CONSERVATION LAWS FOR A STREAMTUBE

LAGRANGIAN VS EULERIAN FORMULATIONS
The Lagrangian Formulation focuses on a specific group of fluid
particles in a flow. It is the most natural way to develop the
governing equations but it not very practical from a mathematical
point of view because there are just too many groups in a flow to
follow. The Eulerian Formulation focuses on a specific region in
space. Mathematically this control volume approach is much more
practical. Here we start with the Lagrangian Formulation but use

the Transport Theorem to switch to the Eulerian Formulation.

CONSERVATION OF MASS
Consider an arbitrary specific group of fluid particles with volume
V and surface S anywhere within a flow. A differential volume dV
within V would contain mass pdvV where p 1s the fluid density.
Integration over the volume gives the total mass of the group.
According to Conservation of Mass, the time rate of change of the

mass of the group is zero. Mathematically we can write

D/Dt | pdv = 0
v (t)

Using the Transport Theorem this can be rewritten as



[ 6p/ot av + [pwv.nds = 0
V(t) S(t)
where v is the fluid velocity and n is the unit outward normal at
points on S. For steady flow in a streamtube with multiple inlets

and outlets conservation of mass reduces to

2 (pCA)oyr - 2 (pCA)w = X l\710UT - 2 l\71:[N = 0

where C is the flow speed and A is the tube area.

CONSERVATION OF MOMENTUM
Consider again an arbitrary specific group of fluid particles with
volume V and surface S anywhere within a flow. A differential

volume dV within V would contain momentum pdvVwv. Integration over V

gives the total momentum of the group. According to Conservation of
Momentum, the time rate of change of the momentum of the group is
equal to the net force acting on it. The forces acting can be of
two types: surface forces and body forces. Surface forces in turn
can be of two types: pressure and viscous traction. Body forces are
generally due only to gravity. Mathematically we can write
D/Dt [pv dv = Jeds + [ pb dv
V(t) S(t) V(t)
where 6 i1is a vector representing the stress or force per unit area

at any point on the surface S and b is a vector representing the

body force per unit mass at any point within the wvolume V. Using



the Transport Theorem the integral can be rewritten as

[ 6pv/ot av + [ pv v.n ds =
V(t) S(t)

+ Jeds + [ pbav
S (t) V(t)
For short streamtubes friction and gravity are often insignificant.

In this case for steady flow in a streamtube with multiple inlets

and outlets conservation of momentum reduces to

z (pvCA) our - X (pvCA) 1y = X (MV)OUT - 2 (MV)IN

- z (PAn) oUT - )y ( PAn) N + R

where R 1s the wall force on the fluid in the streamtube.

CONSERVATION OF ENERGY
Consider once more an arbitrary specific group of fluid particles
with volume V and surface S anywhere within a flow. A differential
volume dV within V would contain energy edV where e is the fluid
energy density. The energy density consists of internal energy and

observable kinetic and potential energies:
e = u + v.v/2 + gz

Integration over the volume gives the total energy of the group.

According to Conservation of Energy, the time rate of change of the



energy of the group is equal to rate at which heat flows to the
group from the surroundings plus the rate at which the surroundings

does work on the group. Mathematically we can write

D/Dt | pe dv = - g.n dS + [ v.e ds
V(t) S (t) S (t)

A Dbody force due to gravity work term is not present in this
integral because it has already been accounted for as potential
energy in energy density. Using the Transport Theorem the integral

can be rewritten as
[ 6pe/ot dav + [ pe v.n ds =
V(t) S(t)

- g.n dS + [ v.o ds
S(t) S(t)

For steady adiabatic isothermal flow in a streamtube with multiple

inlets and outlets conservation of energy becomes

T [(pCA) (C?/2+gz+P/p)lovr - X [(pCA) (C*/2+gz+P/p) ]1x
= X Mgh)eyr - X (Mgh)yy = T - 1L

where h is the flow head at inlets and outlets

h = C?/2g + P/pg + =z

and T accounts for losses and T accounts for shaft work.



REYNOLDS TRANSPORT THEOREM

Consider an arbitrary specific group of fluid particles anywhere in
a flow and follow it for a short period of time At. Let a be any
property of the fluid within the group. The Lagrangian rate of

change of the integral of a over the volume V of the group is

D/Dt | a(t) dVv = Lim [ Ja av - [ a(t) av ] / At
V (t) At—0 V(") V (t)

where t° = t + At. Now adding and subtracting the integral of a(t)

over V(t) inside the [] brackets allows us to rewrite the limit as
Lim [ Ja(t™) av - Ja(t) av 1 / At
At—0 V(t) V(t)
+ Lim [ Ja(ty av - [a(t’) av 1 / At
At—0 v (t") V(t)

The first limit gives the Eulerian local derivative

[ 6o/ot av
V(t)
Geometric considerations give AV = [vAt].[ndS] where S(t) 1is the

surface which encloses V(t). At any point on this surface v is the

velocity of the fluid and n is the unit outward normal there. The

AV equation allows us to replace the second limit with



[ a(t) v.n ds
S (t)

So we can replace the original integral as follows

D/Dt | a(t) dv = [ éa/0t dv + [ a(t) wv.n dS
V(t) V(t) S(t)

This is Reynolds Transport Theorem.
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