
 

 

 

SCALING LAWS 

 

PREAMBLE 

 

Scaling laws allow us to predict prototype behavior from 

model data. Generally the model and prototype must look the 

same. This is known as geometric similitude. The flow 

patterns at both scales must also look the same. This is 

known as kinematic or motion similitude. Finally, certain 

force ratios in the flow must be the same at both scales. 

This is known as kinetic or dynamic similitude. Sometimes 

getting all force ratios the same is impossible and one must 

use engineering judgement to resolve the issue.  

 

The simplest way to derive scaling laws is to use common 

sense. If you need to develop a nondimensional power 

coefficient, you need to divide power by a reference power. 

The reference power could be based on things like the 

properties of the fluid and conditions imposed by the 

surroundings. One could also derive the scaling laws using a 

more formal procedure known as the Method of Indices. Most 

fluids texts call this the Buckingham π Theorem. For this, 

the variables and parameters of interest are divided into 

primary and secondary categories. When using the Buckingham 

π Theorem, each nondimensional coefficient is known as a π. 

 



 

 

 

ILLUSTRATION: PUMPS 

 

 

For a pump, it is customary to let N be the rotor RPM and D 

be the rotor diameter. All flow speeds U scale as ND and all 

areas A scale as D
2
. Pressures are set by the dynamic 

pressure ρU
2
/2. Ignoring constants, one can define a 

reference pressure [ρN
2
D
2
] and a reference flow [ND

3
]. Since 

fluid power is just pressure times flow, one can also define 

a reference power [ρN
3
D
5
]. Dividing dimensional quantities by 

reference quantities gives the scaling laws: 

 

Pressure Coefficient    CP = P / [ρN
2
D
2
] 

 

Flow Coefficient    CQ = Q / [ND
3
] 

 

Power Coefficient   CP = P / [ρN
3
D
5
] 

  

On the pressure versus flow characteristic of a pump, there 

is a best efficiency point (BEP) or best operating point 

(BOP). For geometrically similar pumps that have the same 

operating point on the CP versus CQ curve, the coefficients 

show that if D is doubled, P increases 4 fold, Q increases 8 

fold and P increases 32 fold, whereas if N is doubled, P 

increases 4 fold, Q doubles and P increases 8 fold.   

 

 

 

 



 

 

ILLUSTRATION: TURBINES 

 

For a turbine, we are interested mainly in the power output 

of the device as a function of its rotational speed. The 

simplest way to develop a nondimensional power is to divide 

power P by something which has the units of power.  The 

power in a flow is its dynamic pressure P times volumetric 

flow rate Q. For a flow, the dynamic pressure P is 

 

P =  V2/2 

 

where ρ denotes the density of fluid and V is the speed of 

the flow. Volumetric flow Q is the speed of the flow V times 

its flow area A.  So, a reference power is 

                                

V2/2  VA 

 

So, we can define a power coefficient CP   

                        

CP  =  P   /  [ V
3
/2  A] 

 

To develop a nondimensional version of the rotational speed, 

we can divide the tip speed of the blades r by the flow 

speed V. So, we can define a speed coefficient CS    

 

CS  =  r / V 

 

One could derive the power and rotor speed coefficients 

using the Buckingham π Theorem. Power and speed would be 

primary variables. The flow speed and area and the density 



 

 

of the fluid would be secondary variables. For power, the 

goal is to find πP where 

 

πP =    P   V
a
   b  Ac 

 

We need to find the a b c that make the right hand side 

dimensionless. In terms of the basic units of mass M and 

length L and time T, one can write 

 

M
0
L
0
T
0
    =      M L/T

2
  L /T     [L/T]

a
     [M/L

3
]
b
  [L

2
]
c
 

  

Inspection shows that  

 

a=-3             b=-1        c=-1 

 

With this, πP becomes     

    

πP =   P  /  [V
3
  A] 

 

Similarly, for rotor speed, the goal is to find πS where 

       

πS =       V
a
   b  rc 

 

Manipulation shows that   

 

a=-1      b=0        c=+1 

 

With this, πS becomes     

 

πS = r / V 

 

As can be seen, each π is basically the same as a C. 

 



 

 

 

ILLUSTRATION : WAKE DRAG ON BODIES 

 

For a body moving through a fluid, the wake drag on it can be 

represented nondimenionally as a drag coefficient:  

 

CD = D / [[ρU
2
/2] A] 

 

The reference drag is the dynamic pressure associated with 

the motion of the body times its profile area as seen from 

upstream.  Usually CD is a function of Reynolds Number: 

 

Re = UD/ν 

 

This is inertia forces divided by viscous forces. 

 

 

 

ILLUSTRATION : WAVE DRAG ON SHIPS 

 

The drag on a ship due to wave generation can also be 

represented as a drag coefficient:  

 

CD = D / [[ρU
2
/2] A] 

 

In this case CD is a function of Froude Number: 

 

Fr = U/√[gL] 

 

This is inertia forces divided by gravity forces. 

 

 

 



 

 

 

 

 

ILLUSTRATION :  OSCILLATORY MOTION 

 

Sometimes flows are oscillatory. In this case we need to 

nondimensionalize the flow period  T with a reference period 

T. For a body with characteristic dimension D in a flow with 

speed U, the reference period is the transit time: 

 

T = D/U 

 

So the nondimensional period is:  

 

CT = T/T 

 

Vortices are often shed from bodies in an asymmetric pattern. 

In this case, the transit time divided by the vortex shedding 

period gives the Strouhal Number: 

 

St = T/T 

 

This is just the reciprocal of the period coefficient.  

 

 

 


