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A certain submarine has a length L equal to 25m and a 

diameter D equal to 5m. Its cruising speed is 25 

knots. Data from a 1:10 scale model suggests that when 

the submarine is operating well below the water 

surface its drag coefficient is 0.1. What would be the 

drag on the prototype? What should be the speed of the 

model submarine in this case? Is it realistic? What 

should be the speed of the model submarine when it is 

operating close to the water surface? Is it realistic? 

 

A tube shaped streamlined instrumentation pod is 

observed to free fall through the water. Its diameter 

is 0.5m. Its drag coefficient is 0.1. The difference 

between the weight of the pod and its buoyancy is 

1000N. What would be the terminal speed of the pod?    

 

A certain oil rig sits in waves with period T. The 

characteristic dimension of the rig is D. Derive a 

wave period coefficient for the rig. [Hint: g] Deep 

water wave theory gives the following connection 

between wave period T and wavelength : T=[2/g]. 

What does this suggest about the ratio D/?  



 

 

SOLUTION #1   OUTLINE 

 

The drag coefficient is:  CD = D / [[ρU
2
/2] A]. Solving 

for drag gives: D = CD * [[ρU
2
/2] A]. The profile area A 

is D2/4. The speed U is given. The Reynolds Number is 

UD/. If the model was tested in water, its speed would 

be 10 times the prototype speed. This speed is too fast 

for a wave tank. The Froude Number is U/[gD]. In this 

case, the model speed would be 1/10 times that of the 

prototype. This speed is a bit fast for a wave tank. 

 

The drag coefficient is:  CD = D / [[ρU
2
/2] A]. Solving 

for speed gives: U = [[2D]/[ACD]]. The profile area A 

is D2/4: D is given. At the terminal speed, the drag D 

is equal to the difference between the weight of the 

pod and its buoyancy. This allows us to calculate U. 

 

A reference period is: T = [D/g]. So the period 

coefficient is: CT = T/T = T/[D/g]. Substitution of T = 

[2/g] into the CT equation gives: CT = [2] [/D]. 

This equation shows that if CT is fixed the ratio /D 

is also fixed. This implies geometric similitude. A 

photo of a rig in a wave would look same at any scale. 
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In the hydraulic transients lab, a pressure sensor was 

placed flush with the pipe wall just upstream of the 

valve. Imagine a setup where the sensor was placed at 

the end of a small tube attached to the pipe. Using 

wave reflection concepts, describe what happens in the 

tube when the valve in the pipe is suddenly shut. What 

would be the maximum pressure generated inside the 

tube? Assume that the wave speed for the pipe is 

1000m/s and the wave speed for the tube is 500m/s. 

Also assume that, for the pipe, the initial pressure 

is 1BAR absolute and the initial flow speed is 0.5m/s. 

The initial pressure in the tube is also 1BAR. 

 

Using wave reflection concepts, describe what happens 

when a stable leaky valve is suddenly shut. Using wave 

reflection concepts, describe what happens when an 

unstable leaky valve is suddenly shut. 



 

SOLUTION #2   OUTLINE 

 

The small tube is so small that flow in or out of it 

has no influence on what happens in the pipe. When the 

valve in the pipe is shut, a positive surge wave of 

5BAR (6BAR TOTAL) travels up the pipe. When that wave 

reaches the inlet to the tube, it creates a pressure 

imbalance there. This causes a flow of 1m/s from the 

pipe into the tube. This propagates as an inflow wave 

with the pipe pressure (6BAR) behind it. When it hits 

the sensor, it creates a flow imbalance. The pressure 

suddenly rises an extra 5BAR (11BAR TOTAL) at the 

sensor to stop the inflow. A surge pressure wave of 

5BAR (11BAR TOTAL) propagates back up the tube 

stopping inflow as it goes. When the surge wave 

reaches the pipe, it creates a pressure imbalance. 

This causes a back flow of 1m/s out of the tube into 

the pipe. This propagates back down the tube to the 

sensor returning the pressure to 6BAR as it goes. When 

the back flow reaches the sensor, it creates a flow 

imbalance. The pressure suddenly drops at the sensor 

by 5BAR from 6BAR to 1BAR to stop the back flow. A 

suction pressure wave of minus 5BAR travels back up 

the tube stopping the back flow as it goes. When this 

reaches the tube inlet, conditions in the tube are 

back to where they started. From then on, the cycle 

repeats, and friction causes the transients to 

gradually decay. By the time the return wave in the 

pipe reaches the tube, they are all gone.      

 



For a stable leaky valve, when the valve is suddenly 

shut, pressure suddenly rises at the valve. This 

causes a pressure surge wave which travels up the pipe 

to the storage tank. When it reaches the tank, it 

causes a back flow relative to the flow at the valve. 

This travels as a wave back to the valve. When it 

reaches the valve, the pressure suddenly drops. 

Because of the positive slope of its characteristic, 

the flow requirements of a stable valve are lower at 

lower pressure. This means that the pressure drop at 

the valve must be smaller than the initial pressure 

rise (only some of the initial backflow needs to be 

removed). As the cycle continues, all changes keep 

getting smaller and transient dies away.    

  

 



For an unstable leaky valve, when the valve is 

suddenly shut, pressure suddenly rises at the valve. 

This causes a pressure surge wave which travels up the 

pipe to the storage tank. When it reaches the tank, it 

causes a back flow relative to the flow at the valve. 

This travels as a wave back to the valve. When it 

reaches the valve, the pressure suddenly drops. 

Because of the negative slope of its characteristic, 

the flow requirements of an unstable valve are higher 

at lower pressure. This means that the pressure drop 

at the valve must be bigger than the initial pressure 

rise (flow has to be turned around more than the 

initial backflow). As the cycle continues, all changes 

keep getting bigger and transients grow.     
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A steel brace tube on a certain exploration rig has a 

length L=10.0m and an OD=1.0m and an ID=0.98m. What 

current speed would cause the tube to undergo 1
st
 mode 

resonance due to vortex shedding? Assume that the tube 

has clamped-clamped supports and has air inside. 

Imagine now that the tube had a square cross section. 

What current speed would cause galloping? For this, 

assume that the damping factor for the tube is 0.05. 

 

A certain marine riser tube bundle has steel tubes 

with an OD=0.15m and an ID=0.14m. The distance between 

the tube supports is 5.0m. There is oil inside the 

tubes. The damping factor for the bundle is 0.15 and 

the bundle factor is 5. What current speed would cause 

the tubes to vibrate? Assume that the tubes have pivot 

supports. Repeat the calculation for the case where 

the tubes have clamped-clamped supports.       

 

What internal oil flow speed would cause a tube in the 

marine riser to buckle? Assume pivot supports and zero 

gage pressure and tension. What internal oil flow 

speed would cause a tube in the riser to undergo whip? 

Assume the tube is a cantilever beam 5m long. 

 

The certain sail is made from nylon 2mm thick. It has 

a tension of 500N per meter width. What wind speed on 

one side of it would cause the sail to flutter?  



SOLUTION #3   OUTLINE 

 

 

 

The critical speed for vortex shedding is: 

 

S = D/[ST]      T  = T 

 

For clamped-clamped supports, the periods are:  

 

Tn = 2πL
2
/Kn  [m/EI] 

 

The 1
st
 period has K equal to 22.4. All geometry is 

given so the critical speed S can be calculated. 

 

The galloping critical speed is: 

 

S = So M/Mo ζ a       

 

So = D/T      Mo = ρD
2
 

 

All geometry is given so S can be calculated. 

 

 

The tube bundle critical speed is: 

 

S = β/T [Mδ/ρ] = βSo [δM/Mo] 

 

For pivot supports, the periods are 

 

Tn = [L/n]
2
 [2/π] [m/EI] 



For clamped-clamped supports, the periods are:  

 

Tn = 2πL
2
/Kn  [m/EI] 

 

All geometry is given so the speeds can be calculated. 

 

 

 

The pipe buckling critical speed is:  

 

S =  [ EI/[ρA] π2/L2 + T/[ρA] - P/ρ ] 

 

The pipe whip critical speed is:  

 

S = [4 + 14 Mo/M] So 

 

So =  [EI]/[MoL
2
]]     Mo = ρA 

 

All geometry is given so the speeds can be calculated. 

 

 

The panel flutter critical speed is:  

 

S  =  [ [Tk2 + Dk4 + K/w + ρBg - ρTg] * 

[ρT/k + ρB/k + σ] / [ρBρT + σρTk] ] 

 

This gives a critical speed of zero with wavelength of 

infinity. Need to add some side support stiffness K. 
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A certain supertanker has straight sides which are 

250m long. The draft of the tanker is 25m and its beam 

is 50m. Its cruising speed is 25 knots. Calculate the 

side wall drag on the tanker. The wake drag 

coefficient is 0.05. Calculate the wake drag on the 

tanker. Calculate the power to overcome these drags. 

What is the wave drag on a typical supertanker?   

 

A certain hydrodynamic lubrication bearing for a ship 

has 4 pads. The pads are narrow and the outer and 

inner edges are blocked. Develop an equation for the 

circumferential variation of pressure in each pad. 

Develop an equation for the total load supported by 

the pads. Let the wedge angle of the pads be 60 

degrees. Let the outer radius be 1.5m, the inner 

radius be 1.0m, the front gap be 1.5mm and the back 

gap be 0.5mm. Let the density of the bearing oil be 

880 kg/m
3
 and its viscosity be 0.15 Ns/m

2
. Let the RPM 

of the propeller shaft be 100. What is the load? 

 

Imagine that you have a propeller that has 4 wedge 

shaped flat blades. Let the wedge angle be 60 degrees 

and let the angle of attack of the blades be 10 

degrees. Let the hub radius of each blade be 0.5m and 

let the tip radius be 1m. The RPM of the propeller is 

250. Estimate the total thrust of the propeller. 



 

SOLUTION #4   OUTLINE 

 

 

 

 

For a ship with length L, the wall drag is:  

 

D = M bL REL
-1/m

 ρU2 

 

where the width b is 2 times the draft plus the beam. 

The constants M and m depend on the Reynolds Number 

REL. Wake drag at the rear would have the form: 

 

W = CD B ρU2/2 

 

The power required to overcome these drags is: 

 

P = [ D + W ] U 

 

 

 

 

Reynolds Equation for a thrust bearing is:   

 

/r (rh3 P/r) + r /c(h3 P/c) =  6 μ  S h/
 

where P is pressure, h is the bearing gap, r is the 

radial coordinate, c is the circumferential distance, 

 is the circumferential angle and S equal to r is 



the bearing speed. For a narrow thrust bearing with 

blocked edges, this reduces to  

 

d/dc (h
3
 dP/dc)  =  6μ S dh/dc   =  H dh/dc 

 

Integration of this equation gives 

              

h
3
 dP/dc  = H h + A 

 

where A is a constant. Manipulation gives 

 

dP/dc = H/h
2 
+ A/h

3
 

 

For a linear wedge gap variation  

 

h = s c + b       s = (b-a)/d 

 

where a is the back gap, b is the front gap, d is the 

bearing width and s is the bearing slope. Substitution 

into the pressure gradient equation gives  

 

dP/dc = H/(sc+b)
2 
+ A/(sc+b)

3
 

 

Another integration gives 

 

P = -H/[s(sc+b)] - A/[2s(sc+b)
2
] + B 

 

where B is a constant. At the front and back edges of 

the bearing, pressure is atmospheric pressure P. 

Application of these boundary conditions gives  

 

 



 

A = 2H [a
2
b-b

2
a] / [b

2
-a

2
]      B = P + H / [s(b+a)] 

 

 

The total thrust is 

 

T  =  4  P r dc 

 

where r is the width of the bearing. Substitution 

into this followed by integration gives: 

 

T = 4 r  [-H/s2 ln(sc+b) + A/2s2 /(sc+b)  + B c ] 

 

The limits are c equal to 0 and c equal to r where r 

is the average value of r and  is the wedge angle. 

 

 

 

 

 

The thrust for a propeller with 4 flat wedge shaped 

blades is:  4  ρ Γ S dr  where  Γ = C π S Sinθ. The 

chord C is r and the speed S is r. Substitution into 

the thrust equation followed by integration gives: 

 

ρ π  2
 Sinθ  (A4 – B4) 

 

where A is the outer or tip radius of the propeller 

and B is the inner or hub radius. 
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A closed loop of copper pipe is used to heat a room in 

the winter and cool it in the summer. A pump in the 

loop moves water through the loop. The total length of 

pipe in the loop is 20m. The diameter of the pipe is 

1cm. There are forty 180
o
 bends in the loop. The flow 

rate is 5 GPM. Sketch the system demand curve. 

Determine the pump power. What type of pump should be 

used in the loop? Repeat the calculations for the case 

where the pipe diameter is doubled to 2cm. Repeat the 

calculations for the case where the pipe diameter is 

cut in half to 0.5cm. Comment on the results. 

 

A certain jet propulsion unit for a boat takes in 

water at the speed of the boat and throws it out at 

twice the speed of the boat. The volumetric flow rate 

through the unit is 60 GPM. The outlet pipe diameter 

is 5cm. Determine the speed of the boat. Determine the 

thrust generated by the unit.  

 

 

 

 



SOLUTION #5   OUTLINE 

 

 

 

 

The system demand for a pipe is 

 

HS = X + Y Q
2
         

Q = C A    A =  D2/4 

 

X = Δ [P/ρg + z]         

Y = [fL/D + K]/[2gA2] 

 

All of the information needed to evaluate this is given. 

At the system operating point, the pump head HP is equal 

to the system head HS. The pump power is  

 

PP = ρg HP Q 

 

The type of pump is determined by the specific speed  

 

N   =  [N Q]/[H3/4] 

 

Doubling the pipe diameter decreases losses and reduces 

pump power. Halving the diameter does the opposite. 

 

 

 



 

 

 

 

Knowing the volumetric flow rate and the outlet pipe 

diameter allows one to calculate the outlet flow speed: 

 

                 Q = C A      A =  D2/4 

 

Conservation of mass gives 

 

[ρCA]OUT - [ρCA]IN = 0 

 

The outlet flow speed is twice the inlet flow speed. 

This shows that the inlet pipe diameter is 2 times the 

outlet pipe diameter. Conservation of momentum gives 

 

[ρvCA]OUT - [ρvCA]IN 

= - [PAn]OUT - [PAn]IN + R 

 

For the horizontal direction this reduces to 

 [M
.
U]OUT -  [M

.
U]IN = - PAnx + Rx 

 

The inlet and outlet are at the same level and open to 

the surrounding pressure. So the pressure terms can be 

dropped. The force on the boat is minus Rx. 

 

 

 


