FLUID STRUCTURE INTERACTIONS

PREAMBLE

There are two types of vibrations: resonance and instability.
Resonance occurs when a structure is excited at a natural
frequency. When damping 1is 1low, the structure i1is able to
absorb energy each oscillation cycle and dangerous amplitudes
can build up. There are two types of instability: static and
dynamic. Static instability occurs when a negative fluid
stiffness overcomes a positive structural stiffness. Usually,
because of nonlinearity, this instability 1is oscillatory:
oscillations are often referred to as relaxation
oscillations. Examples are wing stall flutter and gate wvalve
vibration. Dynamic instability occurs when a negative fluid
damping overcomes a positive structural damping. Examples
include galloping of slender structures and tube bundle
vibrations. In many cases, a System oscillates at a
structural natural frequency. In these cases, frequency is a
parameter 1in a semi empirical critical speed equation.
Natural frequencies depend on the inertia of the structure
and its stiffness. Usually the damping of the structure is
ignored. It usually has only a small influence on periods. If

the structure has a heavy fluid surrounding it, some of the



fluid mass must be considered part of the structure. The
structure appears more massive than it really is. For a
simple discrete mass stiffness system, there 1s only one
natural period. For distributed mass/stiffness systems, like
wires and beams, there are an infinite number of natural
periods. For each period, there is a mode shape. This shows
the level of vibration at points along the structure.
In some cases, the fluid structure interaction is so complex
that vibration frequencies depend on both the structure and
the fluid. Examples include flutter of wings and panels and

pipe whip due to internal flow.

VORTEX SHEDDING PHEMOMENA
When vortices are being shed from a cylinder in an asymmetric
pattern, they induce a lateral oscillatory load on the
cylinder. When the vortex shedding frequency is close to a
natural frequency of the cylinder, it causes it to oscillate
laterally. Once the cylinder begins to oscillate, it causes a
phenomenon known as lock in. The vortices shed at the natural
frequency of the cylinder. In other words, the cylinder
motion controls the vortex shedding. It also increases the
correlation length along the span. This means that vortex
shedding along the span occurs at the same time. This gives

rise to greater lateral loads. So, once shedding starts, it



quickly amplifies motion. The Strouhal Number gives the
vortex shedding frequency of the cylinder. Basically, this is
structure transit time T divided by the vortex shedding
period T. For a circular cylinder, the Strouhal Number is
around 0.2. This means that the vortex shedding period T is

approximately 5 times the diameter transit time T.

GALLOPING VIBRATIONS
Galloping is a dynamic instability of a structure in a flow.
It occurs when a positive damping load due to structural and
viscous phenomena i1s overcome by a negative damping load due
to flow. Only certain shapes gallop. When such a shape is
moving laterally in a flow, a very strong vortex forms on
one side of it which pulls it in that direction! The
structure moves until structural stiffness stops it. The
vortex disappears and the structure starts moving back the
other way. As it does so, the vortex appears on the other

side of the structure which pulls it the other way.

TUBE BUNDLE VIBRATIONS
There are three mechanisms that can cause tube bundles in a
flow to vibrate. One is known as the displacement mechanism.
As tubes move relative to each other, some passageways narrow
while others widen. Fluid speeds up in narrowed passageways

and slows down 1in widened passageways. Bernoulli shows that



in the narrowed passageways pressure decreases while in the
widened passageways it increases. Common sense would suggest
that if tube stiffness and damping are low, at some point as
flow increases, tubes must flutter or vibrate. Another
mechanism known as the velocity mechanism is based on the
idea that, when a tube is moving, the fluid force on it due
its motion lags behind the motion because the upstream flow
which influences the force needs time to redistribute. This
time lag introduces a negative damping which can overcome the
positive damping due to structural and viscous phenomena. The
time lag i1s roughly the tube spacing divided by the flow
speed within the bundle. Details of this model are beyond the
scope of this note. The third mechanism for tube vibration

involves vortex shedding and turbulence within the bundle.

CRITICAL SPEED EQUATIONS
For a slender structure, the Strouhal Number S 1is the
transit time T divided by the vortex shedding period T:
S=T/T. The transit time T is D/U. Solving for flow speed U

gives: U = D/[ST]. During resonance, T=T where T is the

structural period. So the critical flow speed is:

U = D/[ST]



For the lateral vibration of a slender structure known as

galloping, the critical flow speed U is
U="U, M/M, C @
where
U, = D/T M, = pD’

The factor (¢ accounts for damping: it is typically in the

range 0.01 to 0.1. The parameter a accounts for the shape
of the structure. For a square cross section structure a is

8 while for a circular cross section structure a is .

For tube bundle vibration, the critical flow speed is
U = B/T V[M3/p] U = pu. V[M/M,]

The factor O accounts for damping, and the parameter B
accounts for the bundle geometry. Typically & 1is in the

range 0.05 to 0.25 while B is in the range 2.5 to 6.0.



VIBRATION MODES OF SIMPLE WIRES AND BEAMS

The natural periods of a simple wire are:

T, = [2L/n] V[m/T]

where m is the mass per unit length of the wire, L 1is the
length of the wire and T is the tension in the wire. The

natural periods of a beam with pivot supports are:

T, = [L/n]? [2/n] V[m/EI]

where m is the mass per unit length of the beam, L is the
length of the beam, E is the Elastic Modulus of the beam
material and I 1s the second moment of area. The natural

periods of a beam with one or more clamped supports are:

T, = 2nL%/K, V[m/EI]

For a cantilever or clamped-free beam, the constants are:
Ki=3.52; K;=22.0; Ks=61.7; K4=120.9. For a clamped-clamped

beam, the constants are: Ki=22.4; K,=061.7; K3z=120.9; K4=199.09.



INSTABILITY OF VALVES

Valves exhibit two types of unstable behaviour. One type is
basically a static instability. It occurs when a positive
structural stiffness 1s overcome Dby a negative fluid
stiffness. It usually occurs when the wvalve is almost shut,
and there 1is a flow through a small gap. An oscillation
results because the negative fluid stiffness creates suction
forces that cause the valve to slam shut. This stops the flow
and allows pressure to build up. This allows the wvalve to
recover. Indoor faucets, such as that shown in the sketch on
the next page, are prone to such instability. Outdoor faucets
are prone to a completely different type of instability.
Whereas indoor faucets are prone to an axial, opening and
closing, type of instability, outdoor faucets are prone to a
lateral, back and forth, type of instability. Consider the
outdoor faucet shown page after next. When the valve stem is
moved laterally, say upward, a suction force 1s created
momentarily of the upward side of the wvalve. This tends to
move the wvalve even further upward. An oscillation develops
which is basically a dynamic instability. It is caused by a

time lag between valve motion and fluid reaction.
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PIPE INSTABILITIES DUE TO INTERNAL FLOW

For a pipe pivoted at Dboth ends, a static force balance
shows that centrifugal forces generated by internal fluid

motion can cause buckling when U is greater than

U? = [ [EI]/[pA] [w?/L%] + T/[pA] - P/p ]

where EI is the flexural rigidity of the pipe, L is the pipe
length, A is its cross sectional area, T is the tension in
the pipe and P is the internal gage pressure. For a pipe
clamped at one end and open and free at the other end, a
stability analysis shows that the pipe can undergo a flutter
like phenomenon known as pipe whip. The critical speed U can
be obtained from the sketch on the next page. A straight

line fit to the wavy curve there is

U= [4 + 14 M,/M] U,

Uo = V[EI]/ [M,L?] M, = pA
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PANEL FLUTTER

Consider a panel with a fluid on top and a fluid on the
bottom. Assume that both fluids extend to infinity. Assume
also that the panel is exposed to a horizontal flow on the
top. Waves in the panel extract energy from the passing
stream when the flow speed U is greater than:

U’ = [Tk?® + Dk* + K/w + psg - prg]

* [pr/k + ps/k + o] / [pspr + oprk]

The details of the analysis are Dbeyond the scope of this
note. In the critical speed equation, T is the tension in the
panel, D is the EI of the panel, K is the panel side support,
w is the width of the panel, ¢ is the panel sheet density or
mass per unit surface area, o 1is the fluid density, g 1is
gravity and k is 2n divided by the wavelength A. The code on
the next page calculates the critical speed for the panels on
a greenhouse. It gives the plot of critical speed versus

wavelength shown on the page after next.



% PANEL FLUTTER CN GREENHOUSE
% KELVIN HELMHOLTZ MECHANIGM

COUNT=250;

PI=3.14159; GRAVITY=9.31;

ABOVE=1.0; BELOW=1.0:

AHEET=0.25; TENaICON=10.0;
RIGIDITY=10.0;30PFORT=10000.0;
CHANGE=0.1; NUMBER=0.5;

for 3TEP=1:COUNT

SPEED={ (TENIION*NUMBER"Z24+RIGIDITY* ...
NUMBER" 4+3UPPORT+GRAVITY * (BELCW-ABOVE) )

* [ (ABOVE4+BELOW) /NUMBER+SHEET) / (BELOW® ..,

ABOVE+3HEET*AECVE*NUMEER) ) ~0. 5;
NUMEER=NUMEER+CHLNGE
WAVE (STEP)=Z.0*PI/NUMEER;
WIND (STEP)=SPEED;
end
plot (WAVE, WIND)
xlahel ('vave length')
vlabel{'critical speed')
title('green house panel flutter')






DIVERGENCE AND FLUTTER OF LIFTING BODIES

For marine applications, lifting bodies include fins, rudders
and propellers. Flutter is a dynamic instability of a lifting
body. When it occurs, the heave and pitch motions of the body
are 90° out of phase. The passing stream does work on the
body over an oscillation cycle. Divergence 1is a static
instability. It occurs when the pitch moment due to fluid
dynamics overcomes the moment due to the structural pitch
stiffness of the body. The sketch on the next page shows a
foil, which is section of a lifting body. It shows 3 very
important points on foils. They form lines which run along
the span of the body. The point labelled CP is the center of
the pressure 1load on the foil. It 1is wusually located a
quarter chord length back from the leading edge of the foil.
The point labelled EA is the elastic axis of the foil. A load
applied at the elastic axis produces pure heave of the foil
without any pitch rotation. The EA 1is usually located near
where the main beam runs along the span, which means its
position can be controlled. The point labelled CG 1is the
center of mass of the foil. Again, 1its position can be
controlled. If the CP is at the EA, then the foil cannot
undergo divergence because no pitch moment can be generated.
If the CG is at the EA, then inertia coupling is zero. This

lowers the probability of the body undergoing flutter.
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