FLOWS IN STREAM TUBES

CONSERVATION LAWS IN INTEGRAL FORM

Conservation of Mass states that the time rate of change of
mass of a specific group of fluid particles in a flow is
zero. Conservation of Momentum states that the time rate of
change of momentum of a specific group must balance with the
net load acting on it. Conservation of Energy states that the
time rate of change of energy of a specific group must
balance with heat and work interactions of the group with its

surroundings. Mathematically one can write:

Conservation of Mass

D/Dt | p dv = Jop/ot av + [pwv.ndS = 0
v % s

Conservation of Momentum

/Dt | [pv] a&v = [ dlpvi/ot &V + [ [pv] v.n dS
Vv Vv S
= Jods + [ ob av
s v

Conservation of Energy

D/Dt | [pe] &V = [ dlpel/ot dv + | [pe] w.n dS
v v s

= - | q.n dS + [ v.o ds
S S



In these equations, V is fluid volume, S is fluid surface
area, t 1s time, n 1s outward wunit normal on S, v 1is
velocity, p is density, o denotes surface stresses such as
pressure and viscous traction, b denotes body forces such as

gravity, e is energy density and q denotes heat flux.

CONSERVATION LAWS IN STREAM TUBE FORM

Conservation of Mass for a stream tube is:

2[pCAloyr — 2[pCAlw = 0
In this equation, p is density, C is flow speed and A is pipe

area. Letting pCA equal M allows one to rewrite mass as

ZMOUT_ZMIN:O ZMOUTZZMIN

Conservation of Momentum for a stream tube is:

2 [pvCAlour — 2[PVCA] 1y

= - X[PAn]oyr — 2X[PAn]y + R

Expansion gives

2 [MUlour - 2 MUl = - ZPAnx + Ry
> [MV]OUT -2 [MV]IN = - 2PAn, + R,

2 [MWloyr — 2 [MW]ry = - XPAn, + R,



In these equations, P 1is pressure, U V W are velocity

components and R is the wall force on the fluid.
Conservation of Energy for a stream tube is

> M (C%/2 + gz)lour - X [M(C?/2 + gz)lm =

- 2[PACloyr + XI[PACliy + > - 31

Manipulation gives

> [Mgh]OUT -2 [Mgh]m = + ZT. - Zi

where h is known as head and is given by

h = C*/2g + P/pg + z

It represents each energy as an equivalent height of fluid.

One can represent shaft power and lost power as

The head loss is given by

h; = (fL/D +XK) C?/2g

where f is pipe friction factor, L is pipe length, D is pipe
diameter and K accounts for losses at constrictions such as

bends. The Moody Diagram gives f as a function of Reynolds

Number Re=CD/v and pipe relative roughness g=e/D.
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BERNOULLI EQUATION

When there is no shaft work and friction is insignificant,
conservation of energy for a stream tube shows that hgyr is

equal to hiy, which implies that h is constant:

c?’/2g + P/pg + z = K

This equation is known as the Bernoulli Equation. It can also
be derived from conservation of momentum. For a short stream

tube, a force balance gives:

p DC/Dt = p (0C/ot + CoC/0s) = - OP/Os - pg 0z/0s

For steady flow this becomes

p cdC/ds = p d[Cc?/2]/ds = - dP/ds - pg dz/ds

Integration of this gives the Bernoulli equation:

c?/2 + P/p + gz = K

This equation shows that, when pressure goes down 1in a
flow, speed goes up and visa versa. From an energy
perspective, flow work causes the speed changes. From a

momentum perspective, it is due to pressure forces.



SYSTEM DEMAND

For a system where a pipe connects two reservoirs, the head H

versus flow Q system demand equation has the form:

H=X+Y 0°

X = A [P/pg + z] Y = [fL/D + ZK]/[2gA®]

X accounts for pressure and height changes between the

reservoirs and Y accounts for losses along the pipe.

PUMP SELECTION

To pick a pump, one first calculates the specific speed N
based on the system operating point. This is a nondimensional

number which does not have pump size in it:

N = [N o]/ [H]

This allows one to pick the appropriate type of pump. Axial
pumps have high Q but low H which gives them high M. Radial

pumps have lower Q but higher H which gives them lower WN.
Positive Displacement pumps have the lowest Q but highest H
which gives them the lowest INI. Next one scans pump catalogs
of the type indicated by specific speed and picks the size of
pump that will meet the system demand, while it is operating
at its best efficiency point (BEP) or best operating point
(BOP) . Finally, to prevent cavitation, the pump is located in
the system at a point where it has the Net Positive Suction

Head or NPSH recommended by the manufacturer:
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NPSH = Ps/pg + CsCs/2g9 - Py/pg

In this equation, P, 1is the absolute wvapor pressure of the
fluid being pumped, and Ps and Cs; are the absolute pressure
and speed at the pump inlet. For a system where a pipe
connects a low reservoir to a high reservoir, conservation of

energy from the low reservoir to the pump inlet gives:

P./pg - [Ps/pg + CsCs/2g + d] = hg

where P, is the absolute pressure of the air above the low
reservoir and d is the height of the pump above the surface

of the low reservoir. Manipulation gives

d = (P,-Py)/pg - hy - NPSH

This shows that d might have to be negative.

ELECTRICAL ANALOGY

Electrical power P is V I where V is volts and I 1is current.
By analogy, fluid power P is P Q where P is pressure and Q is
volumetric flow rate. Note that power is force F times speed
C. In a flow, force F is pressure P times area A. So power is
P times A times C. Now volumetric flow rate Q is C times A.
So power becomes P times Q. One can write pressure P in terms

of head H as: P=pgH. Power becomes: P=pgHQ. Voltage drop

along a wire is AV=RI where R is the resistance of the wire.

By analogy, the pressure drop along a pipe due to losses 1is

AP=RQ’ where R is the resistance of the pipe.



PRESSURE ITERATION METHOD FOR PIPE NETWORKS

In the pressure iteration method, one would first assume
pressure at each node in the network where it is not known.
Then for each node one would assume pressures at the
surrounding nodes to be fixed. Next for each pipe connected
to the node one Dbalances head loss with pressure/gravity
head: here pumps are treated as negative head losses while
turbines are treated as positive head losses. This allows us
to calculate the flow in each pipe and its direction. One
then calculates the sum of the flows into the node treating
flows in as positive and flows out as negative. If the 20>0
then the node acts like a sink and the pressure there is too
low and must be increased a bit. If the X20<0 then the node
acts like a source and the pressure there is too high and
must be lowered a bit. Each node in the network is treated
the same way. One sweeps through the network nodes again and

again until the X2Q for each node is approximately zero.

FLOW ITERATION METHOD FOR PIPE NETWORKS

In the flow iteration method, one assumes a distribution of

flow which satisfies 20=0 at each node in the network. The

flow iteration method modifies flows throughout the network

in a way which maintains X0=0 at each node. In the method one
identifies pipe loops in the network. Then for each loop one
calculates the sum of the head losses as one moves around it
in a clockwise sense. If flow in a pipe 1is clockwise head
loss is taken to be positive whereas if flow is

counterclockwise head loss is taken to be negative. For a



loop if the Zh;>0 then there is too much clockwise flow: so
flows must be reduced a bit 1in a clockwise sense. This

decreases clockwise flows and 1increases counterclockwise

flows. If the Zh;<0 then there is not enough clockwise flow:
so flows must be increased a bit in a clockwise sense. This
increases clockwise flows and decreases counterclockwise
flows. Each loop in the network is treated the same way. One

sweeps through the network loops again and again until the

2h; for each loop is approximately zero. Special pseudo loops

are used to connect reservoirs.

TURBOMACHINES

Swirl 1is the only component of fluid velocity that has a
moment arm around the axis of rotation or shaft of a
turbomachine. Because of this, it is the only one that can

contribute to shaft power. The shaft power equation is:

P=A [T w] = A [pQ Vr R w]

The swirl or tangential component of fluid velocity is V.
The symbol A indicates we are looking at changes from inlet
to outlet. The tangential momentum at an inlet or an outlet
is pQ Vi¢. Multiplying momentum by moment arm R gives the
torque T. Multiplying torque by the speed w gives the power
P. The power equation is good for pumps and turbines. Power
is absorbed at an inlet and expelled at an outlet. If the
outlet power 1is greater than the inlet power, then the
machine is a pump. If the outlet power is less than the inlet
power, then the machine is a turbine. Geometry can be used to

connect V¢ to the flow rate Q and the rotor speed w.



