
 

 

 

WATER WAVE INTERACTION 

WITH STRUCTURES 

 

 

 

PREAMBLE 

 

Most water waves are generated by storms at sea. Many waves 

are present in a storm sea state: each has a different 

wavelength and period. Theory shows that the speed of 

propagation of a wave or its phase speed is a function of 

water depth. It travels faster in deeper water. Theory also 

shows that the speed of a wave is a function of its 

wavelength. Long wavelength waves travel faster than short 

wavelength waves. This explains why storm generated waves, 

which approach shore, are generally a single wavelength. 

Because waves travel at different speeds, they tend to 

separate or disperse. When waves approach shore, they are 

influenced by the seabed by a process known as refraction. 

This can focus or spread out wave energy onto a site. Close 

to shore water depth is not the same everywhere: so points on 

wave crests move at different speeds and crests become bent. 

This explains why crests which approach a shore line tend to 

line up with it: points in deep water travel faster than 

points in shallow water and overtake them.  

 

Wave energy travels at a speed known as the group speed. This 

is generally not the same as the phase speed. However for 

shallow water both speeds are the same and they depend only 



on the water depth. A large low pressure system moving over 

shallow water would generate an enormous wave if the system 

speed and the wave energy speed were the same. Basically wave 

energy gets trapped in the system frame when the system speed 

matches the wave energy speed. Tides are basically shallow 

water waves. Here the pull of the Moon mimics a low pressure 

system. Theory shows that if water depth was 22km everywhere 

on Earth the Moon pull would produce gigantic tides. They 

would probably drain the oceans and swamp the continents 

everyday. Fortunately the average water depth is only 3km.  

 

Water waves can interact with structures and cause them to 

move or experience loads. For wave structure interaction, an 

important parameter is 5D/λ where D is the characteristic 

dimension of the structure and λ is the wavelength. 

Structures are considered large if 5D/λ is much greater than 

unity: they are considered small if 5D/λ is much less than 

unity. Small structures are basically transparent to waves. 

Large structures scatter waves. There are two types of 

scattering: reflection and diffraction.  

 

These notes start with an overview of water wave theory. Then 

interaction of waves with small structures is considered. 

Finally interaction with large structures is considered.  



 

WATER WAVES 

 

To calculate wave interactions with structures, one needs a 

detailed knowledge of the wave field. Water wave theory 

provides this. It will be assumed for much of what is given 

below that wave amplitudes are very small. It turns out that 

this is good even for waves not far from breaking. Water 

waves in deep water propagate for long distances with little 

loss of energy. They lose energy in shallow water due to 

interaction with the seabed. They also lose energy when they 

move pass small structures and when they break on beaches. 

Water wave theory ignores these energy losses. It assumes 

that water has zero viscosity and it is incompressible. It 

also assumes that its motion is irrotational. This means that 

water particles do not spin. With these assumptions, the 

conservation laws reduce to potential flow forms.  

 

Conservation of mass considerations give: 

                

                     .v = 0        2
φ = 0    .  

 

The velocity vector v in terms of the potential φ is 

 

                      v = φ = Ui + Vj + Wk   .        

 

Conservation of momentum considerations give: 

 

        ρ v/t  + ρ  v.v/2   +   P  +   ρgz  =  0    

          φ/t  +  φ.φ/2   +  P/ρ  +  gz  =  C  .   

 



 

 

 



 

 

It turns out that, for water waves, mass is the main 

governing equation: momentum is used as a boundary condition. 

The kinematic or motion constraint at the seabed is: 

 

                   φ/z = 0      at z = -h   

 

where h is the water depth. The kinematic or motion 

constraint at the water surface is based on: 

 

                      Dη/Dt  =  Dz/Dt   

 

where η is the vertical deflection of the water from the 

still water line. The η for a point on the water must follow 

the z for that point. The constraint gives: 

 

        η/t  +  φ/x η/x  =  φ/z       at  z = η    . 

 

For small amplitude waves, this becomes: 

 

             η/t   =   φ/z        at  z = 0    . 

  

The dynamic or load constraint at the water surface is: 

 

   φ/t  +  φ.φ/2  +  P/ρ  +  gη  =  0     at  z = η  . 

      

For small amplitude waves, this becomes: 

 

              φ/t  +  gη  =  0     at  z = 0  . 

 



Manipulation of the water surface constraints allows one to 

eliminate η from the formulation. One gets: 

 

           2φ/t2  +  gφ/z  =  0      at  z = 0  . 

 

The Separation of Variables solution procedure gives: 

 

             φ = φO Cosh[k(z+h)]/Cosh[kh] Cos(kX)    

 

where kX = k(x - CPt) = kx - ωt where X is the horizontal 

coordinate of a wave fixed frame, x is the horizontal 

coordinate of an inertial frame, CP is the wave phase speed, 

k is the wave number and ω is the wave frequency. The wave 

number k in term of the wave length λ is: k = 2π/λ. 

 

The wave profile equation has the form:   

 

                       η = ηO Sin(kX)   . 

 

Substitution into the combined water surface constraint gives 

the dispersion relationships: 

 

                   CP  =  (g/k Tanh[kh])  

                    ω =  (gk Tanh[kh])   . 

  

These show that deep water waves travel faster than shallow 

water waves. They also show that long wave length waves 

travel faster than short wave length waves.  

 

Substitution into the water surface constraints gives the 

connection between potential amplitude and wave amplitude: 



 

                   φO  =  - gT/[2π] H/2 

 

where T is the wave period and H is the wave height.         

 

Differentiation gives the water particle velocities: 

 

   U  =  φ/x  =  - φO k Cosh[k(z+h)]/Cosh[kh] Sin(kX) 

       =  + H/2 2π/T Cosh[k(z+h)]/Sinh[kh] Sin(kX) 

 

   W  =  φ/z  =  + φO k Sinh[k(z+h)]/Cosh[kh] Cos(kX)  

       =  - H/2 2π/T Sinh[k(z+h)]/Sinh[kh] Cos(kX)   . 

 

These can be used to get drag loads on small structures. 

 

The momentum equation gives the wave pressure 

 

              ΔP  =  ρg η Cosh[k(z+h)]/Cosh[kh]  . 

 

This can be used to get pressure loads on structures.  

 

For deep water, the solution becomes: 

 

            φ = φO e
-kz
 Cos(kX)      η = ηO Sin(kX)  . 

 

With this, the dispersion relationships become: 

 

                CP = g/k       ω = gk   . 

 

The velocities become:  

 



             U = + H/2 2π/T e
kz
 Sin(kX)    

             W = - H/2 2π/T e
kz
 Cos(kX) . 

 

The wave pressure becomes: 

 

                   ΔP  =  ρg η e
kz
    . 

 

Note that, at half a wave length down into the water:  

 

              e
kz
 = e

[2π/λ][-λ/2]
 = e

-π
 = 0.043   .  

 

This shows that, at the half wave length depth, wave motions 

are less than 5% of surface motions. It is customary to take 

water to be deep when the seabed is below the half wave 

length depth. This implies that, at Hibernia, where water 

depth is around 75m, the water can be assumed to be deep for 

wave lengths less than 150m. The dispersion relationship 

shows that the period of 150m waves is around 10 seconds. 

 

Wave energy travels at a speed known as the group speed. This 

is generally not the same as the phase speed of a wave.  One 

can show that the group speed is given by: 

 

           CG  =  dω/dk  =  CP (1/2 + [kh]/Sinh[2kh])  . 

 

The wave energy density is: 

 

                     E = 1/8 ρg H2  . 

 

One can show that wave energy flux is: 

 

                      P =  CG  E  . 



   

Group speed is responsible for many important phenomena. 

 

Group speed can cause energy trap phenomena. For example, a 

2D Moon moving over a body of shallow water would create 

the following water surface deflection: 

 

                  η/h = [P/ρ] / [U
2
-gh] 

 

where U is the speed of the Moon. This equation shows that 

infinite deflections would be generated if the Moon speed 

matched the group speed. When something like a truck moves 

slowly over a floating ice sheet, it generates a bowl 

shaped depression directly beneath itself. However, as it 

picks up speed, at some point bow and stern waves suddenly 

appear in the sheet. It turns out that at the speed where 

waves appear the group speed of the waves is equal to the 

load speed. This means energy cannot propagate away from 

the load. It becomes trapped in the load frame, and wave 

amplitudes increase to absorb it. This can cause the sheet 

to break. To prevent this, high speed loads travel through 

the critical speed as fast as possible. For a 1m thick 

sheet, the critical speed is around 50km/hr.  

 

Group speed also explains the wave pattern behind a ship. 

When a ship is at a certain location, it puts a certain 

amount of energy into the water. As the ship moves forward, 

this energy propagates away from the generation site. 

Someone flying overhead sees a stationary or fixed pattern 

in the water relative to the ship. Only so much of the wave 

energy put into the water contributes to such a stationary 

pattern. The rest interacts with energy put in at other 



sites and is cancelled out. If wave energy propagated at 

the phase speed CP, wave theory shows that the wave energy 

which contributes to the stationary pattern would be found 

on a circle passing through the site and the ship. However, 

wave energy travels at the group speed CG not the phase 

speed. In deep water, CG = CP/2. This means wave energy 

would be found on a circle half the size of that based on 

phase speed. All of the circles based on group speed fall 

inside a wedge known as the Kelvin Wedge. Wave theory and 

observations also show that there are two types of waves 

within the wedge: transverse and diverging waves. 

 

Waves at sea after a storm are random. They are made up of an 

infinite number of frequencies. A spectrum shows how the 

energy in a wave field is spread out over a range of 

frequencies. A popular 2 parameter fit to a wave amplitude 

spectrum is the ITTC fit: 

 

                      Sη = A/ω
5
 e

-B/ω4
      

                  A=346H
2
/T

4
      B=691/T

4
 

 

where H is the significant wave height and T is the 

significant wave period. The Joint North Sea Wave Energy 

Project or JONSWAP fit is popular 3 parameter fit. 

 

A Response Amplitude Operator or RAO can be used to connect a 

wave spectrum to a structure motion or load response spectrum  

             

                       SR = RAO
2
 Sη   .  

 

An RAO is basically a Magnitude Ratio. For a specific wave 

period, it is the amplitude of structure response divided by 



the wave amplitude. For small structures, Morisons Equation 

can be used to get RAOs. For large structures, they can be 

obtained using the CFD procedure known as the Panel Method. 

One can also get RAOs from experiments. 

 

All sorts of statistical and probabilistic information can be 

obtained from spectra. For structures, the analysis makes use 

of the following moments of the spectrum: 

 

                                                                  

                   Mn = 1/2     SR(ω) ω
n
 dω     . 

                              0                         

One can show that the significant response height and period 

of a structure motion or load are:  

  

                 2 RS = 4 M0      TS = 2π M0/M1 . 

 

The probability of a response exceeding a certain level is: 

 

               P(Ro>R) = e
-X
        X = RR/[2M0]    .  

 

The theory assumes that spectra follow a Rayleigh 

Distribution. Actual spectra deviate from this and 

predictions must often be corrected. A correction factor 

based on moments of the spectrum is:  

 

             CF = 1-εε       ε = [M0M4-M2M2]/[M0M4]    

 

where ε is known as the broadness parameter. 

 

 



 

 

 

 



 

STRUCTURES IN WAVES 

  

Full scale tests at sea or model tests in a wave tank are the 

most accurate ways to study wave interaction with structures. 

One can also use real fluid CFD packages like FLOW-3D, which 

can often mimic the real world very closely. The image below 

shows a hydrodynamics flow produced by FLOW-3D. It shows the 

side launch of a ship step by step in time. For small 

structures, one can also use the Morison Equation. For large 

structures, one can use a Panel Method CFD procedure.  

 

 

 



 

There can be two kinds of wave loads on a small structure: 

wake load due to the formation of wakes back of the structure 

and inertia load due to pressures in the water caused by 

acceleration and deceleration of water particles in the wave. 

In deep water, water particles move in circular orbits. In 

finite depth water, the orbits are ellipses. Let the orbit 

dimension normal to the structure be d and let the 

characteristic dimension of the structure be D. When 5D<<d, a 

well defined wake forms behind the structure. When 5D>>d, 

such a wake does not form. When 5D is approximately equal to 

d, flows are extremely complex. Let T be the wave period and 

let Τ be the time it takes a water particle to move pass the 

structure. It turns out that 5Τ<<T corresponds to 5D<<d while 

5Τ>>T corresponds to 5D>>d. When 5D<<d, wakes form because 

transit time is short relative to wave period. So, water is 

moving sufficiently long in one direction to pass the 

structure. When 5D>>d, wakes do not form because transit time 

is long relative to wave period. So, before water particles 

can pass the structure, they reverse direction.  

 

For a small structure like a float, the drag load is  

 

                         CD A ρ S.S/2 s   

 

while the inertia load is   

 

                         CM ρ B dS/dt 

                    

 

 



where S is the water particle velocity and dS/dt is the water 

particle acceleration. The submerged frontal area of the 

structure is A and its displaced volume is B. The drag and 

inertia loads can be combined to get Morisons equation: 

 

            F  =  CD A ρ S.S/2 s  +  CM ρ B dS/dt  . 

 

The drag and inertia coefficients depend on the shape of the 

structure. For 5D much less than d, the drag coefficient CD 

for a sphere is around 0.5. For 5D much greater than d, the 

inertia coefficient CM for a sphere is around 0.5. In the 

reverse limits, each coefficient is approximately zero.  

                     

Generally, one would look for the maximum values of S and 

dS/dt to get upper limits on loads. Assume that you know the 

wave height H and the wave period T. At Hibernia following a 

storm, H would be around 5m while T would be around 10s. How 

do you find maximum values of S and dS/dt? How do you get the 

orbit size d? Wave theory gives the particle velocities: 

 

      U = φ/x =  + H/2 2π/T Cosh[k(z+h)]/Sinh[kh] Sin(kX) 

      W = φ/z =  - H/2 2π/T Sinh[k(z+h)]/Sinh[kh] Cos(kX) . 

 

Differentiation gives the particle accelerations 

 

    dU/dt = - H/2 (2π/T)
2
 Cosh[k(z+h)]/Sinh[kh] Cos(kX) 

    dW/dt = - H/2 (2π/T)
2
 Sinh[k(z+h)]/Sinh[kh] Sin(kX)   . 

 

 

 

 



 

The particle positions are:  

   

    xp  =  xo  + H/2 Cosh[k(z+h)]/Sinh[kh] Cos(kX) 

    Zp  =  zo  + H/2 Sinh[k(z+h)]/Sinh[kh] Sin(kX)  . 

 

Wave theory also gives the dispersion relationship 

 

               CP  =  (g/k Tanh[kh])   

                ω   =  (gk Tanh[kh])   . 

 

The dispersion relationship allows us to find the wave number 

k given a wave period T. This in turn allows us to find the 

particle velocities and accelerations. The particle position 

equations allow us to determine the orbit size d. 

 

For a large structure such as a GBS or an FPSO, one can use a 

Panel Method CFD procedure to get motion or load responses. 

The simplest Panel Method is based on the following integral:   

 

      φP  =  1/[2π]    [ 1/r φQ/n - φQ (1/r)/n ] dS 
                     S                        

 

where P and Q are points on the surface of the fluid. The 

boundary conditions allow us to replace all of the φQ/n 

terms in the integral. The boundary conditions are: (1) the 

seabed kinematic constraint (2) the water surface dynamic 

and kinematic constraints (3) the structure kinematic 

constraint (4) the radiation constraint on outer surface.    

 

 

 

 



 

 

When the surface of the fluid is divided into panels, the 

integral can be replaced by the following sum:  

 

   

       φP  = 1/[2π]    [ 1/r φQ /n - φQ (1/r)/n ] S  . 
                    S                        

 

Together with boundary conditions, this equation gives φP. 

The unsteady Bernoulli equation then gives pressure:  

 

                   φ/t + P/ρ + gz = 0   .  

 

Integration of pressure then gives loads:  

 

       F  =  -   P n dS       M  =  -   P (r x n) dS   . 
               S                       S 

 

Substitution into Newton's Second Law then gives motions.  

 

Another Panel Method is based on the following integral: 

 

            φ(P)  =  1/[4π]    f(Q) G(P,Q) dS   . 
                              S                  
 

The strengths f of the complex sources G are adjusted so 

that there is no flow into the structure due to the wave.  

The details of this are beyond the scope of this note.      

 

 



 

 



 

 

 



 


