
FLOWS IN STREAM TUBES 

 

 

CONSERVATION LAWS IN INTEGRAL FORM 

 

Conservation of Mass states that the time rate of change of 

mass of a specific group of fluid particles in a flow is 

zero. Conservation of Momentum states that the time rate of 

change of momentum of a specific group must balance with the 

net load acting on it. Conservation of Energy states that the 

time rate of change of energy of a specific group must 

balance with heat and work interactions of the group with its 

surroundings. Mathematically one can write: 

 

Conservation of Mass 

 

D/Dt  ρ dV    =    ρ/t dV  +   ρ v.n dS   =  0 

        V             V              S  

 

  

Conservation of Momentum                                               

D/Dt  [ρv] dV   =    [ρv]/t dV  +   [ρv] v.n dS 

          V               V                 S 

 

                                                

=    σ dS     +     ρb dV 

                      S               V    

   

Conservation of Energy 

 

D/Dt  [ρe] dV   =    [ρe]/t dV  +   [ρe] v.n dS 

          V                V                 S 

 

=   -  q.n dS  +   v.σ dS 

                        S            S              

 



 

In these equations, V is fluid volume, S is fluid surface 

area, t is time, n is outward unit normal on S, v is 

velocity, ρ is density, σ denotes surface stresses such as 

pressure and viscous traction, b denotes body forces such as 

gravity, e is energy density and q denotes heat flux. 

 

 

CONSERVATION LAWS IN STREAM TUBE FORM 

       

Conservation of Mass for a stream tube is: 

 

[ρCA]OUT - [ρCA]IN = 0        

 

In this equation, ρ is density, C is flow speed and A is pipe 

area. Letting ρCA equal M
. 

allows one to rewrite mass as 

 

 M
.

OUT -  M
.

IN = 0     M
.

OUT =  M
.

IN         

    

 

Conservation of Momentum for a stream tube is:                                              

  

[ρvCA]OUT - [ρvCA]IN  

 

= - [PAn]OUT - [PAn]IN + R 

 

Expansion gives 

 [M
.
U]OUT -  [M

.
U]IN = - PAnx + Rx  

 [M
.
V]OUT -  [M

.
V]IN = - PAny + Ry    

 [M
.
W]OUT -  [M

.
W]IN = - PAnz + Rz 



In these equations, P is pressure, U V W are velocity 

components and R is the wall force on the fluid. 

 

Conservation of Energy for a stream tube is 

 [M
.
(C

2
/2 + gz)]OUT -  [M

.
(C

2
/2 + gz)]IN =   

- [PAC]OUT  +  [PAC]IN  +  T
. 

- L
.
 

 

Manipulation gives 

 [M
.
gh]OUT -  [M

.
gh]IN =  +  T

. 
- L
.
 

 

where h is known as head and is given by  

h = C
2
/2g + P/ρg + z      

 

It represents each energy as an equivalent height of fluid. 

One can represent shaft power and lost power as 

T
. 

= M
.
ghT       L

. 
= M
.
ghL 

 

The head loss is given by 

 

hL = (fL/D +K) C
2
/2g 

 

where f is pipe friction factor, L is pipe length, D is pipe 

diameter and K accounts for losses at constrictions such as 

bends. The Moody Diagram gives f as a function of Reynolds 

Number Re=CD/ and pipe relative roughness =e/D. 



 

 

 



 

 

BERNOULLI EQUATION 

 

When there is no shaft work and friction is insignificant, 

conservation of energy for a stream tube shows that hOUT is 

equal to hIN, which implies that h is constant: 

 

C
2
/2g + P/ρg + z  =  K 

 

This equation is known as the Bernoulli Equation. It can also 

be derived from conservation of momentum. For a short stream 

tube, a force balance gives: 

 

 DC/Dt  =   (C/t + CC/s)  =  - P/s  -  g z/s 

 

For steady flow this becomes 

 

 CdC/ds  =  d[C2/2]/ds  = - dP/ds  -  g dz/ds 

 

Integration of this gives the Bernoulli equation: 

 

C
2
/2   +  P/  +   gz   =     

 

This equation shows that, when pressure goes down in a 

flow, speed goes up and visa versa. From an energy 

perspective, flow work causes the speed changes. From a 

momentum perspective, it is due to pressure forces. 

 

 

 

 



SYSTEM DEMAND 

 

For a system where a pipe connects two reservoirs, the head H 

versus flow Q system demand equation has the form: 

 

H = X + Y Q
2
         

 

X = Δ [P/ρg + z]   Y = [fL/D + K]/[2gA2] 

 

X accounts for pressure and height changes between the 

reservoirs and Y accounts for losses along the pipe.  

 

 

PUMP SELECTION 

 

To pick a pump, one first calculates the specific speed N 

based on the system operating point. This is a nondimensional 

number which does not have pump size in it:   

 

                    N   =  [N Q]/[H3/4] 

 

This allows one to pick the appropriate type of pump. Axial 

pumps have high Q but low H which gives them high N. Radial 

pumps have lower Q but higher H which gives them lower N. 

Positive Displacement pumps have the lowest Q but highest H 

which gives them the lowest N. Next one scans pump catalogs 

of the type indicated by specific speed and picks the size of 

pump that will meet the system demand, while it is operating 

at its best efficiency point (BEP) or best operating point 

(BOP). Finally, to prevent cavitation, the pump is located in 

the system at a point where it has the Net Positive Suction 

Head or NPSH recommended by the manufacturer: 



 

 

 

 



NPSH = Ps/ρg + CsCs/2g - Pv/ρg 

 

In this equation, Pv is the absolute vapor pressure of the 

fluid being pumped, and Ps and Cs are the absolute pressure 

and speed at the pump inlet. For a system where a pipe 

connects a low reservoir to a high reservoir, conservation of 

energy from the low reservoir to the pump inlet gives:  

 

Po/ρg  -  [Ps/ρg + CsCs/2g + d]  =  hL 

 

where Po is the absolute pressure of the air above the low 

reservoir and d is the height of the pump above the surface 

of the low reservoir. Manipulation gives 

 

d  =  (Po-Pv)/ρg  -  hL  –  NPSH 

 

This shows that d might have to be negative. 

 

 

ELECTRICAL ANALOGY  

 

Electrical power P is V I where V is volts and I is current. 

By analogy, fluid power P is P Q where P is pressure and Q is 

volumetric flow rate. Note that power is force F times speed 

C. In a flow, force F is pressure P times area A. So power is 

P times A times C. Now volumetric flow rate Q is C times A. 

So power becomes P times Q. One can write pressure P in terms 

of head H as: P=ρgH. Power becomes: P=ρgHQ. Voltage drop 

along a wire is V=RI where R is the resistance of the wire. 

By analogy, the pressure drop along a pipe due to losses is 

P=RQ2 where R is the resistance of the pipe. 

 



 

PRESSURE ITERATION METHOD FOR PIPE NETWORKS 

 

In the pressure iteration method, one would first assume 

pressure at each node in the network where it is not known. 

Then for each node one would assume pressures at the 

surrounding nodes to be fixed. Next for each pipe connected 

to the node one balances head loss with pressure/gravity 

head: here pumps are treated as negative head losses while 

turbines are treated as positive head losses. This allows us 

to calculate the flow in each pipe and its direction. One 

then calculates the sum of the flows into the node treating 

flows in as positive and flows out as negative. If the Q>0 

then the node acts like a sink and the pressure there is too 

low and must be increased a bit. If the Q<0 then the node 

acts like a source and the pressure there is too high and 

must be lowered a bit. Each node in the network is treated 

the same way. One sweeps through the network nodes again and 

again until the Q for each node is approximately zero.  

 

 

FLOW ITERATION METHOD FOR PIPE NETWORKS 

 

In the flow iteration method, one assumes a distribution of 

flow which satisfies Q=0 at each node in the network. The 

flow iteration method modifies flows throughout the network 

in a way which maintains Q=0 at each node. In the method one 

identifies pipe loops in the network. Then for each loop one 

calculates the sum of the head losses as one moves around it 

in a clockwise sense. If flow in a pipe is clockwise head 

loss is taken to be positive whereas if flow is 

counterclockwise head loss is taken to be negative. For a 



loop if the hL>0 then there is too much clockwise flow: so 

flows must be reduced a bit in a clockwise sense. This 

decreases clockwise flows and increases counterclockwise 

flows. If the hL<0 then there is not enough clockwise flow: 

so flows must be increased a bit in a clockwise sense. This 

increases clockwise flows and decreases counterclockwise 

flows. Each loop in the network is treated the same way. One 

sweeps through the network loops again and again until the 

hL for each loop is approximately zero. Special pseudo loops 

are used to connect reservoirs.     

     

 

TURBOMACHINES 

 

Swirl is the only component of fluid velocity that has a 

moment arm around the axis of rotation or shaft of a 

turbomachine. Because of this, it is the only one that can 

contribute to shaft power. The shaft power equation is:  

 

P = Δ [T ω] = Δ [ρQ Vt R ω] 

 

The swirl or tangential component of fluid velocity is Vt. 

The symbol Δ indicates we are looking at changes from inlet 

to outlet. The tangential momentum at an inlet or an outlet 

is ρQ Vt. Multiplying momentum by moment arm R gives the 

torque T. Multiplying torque by the speed ω gives the power 

P. The power equation is good for pumps and turbines. Power 

is absorbed at an inlet and expelled at an outlet. If the 

outlet power is greater than the inlet power, then the 

machine is a pump. If the outlet power is less than the inlet 

power, then the machine is a turbine. Geometry can be used to 

connect Vt to the flow rate Q and the rotor speed ω. 


