WATER WAVE INTERACTION
WITH STRUCTURES

PREAMBLE

Most water waves are generated by storms at sea. Many waves
are present 1in a storm sea state: each has a different
wavelength and period. Theory shows that the speed of
propagation of a wave or its phase speed is a function of
water depth. It travels faster in deeper water. Theory also
shows that the speed of a wave 1s a function of its
wavelength. Long wavelength waves travel faster than short
wavelength waves. This explains why storm generated waves,
which approach shore, are generally a single wavelength.
Because waves travel at different speeds, they tend to
separate or disperse. When waves approach shore, they are
influenced by the seabed by a process known as refraction.
This can focus or spread out wave energy onto a site. Close
to shore water depth is not the same everywhere: so points on
wave crests move at different speeds and crests become bent.
This explains why crests which approach a shore line tend to
line up with it: points in deep water travel faster than

points in shallow water and overtake them.

Wave energy travels at a speed known as the group speed. This
is generally not the same as the phase speed. However for

shallow water both speeds are the same and they depend only



on the water depth. A large low pressure system moving over
shallow water would generate an enormous wave if the system
speed and the wave energy speed were the same. Basically wave
energy gets trapped in the system frame when the system speed
matches the wave energy speed. Tides are basically shallow
water waves. Here the pull of the Moon mimics a low pressure
system. Theory shows that if water depth was 22km everywhere
on Earth the Moon pull would produce gigantic tides. They
would probably drain the oceans and swamp the continents

everyday. Fortunately the average water depth is only 3km.

Water waves can interact with structures and cause them to
move or experience loads. For wave structure interaction, an
important parameter is 5D/A where D 1is the characteristic
dimension of the structure and A 1is the wavelength.
Structures are considered large if 5D/A is much greater than
unity: they are considered small if 5D/A is much less than
unity. Small structures are basically transparent to waves.
Large structures scatter waves. There are two types of

scattering: reflection and diffraction.

These notes start with an overview of water wave theory. Then
interaction of waves with small structures 1s considered.

Finally interaction with large structures is considered.



WATER WAVES

To calculate wave interactions with structures, one needs a
detailed knowledge of the wave field. Water wave theory
provides this. It will be assumed for much of what is given
below that wave amplitudes are very small. It turns out that
this is good even for waves not far from breaking. Water
waves 1in deep water propagate for long distances with little
loss of energy. They lose energy in shallow water due to
interaction with the seabed. They also lose energy when they
move pass small structures and when they break on beaches.
Water wave theory ignores these energy losses. It assumes
that water has zero viscosity and it is incompressible. It
also assumes that its motion is irrotational. This means that
water particles do not spin. With these assumptions, the

conservation laws reduce to potential flow forms.

Conservation of mass considerations give:

V.v =0 Vip = 0

The velocity vector v in terms of the potential ¢ is

v =Vo = Ui + Vj + Wk

Conservation of momentum considerations give:

pov/ot + p V v.v/2 + VP + Vopgz = 0

op/0t + Vo.Vo/2 + P/p + gz = C






It turns out that, for water waves, mass 1s the main
governing equation: momentum is used as a boundary condition.

The kinematic or motion constraint at the seabed is:

op/0z = 0 at z = -h

where h 1is the water depth. The kinematic or motion

constraint at the water surface is based on:

Dn/Dt = Dz/Dt

where 1 1s the vertical deflection of the water from the

still water line. The n for a point on the water must follow

the z for that point. The constraint gives:

on/o0t + 0O¢/0x On/ox = 0¢/0z at z = n

For small amplitude waves, this becomes:

on/ot = 0p/0z at z =0

The dynamic or load constraint at the water surface is:

op/0t + Vo.Vo/2 + P/o + gn = 0 at z = nq

For small amplitude waves, this becomes:

op/ot + gn = 0 at z =0



Manipulation of the water surface constraints allows one to

eliminate n from the formulation. One gets:

o*p/0t* + gbp/dz = O at z =0
The Separation of Variables solution procedure gives:

® = @o Cosh[k(z+h)]/Cosh[kh] Cos (kX)

where kX = k(x - Cpt) = kx - ot where X 1s the horizontal
coordinate of a wave fixed frame, x 1s the horizontal
coordinate of an inertial frame, Cp is the wave phase speed,
k is the wave number and w is the wave frequency. The wave
number k in term of the wave length A is: k = 2m/A.
The wave profile equation has the form:

n = no Sin(kX)

Substitution into the combined water surface constraint gives

the dispersion relationships:

C; = +(g/k Tanh[kh])

@ = V(gk Tanh[kh])

These show that deep water waves travel faster than shallow
water waves. They also show that 1long wave length waves

travel faster than short wave length waves.

Substitution into the water surface constraints gives the

connection between potential amplitude and wave amplitude:



oo = - gT/[2m] H/2

where T is the wave period and H is the wave height.

Differentiation gives the water particle velocities:

U = 0¢p/0x = - ¢@o k Cosh[k(z+h)]/Cosh[kh] Sin (kX)
= + H/2 2n/T Coshl[k(z+h)]/Sinh[kh] Sin (kX)

W = 0p/0z = + @o k Sinh[k(z+h)]/Cosh[kh] Cos (kX)
- H/2 2n/T Sinh[k(z+h)]/Sinh[kh] Cos (kX)

These can be used to get drag loads on small structures.

The momentum equation gives the wave pressure

AP = pg n Cosh[k(z+h)]/Cosh[kh]

This can be used to get pressure loads on structures.

For deep water, the solution becomes:

® = @o e * Cos (kX) n = no Sin (kX)

With this, the dispersion relationships become:

Ce = Vg/k © = Vgk

The velocities become:



+ H/2 20/T X Sin (kX)
- H/2 2n/T e** Cos (kX)

=
Il

The wave pressure becomes:

AP = pg n e

Note that, at half a wave length down into the water:

kz _ glen/AV[-M2] o g 043

This shows that, at the half wave length depth, wave motions
are less than 5% of surface motions. It is customary to take
water to be deep when the seabed is below the half wave
length depth. This implies that, at Hibernia, where water
depth is around 75m, the water can be assumed to be deep for
wave lengths less than 150m. The dispersion relationship

shows that the period of 150m waves is around 10 seconds.
Wave energy travels at a speed known as the group speed. This
is generally not the same as the phase speed of a wave. One
can show that the group speed is given by:

Cc = dwo/dk = Cp (1/2 + [kh]/Sinh[2kh])
The wave energy density is:

E = 1/8 pg H’

One can show that wave energy flux is:



Group speed is responsible for many important phenomena.

Group speed can cause energy trap phenomena. For example, a
2D Moon moving over a body of shallow water would create

the following water surface deflection:

n/h = [P/p] / [U*-gh]

where U is the speed of the Moon. This equation shows that
infinite deflections would be generated if the Moon speed
matched the group speed. When something like a truck moves
slowly over a floating ice sheet, it generates a bowl
shaped depression directly beneath itself. However, as it
picks up speed, at some point bow and stern waves suddenly
appear in the sheet. It turns out that at the speed where
waves appear the group speed of the waves is equal to the
load speed. This means energy cannot propagate away from
the load. It becomes trapped in the load frame, and wave
amplitudes increase to absorb it. This can cause the sheet
to break. To prevent this, high speed loads travel through
the critical speed as fast as possible. For a 1Im thick

sheet, the critical speed is around 50km/hr.

Group speed also explains the wave pattern behind a ship.
When a ship 1is at a certain location, it puts a certain
amount of energy into the water. As the ship moves forward,
this energy propagates away from the generation site.
Someone flying overhead sees a stationary or fixed pattern
in the water relative to the ship. Only so much of the wave
energy put into the water contributes to such a stationary

pattern. The rest interacts with energy put in at other



sites and is cancelled out. If wave energy propagated at
the phase speed Cp, wave theory shows that the wave energy
which contributes to the stationary pattern would be found
on a circle passing through the site and the ship. However,
wave energy travels at the group speed Cg not the phase
speed. In deep water, Cg = Cp/2. This means wave energy
would be found on a circle half the size of that based on
phase speed. All of the circles based on group speed fall
inside a wedge known as the Kelvin Wedge. Wave theory and
observations also show that there are two types of waves

within the wedge: transverse and diverging waves.

Waves at sea after a storm are random. They are made up of an
infinite number of frequencies. A spectrum shows how the
energy 1in a wave field 1is spread out over a range of
frequencies. A popular 2 parameter fit to a wave amplitude

spectrum is the ITTC fit:

SI] — A/OO5 e—B/m4

A=346H%/T* B=691/T*
where H 1is the significant wave height and T 1is the
significant wave period. The Joint North Sea Wave Energy

Project or JONSWAP fit is popular 3 parameter fit.

A Response Amplitude Operator or RAO can be used to connect a

wave spectrum to a structure motion or load response spectrum

Sz = RAO® S,

An RAO 1is basically a Magnitude Ratio. For a specific wave

period, it is the amplitude of structure response divided by



the wave amplitude. For small structures, Morisons Equation
can be used to get RAOs. For large structures, they can be
obtained using the CFD procedure known as the Panel Method.
One can also get RAOs from experiments.

All sorts of statistical and probabilistic information can be

obtained from spectra. For structures, the analysis makes use

of the following moments of the spectrum:

M, = 1/2 |  Sp(e) o" do

One can show that the significant response height and period

of a structure motion or load are:
2 Rg = 4 M, Ts = 2m My/M;
The probability of a response exceeding a certain level is:
P (R,>R,) = e™* X = RJRe/ [2M]
The theory assumes that spectra follow a Rayleigh
Distribution. Actual spectra deviate from this and

predictions must often Dbe corrected. A correction factor

based on moments of the spectrum is:

CF = Vl-¢¢ e = [MeMa—MMp]/ [MoMa]

where ¢ is known as the broadness parameter.



TIME OR DISTANCE
COMPONENT WAVES



STRUCTURES IN WAVES

Full scale tests at sea or model tests in a wave tank are the
most accurate ways to study wave interaction with structures.
One can also use real fluid CFD packages like FLOW-3D, which
can often mimic the real world very closely. The image below
shows a hydrodynamics flow produced by FLOW-3D. It shows the
side launch of a ship step by step in time. For small

structures, one can also use the Morison Equation. For large

structures, one can use a Panel Method CFD procedure.




There can be two kinds of wave loads on a small structure:
wake load due to the formation of wakes back of the structure
and inertia load due to pressures in the water caused by
acceleration and deceleration of water particles in the wave.
In deep water, water particles move in circular orbits. In
finite depth water, the orbits are ellipses. Let the orbit
dimension normal to the structure be d and let the
characteristic dimension of the structure be D. When 5D<<d, a
well defined wake forms behind the structure. When 5D>>d,
such a wake does not form. When 5D is approximately equal to
d, flows are extremely complex. Let T be the wave period and
let T be the time it takes a water particle to move pass the
structure. It turns out that 5T<<T corresponds to 5D<<d while
5T>>T corresponds to 5D>>d. When 5D<<d, wakes form because
transit time is short relative to wave period. So, water is
moving sufficiently long 1in one direction to pass the
structure. When 5D>>d, wakes do not form because transit time
is long relative to wave period. So, before water particles

can pass the structure, they reverse direction.

For a small structure like a float, the drag load is

CD A e} S.S/2 S

while the inertia load is

Cu p B ds/dt



where S8 is the water particle velocity and dS/dt is the water
particle acceleration. The submerged frontal area of the
structure is A and its displaced volume is B. The drag and

inertia loads can be combined to get Morisons equation:

F = CphbA pS.S/2 s + Cyp B ds/dt

The drag and inertia coefficients depend on the shape of the
structure. For 5D much less than d, the drag coefficient Cp
for a sphere is around 0.5. For 5D much greater than d, the
inertia coefficient Cy for a sphere is around 0.5. In the

reverse limits, each coefficient is approximately zero.

Generally, one would look for the maximum values of S and
dS/dt to get upper limits on loads. Assume that you know the
wave height H and the wave period T. At Hibernia following a
storm, H would be around 5m while T would be around 10s. How
do you find maximum values of S and dS/dt? How do you get the

orbit size d? Wave theory gives the particle velocities:

(e
Il

0p/0x
0p/0z

+ H/2 2u/T Coshlk(z+h)]/Sinh[kh] Sin (kX)

=
Il

- H/2 21n/T Sinh[k(z+h)]/Sinh[kh] Cos (kX)

Differentiation gives the particle accelerations

- H/2 (2m/T)? Cosh[k(z+h)]/Sinh[kh] Cos (kX)
- H/2 (2n/T)? Sinh[k(z+h)]/Sinh[kh] Sin (kX)

du/dt
dw/dt



The particle positions are:

X, + H/2 Coshl[k(z+h)]/Sinh[kh] Cos (kX)
Zzo + H/2 Sinh[k(z+h)]/Sinh[kh] Sin (kX)

Xp

Zp
Wave theory also gives the dispersion relationship

C; = “(g/k Tanh[kh])

® = +V(gk Tanh[kh])

The dispersion relationship allows us to find the wave number
k given a wave period T. This in turn allows us to find the
particle velocities and accelerations. The particle position

equations allow us to determine the orbit size d.

For a large structure such as a GBS or an FPSO, one can use a
Panel Method CFD procedure to get motion or load responses.

The simplest Panel Method is based on the following integral:

op = 1/[2n] | [ 1/r 8po/dn - ¢o 0(1/r)/én 1 ds
s

where P and Q are points on the surface of the fluid. The
boundary conditions allow us to replace all of the 0py/0n
terms in the integral. The boundary conditions are: (1) the
seabed kinematic constraint (2) the water surface dynamic

and kinematic constraints (3) the structure kinematic

constraint (4) the radiation constraint on outer surface.



When the surface of the fluid is divided into panels,

integral can be replaced by the following sum:

op = 1/[2n] X [ 1/r 09y /On - @9 A(1l/r)/An ] AS
S

Together with boundary conditions, this equation gives

The unsteady Bernoulli equation then gives pressure:
op/0t + P/p + gz = O
Integration of pressure then gives loads:

F = -] Pnds M = -] P (r xn) ds
S S

Substitution into Newton's Second Law then gives motions.

Another Panel Method is based on the following integral:

o(P) = 1/[4n] | £(Q) G(P,Q) dS
S

the

The strengths f of the complex sources G are adjusted so

that there is no flow into the structure due to the wave.

The details of this are beyond the scope of this note.












