
 

 

 

CONSERVATION LAWS FOR A STREAMTUBE 

 

 LAGRANGIAN VS EULERIAN FORMULATIONS 

The Lagrangian Formulation focuses on a specific group of fluid 

particles in a flow. It is the most natural way to develop the 

governing equations but it not very practical from a mathematical 

point of view because there are just too many groups in a flow to 

follow. The Eulerian Formulation focuses on a specific region in 

space. Mathematically this control volume approach is much more 

practical. Here we start with the Lagrangian Formulation but use 

the Transport Theorem to switch to the Eulerian Formulation.   

 

 CONSERVATION OF MASS 

Consider an arbitrary specific group of fluid particles with volume 

V and surface S anywhere within a flow. A differential volume dV 

within V would contain mass ρdV where ρ is the fluid density. 

Integration over the volume gives the total mass of the group. 

According to Conservation of Mass, the time rate of change of the 

mass of the group is zero.  Mathematically we can write 

                                        

                 D/Dt   ρ dV  =  0  .   
                        V(t)               

 

 

Using the Transport Theorem this can be rewritten as 

              



 

 

                 

              ρ/t dV  +   ρ v.n dS  =  0   
              V(t)          S(t)      

             

where v is the fluid velocity and n is the unit outward normal at 

points on S. For steady flow in a streamtube with multiple inlets 

and outlets conservation of mass reduces to  

 (ρCA)OUT  -   (ρCA)IN  =   M
.

OUT  -   M
.

IN  =  0 

 

where C is the flow speed and A is the tube area. 

 

 

 CONSERVATION OF MOMENTUM 

Consider again an arbitrary specific group of fluid particles with 

volume V and surface S anywhere within a flow. A differential 

volume dV within V would contain momentum ρdVv. Integration over V 

gives the total momentum of the group. According to Conservation of 

Momentum, the time rate of change of the momentum of the group is 

equal to the net force acting on it. The forces acting can be of 

two types: surface forces and body forces. Surface forces in turn 

can be of two types: pressure and viscous traction. Body forces are 

generally due only to gravity. Mathematically we can write  

                                          

           D/Dt   ρv dV  =   σ dS  +   ρb dV 
                  V(t)        S(t)      V(t) 

 

where σ is a vector representing the stress or force per unit area 

at any point on the surface S and b is a vector representing the 

body force per unit mass at any point within the volume V. Using 



the Transport Theorem the integral can be rewritten as  

                      

 

          

                ρv/t dV  +   ρv v.n dS  = 
                V(t)           S(t)                  

                                                         

                  +   σ dS  +   ρb dV   . 
                      S(t)      V(t) 

 

For short streamtubes friction and gravity are often insignificant. 

In this case for steady flow in a streamtube with multiple inlets 

and outlets conservation of momentum reduces to 

     (ρvCA)OUT  -   (ρvCA)IN  =   (M
.
v)OUT  -   (M

.
v)IN   

                             =   

             -   (PAn)OUT  -   (PAn)IN  +  R    

 

where R is the wall force on the fluid in the streamtube. 

  

 

 CONSERVATION OF ENERGY 

Consider once more an arbitrary specific group of fluid particles 

with volume V and surface S anywhere within a flow. A differential 

volume dV within V would contain energy edV where e is the fluid 

energy density. The energy density consists of internal energy and 

observable kinetic and potential energies: 

 

                 e  =  u  + v.v/2  +  gz   . 

 

Integration over the volume gives the total energy of the group. 

According to Conservation of Energy, the time rate of change of the 



energy of the group is equal to rate at which heat flows to the 

group from the surroundings plus the rate at which the surroundings 

does work on the group. Mathematically we can write 

                                                        

         D/Dt  ρe dV  =  -  q.n dS  +   v.σ dS   .                

               V(t)               S(t)             S(t)         

 

A body force due to gravity work term is not present in this 

integral because it has already been accounted for as potential 

energy in energy density. Using the Transport Theorem the integral 

can be rewritten as 

 

               ρe/t dV  +   ρe v.n dS  = 
               V(t)            S(t)                  

 

 q.n dS  +   v.σ dS  
                   S(t)         S(t)  

 

For steady adiabatic isothermal flow in a streamtube with multiple 

inlets and outlets conservation of energy becomes  

 

     [(ρCA)(C2/2+gz+P/ρ)]OUT  -   [(ρCA)(C
2
/2+gz+P/ρ)]IN         

          =   (M
.
gh)OUT  -   (M

.
gh)IN  =  T

.
 -  L
.  

 

where h is the flow head at inlets and outlets 

 

              h  =  C
2
/2g  +  P/ρg  +  z  

 

and  L
.
 accounts for losses and  T

.
 accounts for shaft work. 

 

 

 



 

 REYNOLDS TRANSPORT THEOREM 

 

Consider an arbitrary specific group of fluid particles anywhere in 

a flow and follow it for a short period of time Δt. Let α be any 

property of the fluid within the group. The Lagrangian rate of 

change of the integral of α over the volume V of the group is 

                                             

D/Dt   α(t) dV  =   Lim   [   α(t*) dV  -   α(t) dV  ] / Δt  

       V(t)         Δt0      V(t
*
)         V(t) 

 

where t
*
 = t + Δt. Now adding and subtracting the integral of α(t*) 

over V(t) inside the [] brackets allows us to rewrite the limit as 

                                         

            Lim   [   α(t*) dV  -   α(t) dV  ] / Δt  

           Δt0      V(t)          V(t) 

                                   

       +    Lim   [   α(t*) dV  -   α(t*) dV  ] / Δt   . 

           Δt0      V(t
*
)          V(t) 

      

 

The first limit gives the Eulerian local derivative  

 

                                              

                         α/t dV   . 
                         V(t) 

 

Geometric considerations give ΔV = [vΔt].[ndS] where S(t) is the 

surface which encloses V(t). At any point on this surface v is the 

velocity of the fluid and n is the unit outward normal there. The 

ΔV equation allows us to replace the second limit with  



 

                                         

                      α(t) v.n dS .         
                      S(t)                 

 

 

So we can replace the original integral as follows 

 

 

                                             

     D/Dt   α(t) dV  =   α/t dV  +   α(t) v.n dS  . 
            V(t)         V(t)          S(t)             

 

This is Reynolds Transport Theorem. 

 

      


