

ENGINEERING 4020
MARINE FLUID DYNAMICS

QUIZ #1

The scaling laws for pump pressure, flow and power are:

$$C_P = P / [\rho N^2 D^2] \quad C_Q = Q / [ND^3] \quad C_P = P / [\rho N^3 D^5]$$

Outline briefly the derivation of these laws. Discuss briefly the implications of the laws for pump design. [20]

A 10m long pipe separates a pump and a water storage tank on a ship. The tank pressure is 5 BAR gage. The flow speed in the pipe is 0.5m/s. The wave speed for the pipe is 1000m/s. The density of water is 1000kg/m³. There is a valve just downstream of the pump. Describe what happens in the pipe when the valve is suddenly shut. Use P versus x and S versus x plots to illustrate your answer. [20]

Identify on the formula sheet the critical speed equation for each of the following: (1) vortex shedding resonance (2) galloping instability (3) tube bundle vibration (4) pipe flow buckling (5) pipe flow whip (6) panel flutter. Write brief notes on the flows in each case. [40]

Identify on the formula sheet the equations governing turbulent hydrodynamic flows. Describe briefly how these equations can be solved using CFD and time stepping. [20]

$$C_P = P / [\rho N^2 D^2] \quad C_Q = Q / [ND^3] \quad C_P = P / [\rho N^3 D^5]$$

$$C_P = P / [\rho S^3 / 2 A] \quad C_S = r \omega / S$$

$$C_D = D / [[\rho S^2 / 2] A] \quad Re = SD / \nu \quad Fr = S / \sqrt{gL}$$

$$T = D/S \quad C_T = \mathbf{T}/T \quad St = T/\mathbf{T}$$

$$S^2 = [EI / [\rho A] \pi^2 / L^2 + T / [\rho A] - P / \rho]$$

$$S = [4 + 14 M_o / M] S_o$$

$$S_o = \sqrt{[EI] / [M_o L^2]} \quad M_o = \rho A$$

$$|\Delta P| = \rho a |\Delta S| \quad a = \sqrt{[K / \rho]}$$

$$K = K / [1 + [DK] / [Ee]]$$

$$S^2 = [Tk^2 + Dk^4 + K/w + \rho_B g - \rho_T g] * \\ [\rho_T / k + \rho_B / k + \sigma] / [\rho_B \rho_T + \sigma \rho_T k]$$

$$S = S_o M / M_o \zeta a \quad S_o = D / \mathbf{T} \quad M_o = \rho D^2$$

$$S = \beta / \mathbf{T} \sqrt{[M \delta / \rho]} = \beta S_o \sqrt{[\delta M / M_o]}$$

$$S = D / [\mathbf{ST}] \quad \mathbf{T} = \mathbf{T}$$

$$\mathbf{T}_n = [2L/n] \sqrt{[m/T]}$$

$$\mathbf{T}_n = [L/n]^2 [2/\pi] \sqrt{[m/EI]}$$

$$\mathbf{T}_n = 2\pi L^2 / K_n \sqrt{[m/EI]}$$

$$\rho (\partial U/\partial t + U\partial U/\partial x + V\partial U/\partial y + W\partial U/\partial z) + A = -\partial P/\partial x$$

$$+ [\partial/\partial x (\mu \partial U/\partial x) + \partial/\partial y (\mu \partial U/\partial y) + \partial/\partial z (\mu \partial U/\partial z)]$$

$$\rho (\partial V/\partial t + U\partial V/\partial x + V\partial V/\partial y + W\partial V/\partial z) + B = -\partial P/\partial y$$

$$+ [\partial/\partial x (\mu \partial V/\partial x) + \partial/\partial y (\mu \partial V/\partial y) + \partial/\partial z (\mu \partial V/\partial z)]$$

$$\rho (\partial W/\partial t + U\partial W/\partial x + V\partial W/\partial y + W\partial W/\partial z) + C = -\partial P/\partial z - \rho g$$

$$+ [\partial/\partial x (\mu \partial W/\partial x) + \partial/\partial y (\mu \partial W/\partial y) + \partial/\partial z (\mu \partial W/\partial z)]$$

$$\partial P/\partial t + \rho c^2 (\partial U/\partial x + \partial V/\partial y + \partial W/\partial z) = 0$$

$$\partial F/\partial t + U\partial F/\partial x + V\partial F/\partial y + W\partial F/\partial z = 0$$

$$\partial k/\partial t + U\partial k/\partial x + V\partial k/\partial y + W\partial k/\partial z = T_p - T_d$$

$$+ [\partial/\partial x (\mu/a \partial k/\partial x) + \partial/\partial y (\mu/a \partial k/\partial y) + \partial/\partial z (\mu/a \partial k/\partial z)]$$

$$\partial \epsilon/\partial t + U\partial \epsilon/\partial x + V\partial \epsilon/\partial y + W\partial \epsilon/\partial z = D_p - D_d$$

$$+ [\partial/\partial x (\mu/b \partial \epsilon/\partial x) + \partial/\partial y (\mu/b \partial \epsilon/\partial y) + \partial/\partial z (\mu/b \partial \epsilon/\partial z)]$$

$$\partial M/\partial t = N \quad M_{\text{NEW}} = M_{\text{OLD}} + \Delta t \ N_{\text{OLD}}$$

$$T_p = G \mu_t / \rho \quad D_p = T_p C_1 \epsilon / k$$

$$T_d = C_d \epsilon \quad D_d = C_2 \epsilon^2 / k$$

$$\mu_t = C_3 k^2 / \epsilon \quad \mu = \mu_t + \mu_1$$