating bit errors in the channel such that the effects of all cases listed in
Table 1 would be incorporated into the results. In order to get realistic statistical samples
with the available computing resources, the maximum size of n = 12 was selected for the
simulation. The lower and upper bounds for the two cases are also illustrated. Once again,
the block ciphers used in the simulations are DES and AES and the sync pattern used is of
the form 10...00. From the simulations it can be seen that the error propagation factor for
most values of n is close to the case of conventional CFB mode with m = 1 where the error
propagation factor is 33 for DES and 65 for AES.

It is perhaps surprising that the error progagation factor follows very closely to con-
ventional CFB mode. As n increases, since most of the synchronization cycle becomes the
OFB block and virtually all bit errors will occur within the OFB block, one might expect
that, on average, only about one bit error is produced at the decryption output for each bit



Published in IEEE Transactions on Computers, January 2003 17

: Simulatioh (B=64) —+—
mor : Lower Bound (B=64) --—x-—- -
Upper Bound (B=64) ------

120 |+ : B
100 : J

80 -

EPF

20 - B

Sync Pattern Size

Figure 9: Error Propagation Factor vs. Sync Pattern Size (B = 64 bits)

error that occurs in the communication channel. This is true for most bit errors. However,
as the probability of the occurrence of a bit error in the sync pattern and IV decreases,
the resulting number of bit errors due to such an error increases proportionally, so that, as
indicated by the lower and upper bounds, the expected number of bit errors after decryption
is much greater than one and the SCFB error propagation factor follows more closely CFB
than OFB, even for large n.

Note that in the analysis of the sync recovery delay and error propagation factor, we
have focussed on the effect of isolated events such as individual bit errors or slips. Of course
in practice, although it would be very infrequent, combinations of slips and errors may occur.
It would be a complex task to identify and analyze all such cases. However, it should be
noted that in such cases generally the effect of the error or slip will be no more severe than the
effect of an isolated error or slip. For example, a bit error that occurs while synchronization
has been lost due to a slip is highly unlikely to influence the state of the cipher and is an
event of no consequence in comparison to the sync loss. For these reasons, we are really
most interested in the effect of isolated events.

VII. Implementation Issues

In this section, we investigate the relationship of cipher speed (as measured by the efficiency
of SCFB mode with respect to straight block encryption) and the delay caused by the SCFB
mode of operation. The efficient operation of SCFB mode is conditioned on the appropriate
buffering of data to ensure that, should many resynchronizations occur closely in time, there
is enough buffer available to avoid buffer overflow while storing plaintext data and there is
enough ciphertext buffered to avoid underrun when production of ciphertext gets delayed
due to the many required block encryptions in a short time span. We shall examine the
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Figure 10: Error Propagation Factor vs. Sync Pattern Size (B = 128 bits)

buffering requirements of an implementation of SCFB mode. As we shall see, the buffering
requirements are directly equivalent to the delay of data as it is transferred through the
SCFB encryption system.

A. Implementation of an SCFB System

For the purposes of our work, we consider the SCFB mode to be implemented for encryption
as shown in Figure 11. (A similar system can be envisioned for decryption.) In the system,
there are two queues: one for incoming plaintext bits and one for outgoing ciphertext bits.
Both queues are assumed to have buffer space of size M bits. When the SCFB system is
operating in OFB mode (i.e., no sync pattern is detected), bits will collect in the plaintext
queue, until a block cipher output block is available and the number of bits in the queue is
equal to the block size B. At this point, the B plaintext bits are XORed with the output of
the block cipher and all B bits are placed into the ciphertext bit queue.

While bits are being collected in the plaintext queue, bits are being removed from the
head of the ciphertext queue at exactly the same rate. The ciphertext queue is initialized
with arbitrary data so that it is in the full state when the plaintext queue is empty. As
the plaintext queue fills up, the ciphertext queue empties and if the plaintext queue gets
full, the ciphertext queue will be empty. Consequently, the condition of an overflow in the
plaintext queue and an underrun in the ciphertext queue are exactly the same and we need
only consider the plaintext queue overflow condition.

Let h represent the number of bits in the plaintext bit queue. Under conditions of
no resynchronizations, A will increment from 0 to B bits and then drop back down to 0,
repetitively. The number of bits in the ciphertext queue is given by M — h. Hence, the delay
through the system experienced by any bit is given by h + (M — h) = M bit times.
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Figure 11: SCFB Encryption System

In order to minimize delay, it is clearly desirable to keep the buffer size M as small as
possible. However, M must be greater than B and must be large enough to deal with the
build up of data that can occur in the plaintext queue when resynchronizations occur. When
the sync pattern is detected in the bits being placed into the ciphertext queue, the system
continues encrypting until all B bits of IV are collected from the ciphertext. The last bit
of IV is unlikely to occur on the boundary of a block cipher output block and is, in fact,
equally likely to occur anywhere within a block cipher output block. However, since all bits
following the last bit of IV must be encrypted using the new output of the block cipher as a
result of the block cipher processing of IV, only part of the block (i.e, up to the last IV bit)
needs to be XORed and, although the XOR of this partial block can be executed as soon as
the bit corresponding to the last IV bit is available in the plaintext queue, there is a delay
in XORing the following bits due to the block cipher processing of IV. During this delay,
incoming plaintext bits are buffered into the plaintext bit queue.

If many resynchronizations occur closely together, the plaintext queue will fill up and
may overflow, resulting in lost data bits. (This will manifest itself as underruns in the
ciphertext queue.) In order to keep resynchronizations from continually growing the queue,
the plaintext bits are removed from the queue at a rate greater than the rate of bits entering
the queue. The size of the queues must be large enough to ensure that the probability of an
overflow is sufficiently small so as not to create a large number of bit errors. Hence, there is
a relationship between the rate at which the block cipher is run (and the corresponding rate
at which bits are removed from the plaintext queue) and the size required for the buffer.

There are other structures that may be envisioned to suitably implement an SCFB
system. One straightforward approach to the implementation would be to place a buffer
at the output of the block cipher and to remove the plaintext and ciphertext queues. The
next keystream block would be generated while the current block is being used to encrypt
the plaintext. This would clearly minimize delay through the system. However, although
during the OFB phase of a synchronization cycle, the block cipher need only be run at a rate
equal to the incoming data, when a resynchronization occurs, a block cipher output must be
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generated within one bit time, implying that the block cipher must be ready to operate at B
times the channel rate, equivalent to an efficiency of 1/B, i.e., the same as conventional CFB.
Hence, there is little value in this approach. Note that differing implementations of SCFB
will not differ in the analysis of the sync recovery and error propagation characteristics,
although they do vary in implementation efficiency and in delay due to queueing.

B. Practical Efficiency Concepts

In Section IV, the concept of theoretical efficiency is introduced as an indication of the rate
at which the block cipher must operate in order to be able to process the incoming plaintext
bits quickly enough to avoid queues growing without bounds. We now turn our attention to
practical efficiency concepts related directly to the implementation of Figure 11 and define
full-queue efficiency to represent the efficiency at which the system operates while there is
data in the plaintext queue to process. That is, if the queue has greater than B bits in it,
bits are removed from the queue in blocks of B bits at a rate of (1/a) x R/B blocks per
unit time where « is the cipher full-queue efficiency and R is the rate at which bits enter
the plaintext queue in bits per unit time. Since data is arriving at the plaintext queue at
a rate of R/B for each block of B bits, the full-queue efficiency represents the incoming
plaintext data rate divided by the rate at which bits are removed from the plaintext queue.
For example, for a plaintext queue with some data in it, an efficiency of o = 50% implies
that for every B bits entering the queue, 2B bits are removed from the queue, XORed with
the output of the block cipher, and placed in the ciphertext queue.

In practice, there will be periods when the plaintext queue has fewer than B bits available
at the completion of a block cipher operation and the system must wait until the queue has
B bits. Hence, the average efficiency is greater than the full-queue efficiency, since during
the full-queue situation the block cipher is operating at its peak rate and the corresponding
efficiency is at a minimum. Assuming that we have a stable system (i.e., the plaintext queue
does not grow without bound), the average and full-queue efficiencies must both be less than
the theoretical efficiency given in Section IV.

Assuming the time to execute a block cipher operation is fixed, a higher efficiency implies
that the system is capable of operating at higher rates, i.e., larger values of R. The full-queue
efficiency, «, gives a direct indication of the operating rate of the system since R = a.-rp,.- B
where r,,. represents the encryption rate of the block cipher while there is data to process
in the plaintext queue in blocks per unit time. The parameter r.,. is generally constrained
by the technology used to implement the block cipher.

C. Buffering and Delay Characteristics

In our work, we investigated the buffer requirements M (or equivalently the delay measured
in bit times) of the SCFB encryption system in Figure 11 by executing a number of simu-
lations for systems with different buffer sizes and full-queue efficiencies, o. As the output
of the simulations, we examined the probability of an overflow of the plaintext queue (or
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Figure 12: Probability of Overflow vs. Buffer Size

equivalently an underrun of the ciphertext queue). We observed that, although approach-
ing speeds very close to the theoretical efficiency, 7, defined in Section IV, requires much
buffer space and a resulting large delay, using speeds reasonably close (eg. with full-queue
efficiencies of about 80-90% of theoretical efficiency) requires modest buffering and causes
small delays. As an example, consider Figure 12 and Figure 13, both of which are simulation
results based on 64-bit DES with an 8-bit synchronization pattern of “10000000”.

Figure 12 illustrates the effect on the probability of buffer overflow as a function of the
buffer size for fixed full-queue efficiencies. Although, in theory, the efficiency can be as high
as 91.1%, it is clear that running the system at close to that efficiency causes significant
buffer overflows for buffer sizes up to 256 bits. However, for full-queue efficiencies of 78.1%
and 84.4%, buffer overflow becomes small for buffers of about 120 and 160 bits, respectively.

Figure 13 shows that the probability of overflow increases dramatically as the full-queue
efficiency approaches the theoretical efficiency of 91.1%. However, for large buffer sizes of
160 and 192, it can be seen that full-queue efficiencies of 80% to 85% can be achieved before
significant overflow occurs. Even for small buffer sizes, such as 96, full-queue efficiencies can
be 70% with little buffer overflow.

Results of a similar nature have been observed for the 128-bit AES cipher. Hence, we
conclude that it is feasible to run the system at full-queue efficiencies approaching theoretical

efficiencies and still maintain modest buffer sizes and resulting delays equivalent to a few
blocks.

Of particular note is the efficiency value of 50%. For any sync pattern size, running the
system at rates corresponding to 50% (or less) efficiency guarantees that there is no buffer
overflow for a buffer size of B. This occurs because the block cipher is being run at a rate
that is two times (or more) the rate of incoming bits and, since all synchronization cycles
consist of the IV collection phase followed by OFB encryption based on the IV, the worst
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case scenario requires no more than two block cipher encryptions for any B+, n <[ < B,
bits. This is a significant point because it implies that running SCFB at 50% full-queue
efficiency guarantees no overflow and a delay of exactly B bit times. This may be compared
to (1) conventional CFB which, while being capable of providing minimal delays, results
in an efficiency of only 1/B and (2) OFB which can provide minimal delay but has no
self-synchronization capabilities.

VIII. Security Issues

In this section we explore some of the security issues associated with the SCFB mode of
operation. In particular, we consider the susceptibility of the mode to passive attacks which
look for repetitions in the keystream.

Since IV is essentially a random block of B bits, one concern for the security of SCFB
mode is that an IV value might be the same as a block cipher input from another synchro-
nization cycle. This could result in a large sequence of bits that is encrypted with the same
keystream sequence as another sequence of plaintext bits. When a significant portion of
the keystream repeats, knowledge of some plaintext might compromise the security of other
encrypted unknown plaintext bits. It should be noted that this situation also potentially
exists for conventional OFB mode: when resynchronizations are executed by sending a new
IV through a signaling channel, it is generally good practice to avoid re-using IVs.

This security concern is eliminated through the use of large block sizes. We shall inves-
tigate the issue by considering the probability of getting an IV that has already been used
at the input to the block cipher in a previous sync cycle or getting a block cipher input that
has been used as an IV for a previous sync cycle. It is possible to derive an upper bound on
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the probability and therefore be able to make a statement regarding the security of SCFB
with respect to a repeating keystream. The upper bound is derived by considering the like-
lihood that each input to the block cipher is different than all previous inputs, regardless of
whether the input is coming from the previous output of the block cipher or the IV taken
from the ciphertext. The assumption that each input block is randomly selected from all
possible blocks is used. Hence, the probability of getting at least two identical input blocks
in ¢ blocks is given by [8]:

P(repeated keystream) < 1 — ]\ ; (1 - QLB)
~1—[[icge?”
— 1 — e tt-1)/25H!
_42/2B+1

(31)
~1—e

where we have used the reasonable assumptions that t < 282 and 1 —z ~ e @ for z < 1
in the first approximation and ¢ > 1 in the second approximation. Now if we assume that
t? <« 2B*! and again using 1 — z &~ ™%, we expect that

t2

P(repeated keystream) < (32)

9B+1°

For SCFB mode, a block cipher operation, on average, results in the encryption of nB
plaintext bits where 7 is the theoretical efficiency given by (15). Hence, for a block size
of B = 128 and n = 8, being able to store about 1 terabit is the equivalent amount of
data corresponding to about 233 block cipher operations, resulting in two identical input
blocks with a probability of less than 107°. For B = 64 the approximation of (32) does
not hold but, by considering the “birthday paradox” [8], it can be rationalized that, for
n = 8, about 1/2 terabit is required to be stored before any two block cipher input values
used in SCFB encryption can be expected to be the same with high probability (i.e., on the
order of 50%). It is reasonable to conclude, therefore, that repetition of the keystream has
negligible probability in SCFB mode with B = 128. However, for B = 64, there is a risk
that a keystream repetition may be exploited if a large amount of data can be stored. This
risk can be mitigated by keeping the amount of data encrypted under one block cipher key
small enough.

In this section, we have considered the security of SCFB mode with respect to a passive
attack based on repetition of the keystream. Although there is intuitive justification for
believing that SCFB mode would possess similar security to conventional cipher feedback
and output feedback modes, in this paper, we do not pursue formal proofs of concrete security
for SCFB such as those presented in [9] for cipher block chaining and counter modes. We
leave as an open problem, the formal proof of the security of SCFB mode with respect to
more sophisticated cryptanalysis methods such as adaptive chosen plaintext attacks.

IX. Conclusions

In the paper, we have examined the efficiency, synchronization recovery delay, and the error
propagation chacteristics of a recently proposed encryption mode that we refer to as statisti-
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cal cipher feedback (SCFB) mode. Most significantly, we have examined these characteristics
as a function of the synchronization pattern size. We conclude that SCFB mode provides
self-synchronization with a recovery time from sync losses that is dependent exponentially
on the sync pattern size. The major advantage of SCFB is that, as the sync pattern size
increases, the efficiency of SCFB mode approaches 100% and even for modest n (eg. n = 8),
the efficiency is large. The error propagation characteristics are demonstrated to be similar
to CFB mode and not heavily dependent on the sync pattern size. Hence, for a particular
application, the actual sync pattern size can be selected by determining a suitable balance
between synchronization recovery and efficiency.

We have also examined the practical implementation aspects of SCFB mode and can
conclude that SCFB should be used in circumstances where slips are a concern (thereby
necessitating self-synchronization) and where implementation efficiency is a high priority in
comparison to latency. In comparison to OFB mode, SCFB can provide similar implementa-
tion efficiencies and while the error propagation characteristics of SCFB are poor compared
to OFB, SCFB provides self-synchronization capabilities, which OFB does not. In com-
parison to conventional CFB mode, SCFB provides far better implementation efficiencies,
with similar error propagation characteristics and poorer synchronization recovery delays.
Further, efficient implementation of SCFB does necessitate some encryption latency due to
the required buffering to deal with resynchronization occurrences, whereas both OFB and
CFB can be implemented with minimal latency.
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Appendix:
Discussion on Synchronization Cycle Length

In the paper, we have used the geometric distribution to characterize the probability
distribution of the the OFB block size k. However, the sync pattern is scanned for by
essentially sliding along a window of n bits and comparing this to the sync pattern. Hence,
there will be an overlap of windows and the detection of a sync pattern at a particular
position is not independent of the sync pattern occurring at other locations.

In fact, assuming that each bit of ciphertext is equally likely to be a 0 or 1 and that
each bit is independent, it is found that the distribution of the random variable £ is actually
dependent on the sync pattern. We illustrate this by examining, for varying sync pattern
sizes n, two cases: sync patterns of the form 10...00 and of the form 11...11.

A. Sync Pattern 10...00

The probability distribution of £ can be shown to be

1= (@] 5w k>0

o k=0 (33)
0 ,k <O0.

Equation (33) is explained as follows. First, it should be noted that P,(k) is equivalent in
meaning to the probability that the next sync pattern ends k +n bits after the last bit of the
previous IV. It is trivially true that £ must be nonnegative. The case for £ = 0 occurs when
the first n bits following the last bit of IV correspond to the n bits of the sync pattern. The
probability for the case of £ > 0 comes from the fact that, in order to finish the sync pattern
at the (k + n)-th bit, the (k + 1)-th to (k + n)-th bits must each have values corresponding
to the bits of the sync pattern: the probability of this is 1/2". As well, there must be no
sequence of bits equivalent to the sync pattern in the first k£ bits: the probability of this is
given by the complement of the probability that the next sync pattern finishes at bit n, or
bit n + 1, etc., which is simply the sum of the probabilities up to P,(k — n). The resulting
probability for the case of £ > 0 is given by the product of the probability that the pattern
does not appear in the first k£ bits and the probability that it does appear in the bits & + 1
to k + n. Particularly, it should be noted that the pattern cannot appear in bits £k +1 — ¢
tok+n—1,1<i<n-—1, and also in bits £ + 1 to k£ + n because of the format of the bit
pattern. This is accounted for in the calculation of the probability. (This is quite different
than in the calculation of the geometric distribution, where it is assumed that if the pattern
finishes at k£ + n, the probability that it does not finish at £k + 1 — % to £ + n — ¢ must be
accounted for.)

Fu(k) =

We have verified computationally that the expected value of k for the sync pattern
10...00 based on probability distribution P, is given by

E{k}=2"—-n (34)

which differs from the value for the geometric distribution given by (3). However, this
difference is small.
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Figure 14: Probability Distribution Comparison, n = 8

B. Sync Pattern 11...11

In this case, the probability distribution can be shown to be

1= B 5o k>0
& k=0 (35)
0 k <0.

Py(k) =

The case for &k > 0 varies from P,(k) of (33). It is derived from the fact that, in order
to finish the sync pattern at the (k + n)-th bit, the k-th bit must have a value of 0 and
the (k + 1)-th to the (k + n)-th bits must each have values of 1: the probability of this is
1/2"*L. As well, there must be no sequence of bits equivalent to the sync pattern in the first
(k — 1)-th bits: the probability of this is given by the complement of the probability that
the next sync pattern finishes at bit n, or bit n + 1, etc.. The product of these probabilities
results in the case for £ > 0 in (35).

For sync pattern 11...11, the expected value of £ is given by
Eyk}=2-(2"-1)—n (36)

which differs significantly from the expected value in the geometric distribution.

C. Comparison of Distributions

For a comparison of the probability distributions between the two cases of sync patterns and
the geometric distribution, see Figure 14 for which n = 8. As well, Figure 15 illustrates the
expected values for the different distributions as a function of n.
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It is clear that the sync pattern 10...00 follows very closely the distribution and the
resulting expected values of the geometric distribution. (In fact, the distribution for n = 8
and the expected value plots follow virtually exactly the geometric distribution from the
perspective of a visual interpretation of Figures 14 and 15.) We have found this to be

the case for most sync patterns.

However, the sync pattern 11...11 has a distribution

significantly different than the geometric distribution and has an expected value for £ that
is about twice the expected value of the geometric distribution. In our experiments, we have
used the sync pattern 10...00 and so we expect that the theoretical values developed from
the geometric distribution should be a reasonable approximation of the values for the actual

sync pattern.



