
 

FLUIDS AT REST 

 

HYDRAULIC GATES 

The pressure/weight method for hydraulic gates starts by 

boxing the gate with vertical and horizontal surfaces. The 

fluid within these surfaces is considered frozen to the gate. 

Then the horizontal and vertical pressure forces on the box 

surfaces are calculated. Force balances, which subtract the 

weight frozen to the gate, then give the horizontal and 

vertical forces on the gate. Moment balances give the 

location of the forces. The panel method for hydraulic gates 

starts by subdividing the surface of the gate into a finite 

number of flat panels. The pressure depth law gives the 

pressure at the centroid of each panel. Pressure times panel 

area gives the force at the centroid. The unit normal 

pointing at the panel allows one to break the force into 

components. Summation gives the total force on the gate in 

each direction. Moment balances give the location of the 

forces. If the gate has a pivot, a summation of each force 

times its moment arm gives the total moment about the pivot. 

The important equations for the panel method are: 

 

 

             ΔF = PΔA nxi + PΔA nyj + PΔA nzk   

      Fx = Σ PΔA nx    Fy = Σ PΔA ny    Fz = Σ PΔA nz 

           Σ r x ΔF         r = rxi + ryj + rzk  

 

                  P = ρgh      W = ρgV 

 

 

 

 



The panel force is ΔF. Its pivot moment is r x ΔF. Summations 

give total force components and the pivot moment. 

 

 

METACENTER 

The metacenter M occurs at the intersection of two lines. One 

line passes through the center of gravity or G and the center 

of buoyancy or B of a floating body when it is not rotated: 

the other line is a vertical line through B when the body is 

rotated. Inspection of a sketch of these lines shows that, if 

M is above G, gravity and buoyancy generate a restoring 

moment, whereas if M is below G, gravity and buoyancy 

generate an overturning moment. One finds the location of M 

by finding the shift in the center of buoyancy generated 

during rotation and noting that this shift could result from 

a rotation about an imaginary point which turns out to be the 

metacenter. The important equations are: 

 

 

              MV = V S     V = ΣΔV     (ΣdΔV)/V 

           MW =   r rΘ w dr = K Θ       S = BM Θ    

          MW =  Σ r rΘ w Δr = K Θ      GM = BM – BG 

 

 

When a body is rotated by an angle Θ, MV is the volume moment 

generated by the shift S in the center of buoyancy B, and MW 

is the volume moment generated by the wedge shaped volumes 

created by rotation. Setting MV equal to MW gives an equation 

of the form S = K/V Θ. Rotation of B about the metacenter M 

gives S = BM Θ. The S equations give BM = K/V. The distance 

between B and the center of gravity G is BG. Geometry gives 

GM. If GM is positive, M is above G and the body is stable.  



 

FLUIDS IN MOTION 

     

SCALING LAWS 

Scaling laws allow prototype behavior to be predicted from 

model data. For a pump, it is customary to let N be the 

rotor RPM and D be the rotor diameter. All flow speeds U 

scale as ND and all areas A scale as D
2
. Pressures are set by 

the dynamic pressure ρU
2
/2. Ignoring constants, one can 

define a reference pressure [ρN
2
D
2
] and a reference flow 

[ND
3
]. Since fluid power is just pressure times flow, one can 

also define a reference power [ρN
3
D
5
]. Dividing dimensional 

quantities by reference quantities gives the scaling laws: 

 

    CP = P / [ρN
2
D
2
]     CQ = Q / [ND

3
]     CP = P / [ρN

3
D
5
]     

  

These equations show that, if D of a pump is doubled, P 

increases 32 fold, whereas if N is doubled, P increases 8 

fold.  For bodies in a flow, important numbers are:  

 

            CD = D/(A[ρU
2
/2])       CL = L/(A[ρU

2
/2])      

          Re = UD/ν     Fr = U/√[gL]      St = [D/U]/T    

 

In these equations, D is drag and L is lift. These can be 

represented in dimensionless form as drag and lift 

coefficients CD and CL. These coefficients are often a 

function of Reynolds Number Re or Froude Number Fr. When flow 

has an oscillatory character, an important number is the 

Strouhal Number St. Re is a ratio of inertia and viscous 

forces in a flow. Fr is a ratio of inertia and gravity forces 

in a flow. St is a ratio of transit time and flow period.   

  



CONSERVATION LAWS 

Conservation of Mass states that the time rate of change of 

mass of a specific group of fluid particles in a flow is 

zero. Conservation of Momentum states that the time rate of 

change of momentum of a group of particles must balance with 

the net load acting on it. Conservation of Energy states that 

the time rate of change of energy of a group of particles 

must balance with heat and work interactions with its 

surroundings. Mathematically one can write: 

 

Conservation of Mass 

 

   D/Dt  ρ dV    =    ρ/t dV  +   ρ v.n dS   =  0   

         V             V             S  

  

Conservation of Momentum                                               

        D/Dt  ρv dV   =    ρv/t dV  +   ρv v.n dS 

              V             V              S 

                                                

                =    σ dS     +     ρb dV  

                     S               V      

Conservation of Energy 

 

     D/Dt  ρe dV   =    ρe/t dV  +   ρe v.n dS                                      

           V            V              S 

                    =   -  q.n dS  +   v.σ dS  

                           S            S              

 

 

In these equations, V is fluid volume, S is fluid surface 

area, t is time, n is outward unit normal, v is velocity, ρ 

is density, σ denotes surface stresses such as pressure and 

viscous traction, b denotes body forces such as gravity, e is 

energy density and q denotes heat flux. 



 

For streamtube or pipe flow, the conservation laws reduce to 

 

        

Conservation of Mass 

     (ρCA)OUT - (ρCA)IN = 0       M
.
= ρCA  

 

 

 

Conservation of Momentum                                               

  

   (ρvCA)OUT - (ρvCA)IN = - (PAn)OUT - (PAn)IN - R 

       M
.
(UOUT-UIN)=Fx    M

.
(VOUT-VIN)=Fy    M

.
(WOUT-WIN)=Fz   

 

 

Conservation of Energy 

 

  (ρeCA)OUT - (ρeCA)IN = (CPA)IN - (CPA)OUT + T
.
- L
.
 

 

  

      h = C
2
/2g + P/ρg + z        e = u + C

2
/2 + gz   

  

    hOUT - hIN = hT - hL     Re=CD/=ρCD/   ε = e/D 

 

 

                 hL = (fL/D +K) C
2
/2g    

  

In these equations, ρ is density, C is flow speed, A is pipe 

area, v is velocity, P is pressure, n is outward normal, U V 

W are velocity components, h is head, u is internal energy, g 

is gravity, f is pipe friction factor, L is pipe length, D is 

pipe diameter and K indicates losses at constrictions.    

    Mass Flow Rate: M
.
     Shaft Work: T

.
     Losses: L

.
 

 



 

SYSTEM DEMAND 

System Demand consists of two components: pressure/gravity 

head and head losses. Head H versus Flow Q is given by: 

 

               H = X + Y Q
2
           Q = C A 

         X = Δ (P/ρg + z)   Y = (fL/D + K)/(2gA2) 
 

X accounts for piezometric or pressure/gravity head and Y 

accounts for losses due to friction and constrictions. 

 

 

PUMP SELECTION 

One first calculates the specific speed based on the system 

operating point. This is a nondimensional number which does 

not have pump size in it:  NQ/H3/4. This allows one to pick 

the appropriate type of pump. Next one scans pump catalogs of 

the type indicated by specific speed and picks the size of 

pump that will meet the system demand, while it is operating 

at its best efficiency point (BEP) or best operating point 

(BOP). Finally, to prevent cavitation, the pump is located in 

the system at a point where it has the Net Positive Suction 

Head or NPSH recommended by the manufacturer: 

  

              NPSH = Ps/ρg + UsUs/2g - Pv/ρg   

 

In this equation, Pv is the vapor pressure of the fluid being 

pumped, and Ps and Us are pressure and speed at the pump 

inlet: they can be estimated from conservation of energy. 

 

 

 



 

PIPE NETWORKS 

In a pressure iteration method one would first assume 

pressure at each node in the network where it is not known. 

Then for each node one would assume pressures at the 

surrounding nodes to be fixed. Next for each pipe connected 

to the node one balances head loss with piezometric or 

pressure/gravity head: here pumps are treated as negative 

head losses while turbines are treated as positive head 

losses. This allows us to calculate the flow in each pipe and 

its direction. One then calculates the sum of the flows into 

the node treating flows in as positive and flows out as 

negative. If the Q>0 then the node acts like a sink and the 

pressure there is too low and must be increased a bit. If the 

Q<0 then the node acts like a source and the pressure there 

is too high and must be lowered a bit. Each node in the 

network is treated the same way. One sweeps through the 

network nodes again and again until the Q for each node is 

approximately zero. In a flow iteration method one assumes a 

distribution of flow which satisfies Q=0 at each node in the 

network. The flow iteration method modifies flows throughout 

the network in a way which maintains Q=0 at each node. In 

the method one identifies pipe loops in the network. Then for 

each loop one calculates the sum of the head losses as one 

moves around it in a clockwise sense. If flow in a pipe is 

clockwise head loss is taken to be positive whereas if flow 

is counterclockwise head loss is taken to be negative. For a 

loop if the hL>0 then there is too much clockwise flow: so 

flows must be reduced a bit in a clockwise sense. This 

decreases clockwise flows and increases counterclockwise 

flows. If the hL<0 then there is not enough clockwise flow: 



so flows must be increased a bit in a clockwise sense. This 

increases clockwise flows and decreases counterclockwise 

flows. Each loop in the network is treated the same way. One 

sweeps through the network loops again and again until the 

hL for each loop is approximately zero. Special pseudo loops 

are used to connect reservoirs.     

     

 

 

TURBOMACHINES 

Swirl is the only component of fluid velocity that has a 

moment arm around the axis of rotation or shaft of a 

turbomachine. Because of this, it is the only one that can 

contribute to shaft power. The shaft power equation is:  

 

            P = Δ (T ω)  = Δ (ρQ Vt  R ω)  

 

 

The swirl or tangential component of fluid velocity is Vt. 

The symbol Δ indicates we are looking at changes from inlet 

to outlet. The tangential momentum at an inlet or an outlet 

is ρQ Vt. Multiplying momentum by moment arm R gives the 

torque T. Multiplying torque by the speed ω gives the power 

P. The power equation is good for pumps and turbines. Power 

is absorbed at an inlet and expelled at an outlet. If the 

outlet power is greater than the inlet power, then the 

machine is a pump. If the outlet power is less than the inlet 

power, then the machine is a turbine. Geometry can be used to 

connect Vt to the flow rate Q and the rotor speed ω. 

 


