INTRODUCTION TO COMPUTER AND COMMUNICATIONS SECURITY

Security Objective

Protection of information to ensure:

- (i) privacy
- (ii) authenticity

Introduction

- · in operating systems "access control" methods are used
- · "subjects" (such as users, processes) are given certain access privileges to "objects" (such as files, directories, and drives) on an individual, group, and system basis
- · individual users authenticate themselves by using a password

Intruder Oscar:

- · passive eavesdropping
- · active insertion, deletion, and modification of data

Consider user Bob logon to computer system A

- · Example scenarios
 - (i) passive attack
 - · password recorded by Oscar
 - → Oscar now has access to Bob's files
 - (ii) active attack
 - · Oscar intercepts logon and responds to Bob with "system A down"
 - → Bob's logon prevented

Conclusion:

· password and access control methods can be inadequate

Solution:

- · CRYPTOGRAPHY (Science of Secret Writing)
- = Symmetric (or Private) Key Cryptography/ Public (or Asymmetric) Key Cryptography

One secret key and one public key.

One cryptographic key known only to txer/rxer.

· cryptographic *key* selects parameters of encryption/decryption algorithm or *cipher*

Classical Cryptography

Transposition Ciphers

· divide message into blocks and transpose characters within block

Substitution Ciphers

one approach called "shift" cipher: equate each letter to a number from 0 to 25 and add key to each letter in message

Modern Cryptography

Claude Shannon (1949):

· principles of confusion and diffusion

Feistel (1973):

· practical cipher structure > Substitution-Permutation Network

Data Encryption Standard (1975):

· designed by IBM, used extensively in banking

Diffie and Hellman and others (late 1970s):

· invention of public key cryptography and RSA

Explosion of New Research and Applications (late 1980s to present)

· due to rapid growth of distributed computing, wireless networks, and the Internet, importance and interest in cryptographic applications has taken off

Advanced Encryption Standard (2001):

· algorithm to replace DES adopted by NIST after extensive public process

Symmetric Key Cryptosystems

cipher = encryption (E_K) + decryption (D_K) algorithms

- \cdot key K
- → selects parameters of algorithm
- → key kept private or secret by distributing over secure communication channel
- → must be kept large enough to prevent exhaustive search on all possible keys
- · in order to "break" cipher, cryptanalyst (intruder) will try to find K given some amount of C
- · often some amount of C plus corresponding P can be known
 - \rightarrow cipher not secure if K can be found from knowledge of P and C
- · ideally ciphertext C looks random and there is no
 - (i) statistical
 - (ii) mathematical relationship between C and K or C and P
- two general types of private key ciphers

 - (1) block ciphers (2) stream ciphers

(Symmetric Key) Block Ciphers

- · encrypts/decrypts in blocks of bits
- · eg. Data Encryption Standard (DES)
 - → most widely applied cipher today
 - → blocksize = 64 bits
 - → key size = 56 bits

Advanced Encryption Standard (AES)

- → will become predominant block cipher in next 10 years
- → blocksize = 128 bits
- \rightarrow key size \geq 128 bits
- · DES breakable using exhaustive seach on special purpose hardware or by distributing work across Internet
- · AES should be secure for decades
- · most symmetric key block ciphers are based on Shannon's fundamental principles:
 - → confusion complex mathematical relationship

(eg. nonlinear relationship of P and C)

- local effects in plaintext block spread across all ciphertext bits (essentially statistical strength)

- (and an engin)
- · using these principles, "product ciphers" are constructed by executing a sequence of rounds of simple cryptographic operations
- · eg. Substitution-Permutation Networks (SPNs)

Substitution-Permutation Networks

S-boxes

· small *n×n* nonlinear mapping provides "confusion"

Permutation

· transposition of bits between rounds of S-boxes provides "diffusion"

Keying

- · key bits XORed to data bits at S-box inputs
- · applied according to key scheduling algorithm
- · DES and AES are similar to SPNs

But there is a problem with symmetric key systems

→ key distribution is a difficult problem since a reliable, secure channel is required

Can we distribute keys over insecure channels like the Internet?

→ YES! Using Public Key Cryptography

Public Key Ciphers

$$K_P$$
 = public key, K_S = secret key

- $\cdot K_S$ only known to receiver
- \cdot K_P can be known to everyone including intruder
- \cdot K_S cannot be determined from K_P because only receiver knows relationship
- · based on "hard" number theory problems
- · best known public key cipher is RSA

RSA

- (1) receiver chooses two large primes p and q
- (2) receiver picks K_S and computes K_P from $K_PK_S = 1 \mod (\Phi(N))$ where $N = p \cdot q$ and $\Phi(N) = (p-1)(q-1)$ (Euler Totient Function)
- (3) receiver sends N and K_P to transmitter
- (4) transmitter can send encrypted information to receiver using exponentiation

Encryption:
$$C = P^{K_p} \mod N$$
 (*)

Decryption:
$$P = C^{K_s} \mod N$$
 (**)

· anyone who acquires K_P can encrypt but only receiver knows K_S and can decrypt

But if (*) is true, how do we know (**) will work?

→ Let
$$\psi$$
 be given by $\psi = C^{K_S} \mod N$

Hence
$$\psi = (P^{K_P})^{K_S} \mod N$$

 $= P^{K_P K_S} \mod N$
 $= P^{1+|\Phi(N)|} \mod N$
 $= P \cdot P^{|\Phi(N)|} \mod N$
 $= P$
- since $P^{|\Phi(N)|} \mod N = 1$ (Fermat's Theorem)

Why is RSA secure?

· Difficult to factor large composites and difficult to compute discrete logarithms.

Factoring:

$$N = p \cdot q$$
"Given N, what are p and q?"

Hard Problem

Discrete Log:

$$y = a^x \mod N$$
"Given y , a , and N , what is x ?" \rightarrow Hard Problem

RSA math:

 \geq 512 bits to be secure - quite slow!

Authentication

- · various requirements
 - → user, file, computer, etc.

Consider 3 techniques:

- (1) Message Authentication Code
- (2) Challenge-Response Protocol
- (3) RSA Digital Signature

Message Authentication Code (MAC)

- · used to verify authenticity of a message (i.e., no alterations, correctness of origin)
- · uses private key block cipher with both parties in communication knowing key K

- · message divided into blocks and chained through block cipher
- · can only be generated and verified knowing K
- · MAC can be attached to end of unencrypted message

Challenge-Response Protocol

Consider

- · Alice wants to communicate with Bob
- · How can Bob ensure that he is talking to Alice given that they both know the same private key *K*?
- · Alice cannot reveal key K because someone might be impersonating Bob or eavesdropping

Bob challenges Alice!
RSA Digital Signature
· digital signature must verify that particular user originated a particular electronic document
originator cannot deny signature

· hence, signature must be unique to person signing and must change for each

→ recipient and others cannot forge signature

document

Consider using RSA public key cipher for Alice to sign contract with Bob:

Let *M* = contract

^{· &}quot;digest(M)" publicly known digest or hash function to produce small block out of large message

[•] to ensure that Alice cannot deny, public key K_P should be kept on file by central authority