SCALING LAWS

PREAMBLE

Scaling laws allow us to predict prototype behavior from
model data. Generally the model and prototype must look the
same. This 1is known as geometric similitude. The flow
patterns at both scales must also look the same. This 1is
known as kinematic or motion similitude. Finally, certain
force ratios in the flow must be the same at both scales.
This is known as kinetic or dynamic similitude. Sometimes
getting all force ratios the same is impossible and one must

use engineering judgement to resolve the issue.

The simplest way to derive scaling laws 1is to use common
sense. If vyou need to develop a nondimensional power
coefficient, you need to divide power by a reference power.
The reference power could be based on things 1like the
properties of the fluid and conditions imposed by the
surroundings. One could also derive the scaling laws using a
more formal procedure known as the Method of Indices. Most
fluids texts call this the Buckingham n Theorem. For this,
the variables and parameters of interest are divided into
primary and secondary categories. When using the Buckingham

o Theorem, each nondimensional coefficient is known as a 1.



ILLUSTRATION: PUMPS

For a pump, it is customary to let N be the rotor RPM and D
be the rotor diameter. All flow speeds U scale as ND and all
areas A scale as D?. Pressures are set Dby the dynamic
pressure pU?/2. Ignoring constants, one can define a
reference pressure [pN%f] and a reference flow [ND3]. Since
fluid power 1is Jjust pressure times flow, one can also define
a reference power [pN°D’]. Dividing dimensional quantities by

reference quantities gives the scaling laws:
Pressure Coefficient Cp = P / [pN°D?]
Flow Coefficient Co = Q / [ND’]
Power Coefficient Cp = P / [pN°D°]

On the pressure versus flow characteristic of a pump, there
is a best efficiency point (BEP) or best operating point
(BOP) . For geometrically similar pumps that have the same
operating point on the Cp versus Cqu curve, the coefficients
show that if D is doubled, P increases 4 fold, Q increases 8
fold and P increases 32 fold, whereas if N is doubled, P

increases 4 fold, Q doubles and P increases 8 fold.



ILLUSTRATION: TURBINES

For a turbine, we are interested mainly in the power output
of the device as a function of its rotational speed. The
simplest way to develop a nondimensional power is to divide
power P Dby something which has the units of power. The
power in a flow is its dynamic pressure P times volumetric

flow rate Q. For a flow, the dynamic pressure P is

P = pvi/2
where p denotes the density of fluid and V is the speed of
the flow. Volumetric flow Q is the speed of the flow V times
its flow area A. So, a reference power is

pvZ/2 VA
So, we can define a power coefficient Cp

Ce = P/ [pV/2 A]

To develop a nondimensional version of the rotational speed,
we can divide the tip speed of the blades row by the flow

speed V. So, we can define a speed coefficient Cg

Cs=r0)/V

One could derive the power and rotor speed coefficients
using the Buckingham n Theorem. Power and speed would be

primary variables. The flow speed and area and the density



of the fluid would be secondary variables. For power, the

goal is to find mp where

We need to find the a b ¢ that make the right hand side
dimensionless. In terms of the basic units of mass M and
length L and time T, one can write

MoLOoT° = M L/T° L /T [L/T]® M/L°1°  [L7]°
Inspection shows that

a=-3 b=-1 c=-1

With this, mp becomes

Similarly, for rotor speed, the goal is to find mg where

s = o V' pP
Manipulation shows that
a=-1 b=0 c=+1

With this, ms becomes

Ig = r® / V

As can be seen, each n is basically the same as a C.



ILLUSTRATION : WAKE DRAG ON BODIES

For a body moving through a fluid, the wake drag on it can be

represented nondimenionally as a drag coefficient:

Cpb = D / [[pU?/2] A]
The reference drag is the dynamic pressure associated with
the motion of the body times its profile area as seen from
upstream. Usually Cp is a function of Reynolds Number:

Re = UD/v

This is inertia forces divided by viscous forces.

ILLUSTRATION : WAVE DRAG ON SHIPS

The drag on a ship due to wave generation can also be

represented as a drag coefficient:

Cpb = D / [[pU?/2] A]

In this case Cp is a function of Froude Number:

Fr = U/V[gL]

This is inertia forces divided by gravity forces.



ILLUSTRATION : OSCILLATORY MOTION

Sometimes flows are oscillatory. In this case we need to
nondimensionalize the flow period T with a reference period
T. For a body with characteristic dimension D in a flow with
speed U, the reference period is the transit time:

T = D/U
So the nondimensional period is:

Cr = T/T
Vortices are often shed from bodies in an asymmetric pattern.

In this case, the transit time divided by the vortex shedding

period gives the Strouhal Number:

St = T/T

This is just the reciprocal of the period coefficient.



