
 

 

 

 

POTENTIAL FLOWS 

 

 

The theory of lifting bodies such as foils and wings 

is based on potential or ideal flow theory. This in 

turn is based on two major assumptions. First, the 

fluid is taken to be inviscid, which means it has zero 

viscosity. Second, the fluid motion is taken to be 

irrotational, which means each fluid particle does not 

spin on its own internal axis. Particles move through 

space like the carts on a Ferris Wheel. The fluid is 

said to be ideal. It can be compressible or 

incompressible. For hydrodynamic flows, the fluid can 

be taken to be incompressible. 

 

When a body moves at steady speed through an ideal 

fluid, theory shows that the net load acting on the 

body is zero. This includes bodies that in reality 

have lift and drag forces acting on them. This is 

known as D'Alemberts Paradox. So it appears that ideal 

fluid theory is of little practical value.  

 

Ideal fluid theory predicts that for a body shaped 

like a foil the fluid is able to turn the sharp corner 

at the trailing edge and move back over the top of the 

foil to join with fluid that moved around the leading 

edge and over the top. The two bits of fluid would 

pass through two stagnation or zero velocity points: 



one on the bottom and one on the top. In reality, the 

fluid cannot turn the sharp corner at the rear. The 

fluid has to undergo infinite deceleration and 

acceleration to turn such a corner. Associated with 

this is an infinite suction pressure. As a real fluid 

tries to moves away from this into a higher pressure 

region on top of the foil, it moves inside a boundary 

layer. Within it, energy is taken from the fluid by 

viscous drag forces. The low to high pressure is known 

as an adverse pressure gradient. It turns out that 

fluid in a boundary layer would not be able to move 

into such a strong gradient and would be stopped at 

the trailing edge. The fluid is said to separate. The 

trailing edge becomes a stagnation point and a 

separation point. The fluid can be seen to leave the 

trailing edge smoothly. It turns out that the loads on 

the foil in this case are not zero. Note that this 

happens because of the behavior of a boundary layer, 

which is a mainly viscous phenomenon. This suggests 

that without viscosity wings would not work and 

present day airplanes would not be able to fly! 

 

One can use a potential vortex to force the ideal flow 

over a foil to mimic a real flow. The vortex drags the 

stagnation point normally on top of the foil back to 

the trailing edge. When this is done, loads are no 

longer zero. A fundamental theorem of potential flow 

theory is that the net circulation or rotation in the 

flow must be constant. For a foil which started from 

rest, this would be zero. When a foil starts to move, 

a circulation is set up to make the flow leave the 

trailing edge smoothly. Theory suggests that an equal 



amount in opposite direction must be shed in a vortex 

sheet to keep the net circulation zero. Every time the 

circulation changes around the foil a vortex must be 

shed. These vortices are carried back from the foil by 

the flow. Each causes an upwash or a downwash on the 

foil depending on how it is rotating: its effect gets 

smaller as it is carried downstream by the flow.  

 

Unsteady foil theory tries to account for the shed 

vortices. For certain special motions, such as a foil 

undergoing pure heave or pure rotation, analytical 

solutions have been developed. An analytical solution 

also exists for a foil moving at a steady speed 

through a sinusoidal gust. For foils with arbitrary 

motions, analytical solutions are impossible. For such 

cases, one must resort to numerical methods.  

 

Probably the biggest effect of foil motion is it 

changes the apparent angle of attack of the foil. A 

heaving and pitching foil creates a flow onto itself. 

It also creates shed vortices. Load is always 

perpendicular to the apparent angle of attack so it 

can lean forward or backward. If it leans backward, it 

gives rise to a drag on the foil, whereas if it leans 

forward, it gives rise to a thrust on the foil.     

 

An important parameter for oscillating foils is the 

ratio of the fluid transit time T divided by the 

oscillation period T. The transit time T is the speed 

of the flow S divided into the chord C. It gives a 

measure of how fast flow over a foil sets up. Common 

sense would suggest that if the time parameter is much 



less than unity then the flow should behave as a 

steady flow whereas if it is much greater than unity 

the flow would be very unsteady. In the literature, 

the time parameter is known as the Strouhal Number.  

 

Vortices can only end at a wall or form loops. For 

steady flow over a wing, horseshoe shaped vortices are 

shed along the span of the wing because circulation 

varies along the span. These vortices are strongest at 

the tips of the wing. They are carried downstream by 

the passing stream. If there was no viscosity, the 

vortices would complete a loop back where the wing 

first began to move. However, they are dissipated by 

friction before they can do this. The horseshoe 

vortices create an upwash or downwash depending on 

which way they are rotating, and this changes the 

angle of attack of the wing along its span. This in 

turn changes the lift and drag of the wing. The 

strength of the horseshoe vortices is determined by 

the circulation on the wing, which depends on the 

geometry of the wing and its speed. Details of this 

are beyond the scope of this note. 

 

Potential or ideal flows around bodies are usually 

obtained by superposition of certain basic or 

elemental flows. Superposition produces in the flow a 

stream surface that separates inner and outer flows. 

The stream surface mimics a thin shell body in the 

flow that deflects inner and outer flows. We are 

usually interested in the outer flow. The most 

elemental flow is a stream. This is usually uniform, 

meaning that all fluid particles are moving in the 



same direction at the same speed. Another elemental 

flow is a source. Here all fluid particles are moving 

outwards from a center. The center is a line in 2D and 

a point in 3D. At the center the fluid is moving at 

infinite speed! The inverse of a source is a sink. 

Here all fluid particles are moving inwards to a 

center. Superposition of a strong source and a strong 

sink of equal strength very close together produces 

the elemental flow known as a doublet. The final 

elemental flow is known as a potential vortex. Here 

all fluid particles are moving along circular 

streamlines. The speed of the particles is inversely 

proportional to the streamline radius, so particles at 

the center of the vortex move at infinite speed! 

Points in a flow where fluid particles are moving at 

infinite speed are known as singularities. Such points 

do not exist in reality!    

 

Superposition of a 2D stream and a 2D doublet with a 

potential vortex gives approximately the flow pattern 

around a spinning cylinder. It turns out that the flow 

around the cylinder can be mapped into flow around a 

foil shape. The lift on the foil per unit span is 

 

ρΓS 

 

where S is the stream speed, Γ is the vortex strength 

or circulation and ρ is the fluid density. Note that 

lift is zero when the vortex strength is zero.  

 

 

 



 

Joukowsky foils are obtained by mapping a circle into 

a foil shape using the mapping function 

 

α = x + [xa2/(x2+y2)]    

   

β = y – [ya2/(x2+y2)] 

 

Geometry gives 

 

x = X – n      y = Y + m  

 X = - R Cos      Y = + R Sin       

a = [R2-m2] - n      

 

where R is circle radius. The offsets n and m 

determine the shape of the foil. Some Joukowsky foils 

are shown on the next few pages.  

 

To make the flow look realistic around a foil, the 

trailing edge must be a stagnation point. It turns out 

that the point where the x axis hits the circle in the 

circle plane maps to the trailing edge of the foil in 

the foil plane, and this point is a stagnation point 

in both planes. Setting the speed to zero there in the 

circle plane shows that the circulation must be: 

 

Γ = 4πSR Sinκ 

 

κ = Θ + ε      ε = tan-1 [m/(n+a)] 

 

 

 



 

 

 

 







 

 


