POTENTIAL FLOWS

The theory of 1lifting bodies such as foils and wings
is based on potential or ideal flow theory. This in
turn 1is based on two major assumptions. First, the
fluid is taken to be inviscid, which means it has =zero
viscosity. Second, the fluid motion 1is taken to be
irrotational, which means each fluid particle does not
spin on its own internal axis. Particles move through
space like the carts on a Ferris Wheel. The fluid is
said to be ideal. It can be compressible or
incompressible. For hydrodynamic flows, the fluid can

be taken to be incompressible.

When a body moves at steady speed through an ideal
fluid, theory shows that the net load acting on the
body 1is =zero. This includes bodies that 1in reality
have 1lift and drag forces acting on them. This 1is
known as D'Alemberts Paradox. So it appears that ideal

fluid theory is of little practical wvalue.

Ideal fluid theory predicts that for a body shaped
like a foil the fluid is able to turn the sharp corner
at the trailing edge and move back over the top of the
foil to join with fluid that moved around the leading
edge and over the top. The two bits of fluid would

pass through two stagnation or =zero velocity points:



one on the bottom and one on the top. In reality, the
fluid cannot turn the sharp corner at the rear. The
fluid  has to undergo infinite deceleration and
acceleration to turn such a corner. Associated with
this is an infinite suction pressure. As a real fluid
tries to moves away from this into a higher pressure
region on top of the foil, it moves inside a boundary
layer. Within it, energy is taken from the fluid by
viscous drag forces. The low to high pressure is known
as an adverse pressure gradient. It turns out that
fluid in a boundary layer would not be able to move
into such a strong gradient and would be stopped at
the trailing edge. The fluid is said to separate. The
trailing edge Dbecomes a stagnation ©point and a
separation point. The fluid can be seen to leave the
trailing edge smoothly. It turns out that the loads on
the foil in this case are not =zero. Note that this
happens because of the behavior of a boundary layer,
which 1s a mainly wviscous phenomenon. This suggests
that without wviscosity wings would not work and

present day airplanes would not be able to fly!

One can use a potential vortex to force the ideal flow
over a foil to mimic a real flow. The vortex drags the
stagnation point normally on top of the foil back to
the trailing edge. When this is done, loads are no
longer =zero. A fundamental theorem of potential flow
theory i1s that the net circulation or rotation in the
flow must be constant. For a foil which started from
rest, this would be zero. When a foil starts to move,
a circulation is set up to make the flow leave the

trailing edge smoothly. Theory suggests that an equal



amount 1in opposite direction must be shed in a vortex
sheet to keep the net circulation zero. Every time the
circulation changes around the foil a vortex must be
shed. These vortices are carried back from the foil by
the flow. Each causes an upwash or a downwash on the
foil depending on how it is rotating: its effect gets

smaller as it is carried downstream by the flow.

Unsteady foil theory tries to account for the shed
vortices. For certain special motions, such as a foil
undergoing pure heave or pure rotation, analytical
solutions have been developed. An analytical solution
also exists for a foil moving at a steady speed
through a sinusoidal gust. For foils with arbitrary
motions, analytical solutions are impossible. For such

cases, one must resort to numerical methods.

Probably the biggest effect of foil motion is it
changes the apparent angle of attack of the foil. A
heaving and pitching foil creates a flow onto itself.
It also <creates shed wvortices. Load is always
perpendicular to the apparent angle of attack so it
can lean forward or backward. If it leans backward, it
gives rise to a drag on the foil, whereas if it leans

forward, it gives rise to a thrust on the foil.

An important parameter for oscillating foils is the
ratio of the fluid transit time T divided by the
oscillation period T. The transit time T is the speed
of the flow S divided into the chord C. It gives a
measure of how fast flow over a foil sets up. Common

sense would suggest that if the time parameter is much



less than wunity then the flow should behave as a
steady flow whereas 1if it 1s much greater than unity
the flow would be very unsteady. In the literature,

the time parameter is known as the Strouhal Number.

Vortices can only end at a wall or form loops. For
steady flow over a wing, horseshoe shaped vortices are
shed along the span of the wing because circulation
varies along the span. These vortices are strongest at
the tips of the wing. They are carried downstream by
the passing stream. If there was no viscosity, the
vortices would complete a loop back where the wing
first began to move. However, they are dissipated by
friction Dbefore they <can do this. The horseshoe
vortices create an upwash or downwash depending on
which way they are rotating, and this changes the
angle of attack of the wing along its span. This in
turn changes the 1lift and drag of the wing. The
strength of the horseshoe vortices 1is determined by
the circulation on the wing, which depends on the
geometry of the wing and its speed. Details of this

are beyond the scope of this note.

Potential or ideal flows around bodies are usually
obtained Dby superposition of certain basic or
elemental flows. Superposition produces in the flow a
stream surface that separates inner and outer flows.
The stream surface mimics a thin shell body in the
flow that deflects inner and outer flows. We are
usually interested in the outer flow. The most
elemental flow is a stream. This is usually uniform,

meaning that all fluid particles are moving in the



same direction at the same speed. Another elemental
flow is a source. Here all fluid particles are moving
outwards from a center. The center is a line in 2D and
a point in 3D. At the center the fluid is moving at
infinite speed! The inverse of a source 1is a sink.
Here all fluid particles are moving inwards to a
center. Superposition of a strong source and a strong
sink of equal strength very close together produces
the elemental flow known as a doublet. The final
elemental flow is known as a potential vortex. Here
all fluid particles are moving along circular
streamlines. The speed of the particles 1is inversely
proportional to the streamline radius, so particles at
the center of the vortex move at infinite speed!
Points in a flow where fluid particles are moving at
infinite speed are known as singularities. Such points

do not exist in reality!

Superposition of a 2D stream and a 2D doublet with a
potential vortex gives approximately the flow pattern
around a spinning cylinder. It turns out that the flow
around the cylinder can be mapped into flow around a

foil shape. The 1lift on the foil per unit span is

pI's

where S 1s the stream speed, I' is the vortex strength
or circulation and p is the fluid density. Note that

lift is zero when the vortex strength is zero.



Joukowsky foils are obtained by mapping a circle into

a foil shape using the mapping function

o = x + [xa’/ (x*+y?)]

B =y - [ya”/ (x*+y")]
Geometry gives
x =X - n y =Y +m
X = - R CosY Y = + R SinY
a = V[R*-m?] - n
where R 1s circle radius. The offsets n and m

determine the shape of the foil. Some Joukowsky foils

are shown on the next few pages.

To make the flow look realistic around a foil, the
trailing edge must be a stagnation point. It turns out
that the point where the x axis hits the circle in the
circle plane maps to the trailing edge of the foil in
the foil plane, and this point is a stagnation point
in both planes. Setting the speed to zero there in the

circle plane shows that the circulation must be:

I'= 4nSR Sink

1

K= O+ ¢ € = tan [m/ (n+a) ]
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