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PIPE NETWORKS 

 

The basic element of a pipe network is a pipe.  

 

Conservation of mass for a pipe gives 

M
.

OUT = M
.

IN         

 

[ρCA]OUT = [ρCA]IN        

 

Since density and area are the same at inlet and outlet this 

equation implies that C is the same at inlet and outlet. 

 

Conservation of energy gives 

 

[M
.
gh]OUT - [M

.
gh]IN  =  M

.
ghT  -  M

.
ghL 

 

hOUT - hIN  =   hT  -  hL 

 

where at the inlet and outlet  

 

h = C2/2g + P/ρg + z      

 

and head loss is given by 

 

 

 

 



 

 

 

hL = (fL/D +K) C2/2g 

 

 

For a pipe without a turbomachine this reduces to 

 

 

[P/ρg + z]OUT - [P/ρg + z]IN 

 

= [fL/D +K] C2/2g 

 

= [fL/D +K]/[2gA2]  Q2 

 

= R Q2 

 

Note that for pipes in series the net resistance is  

 

R = R 

 

while for pipes in parallel the net resistance is  

 

 
[ 1 / [1/√R] ]2 

 

 

 

 

 

 



 

 

 

 

PRESSURE ITERATION METHOD FOR PIPE NETWORKS 

 
In the pressure iteration method, one would first assume 

pressure at each node in the network where it is not known. 

Then for each node one would assume pressures at the 

surrounding nodes to be fixed. Next for each pipe connected 

to the node one balances head loss with pressure/gravity 

head: here pumps are treated as negative head losses while 

turbines are treated as positive head losses. This allows us 

to calculate the flow in each pipe and its direction. One 

then calculates the sum of the flows into the node treating 

flows in as positive and flows out as negative. If the Q>0 

then the node acts like a sink and the pressure there is too 

low and must be increased a bit. If the Q<0 then the node 

acts like a source and the pressure there is too high and 

must be lowered a bit. Each node in the network is treated 

the same way. One sweeps through the network nodes again and 

again until the Q for each node is approximately zero.  

 

 

 

 

 

 

 

 

 

 



 

 

 

FLOW ITERATION METHOD FOR PIPE NETWORKS 

 
In the flow iteration method, one assumes a distribution of 

flow which satisfies Q=0 at each node in the network. The 

flow iteration method modifies flows throughout the network 

in a way which maintains Q=0 at each node. In the method one 

identifies pipe loops in the network. Then for each loop one 

calculates the sum of the head losses as one moves around it 

in a clockwise sense. If flow in a pipe is clockwise head 

loss is taken to be positive whereas if flow is 

counterclockwise head loss is taken to be negative. For a 

loop if the hL>0 then there is too much clockwise flow: so 

flows must be reduced a bit in a clockwise sense. This 

decreases clockwise flows and increases counterclockwise 

flows. If the hL<0 then there is not enough clockwise flow: 

so flows must be increased a bit in a clockwise sense. This 

increases clockwise flows and decreases counterclockwise 

flows. Each loop in the network is treated the same way. One 

sweeps through the network loops again and again until the 

hL for each loop is approximately zero. Special pseudo loops 

are used to connect reservoirs.     

     

 
 
 
 

 



 

SYSTEM DEMAND 

 
 

For a system where a pipe connects two reservoirs, the head H 

versus flow Q system demand equation has the form: 

 

H = X + Y Q2         
 

X = Δ [P/ρg + z]   Y = [fL/D + K]/[2gA2] 

 

X accounts for pressure and height changes between the 

reservoirs and Y accounts for losses along the pipe.  

 

To pick a pump, one first calculates the specific speed N 

based on the system operating point. This is a nondimensional 

number which does not have pump size in it:   

 

                    N   =  [N Q]/[H3/4] 

 

where N is the pump RPM, Q is its flow in GPM and H is its 

head in FEET. It allows one to pick the appropriate type of 

pump. Axial pumps have high Q but low H which gives them high 

N. Radial pumps have lower Q but higher H which gives them 

lower N. Positive Displacement pumps have the lowest Q but 

highest H which gives them the lowest N. Next one scans 

pump catalogs of the type indicated by specific speed and 

picks the size of pump that will meet the system demand.  

 

 

 



 

 

 



 

 

 



 

 

 

 



 

 

 

CAVITATION PREVENTION 

 

To prevent cavitation, the pump is located in the system at a 

point where it has the Net Positive Suction Head or NPSH 

recommended by the manufacturer: 

 

NPSH = Ps/ρg + CsCs/2g - Pv/ρg 

 

In this equation, Pv is the absolute vapor pressure of the 

fluid being pumped, and Ps and Cs are the absolute pressure 

and speed at the pump inlet. For a system where a pipe 

connects a low reservoir to a high reservoir, conservation of 

energy from the low reservoir to the pump inlet gives:  

 

Po/ρg  -  [Ps/ρg + CsCs/2g + d]  =  hL 

 

where Po is the absolute pressure of the air above the low 

reservoir and d is the height of the pump above the surface 

of the low reservoir. Manipulation gives 

 

d  =  (Po-Pv)/ρg  -  hL  –  NPSH 

 

This shows that d might have to be negative. 

 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

 

ILLUSTRATION: TANK PIPE SYSTEM 

 

A pump is used to draw 0.01 m3/s of water from a reservoir 

and deposit it in a holding tank open to atmosphere. The 

vertical distance from the surface of the reservoir up to the 

water surface in the holding tank is 100m. The diameter of 

the pipe that connects the reservoir to the tank is 0.25m and 

its length is 1000m. The pipe has roughness bumps that are 

0.025mm high. How much pump power would be required for this 

task? [35] How would you determine the type of pump 

appropriate for this task? [5] Say the pump manufacturer said 

it needed an NPSH of 5m. What does that mean? [5] Imagine 

that the pump is replaced by a 50m head turbine. How much 

power would the turbine produce? [15]  

 

For a single pipe Conservation of Energy gives 

 

hOUT - hIN = hT - hL 

h = C2/2g + P/ρg + z 

hL = (fL/D + K) C2/2g 

 

For the pump case : hOUT=100m and hIN=0. Take K=0.  We get 

flow speed C from Q=CA. We get Reynolds Number Re from 

Re=CD/. We get relative roughness ε from ε=e/D.  

 

C = Q/A = 0.01/[*0.252/4] = 0.01/0.0491 = 0.204m/s 

Re = CD/ = 0.204*0.25/0.000001 = 51000 

ε = e/D = 0.025/250.0 = 0.0001 



 

The Moody diagram gives the friction factor: f=0.02. 

Substitution into energy gives the pump head:  

hP = hOUT - hIN + (fL/D + K) C2/2g 

= 100 - 0 + (0.02*1000/0.25) 0.2042/[2*9.81] 

= 100m (approximately) 

 

Substitution into ρghPQ gives power: P = 9.8kW.  

 

 

The Specific Speed of a pump is equal to NQ/H3/4 where N is 

the rotor speed in RPM, Q is flow rate in GPM and H is pump 

head in FEET. A Specific Speed chart gives the pump type. 

 

The NPSH of a pump is equal to Ps/ρg + UsUs/2g - Pv/ρg. To 

avoid cavitation within the pump, the manufacturer recommends 

a certain value of NPSH: the inlet stagnation head should be 

greater than the vapor head by a specific amount. 

 

The head of the turbine is 50m. The reservoir head is 100m. 

This gives 50m of head that must be taken away by losses. 

Take K=0. Let f be 0.02. Substitution into energy gives C. 

Should use Moody Diagram to fine tune f. Substitution into 

Q=CA gives flow. Substitution into P=ρghtQ gives power.   

 

hOUT - hIN = hT - hL 

0 - 100 = - 50 - (fL/D + K) C2/2g 

C = √[50*2*9.81]/[0.02*1000/0.25] = 3.5 m/s 

Q = CA = 0.17m3/s      P = ρghtQ = 83kW 

 
 
 



ILLUSTRATION : HEAT EXCHANGER COIL 
 
 

A coil in a certain heat exchanger is 20m long and forms a 

closed loop. It has forty 180o bends each with K=0.5. The 

coil is made of copper pipe with ID equal to 1cm and 

roughness 0.0015mm. Derive the system demand equation for 

the exchanger. Let the water flow rate in the coil be 5gpm. 

What would be the pump power required to run the exchanger?   

 
 
Imagine that the coil is broken at some point: in this case 

the heat exchanger becomes like a regular pipe system with 

an inlet and an outlet. Because the inlet and outlet are at 

the same point, hOUT equals hIN. This implies that hP is equal 

to hL. The system demand equation is just    

 
hS = hL = (fL/D +K) C2/2g      C=Q/A 

 

The flow speed C is 4m/s. The Reynolds Number Re is 40000. 

The pipe roughness is 0.00015. Knowing the Reynolds Number 

and the pipe roughness we can get the friction factor from 

the Moody Chart: it is 0.022. The K is 20. Substitution into 

the system demand equation gives an hS of 52m. 

 

At the operating point the system demand head hS is equal to 

the pump head hP. Knowing hP we can get the pump power from 

the flow power equation 

 

P = PQ = ρg hP Q 

 

Substitution into this gives the power 161W.       

 



 

ILLUSTRATION : SIPHON 

 

A siphon is used to draw water from a small pond 20m above a 

cabin in the woods. The overall length of the siphon is 100m 

and its diameter is 2.5cm. It is made from plastic which can 

be taken to be smooth. Determine the flow rate through the 

basic siphon for the case where there is no friction. 

Determine the flow rate through the basic siphon for the case 

where there is friction. Determine the flow rate when a 20m 

head pump is added to help pump water downhill. What type of 

pump is appropriate for this system?  

 

When there is no friction conservation of energy reduces to 

 

hOUT = hIN  

 

hOUT = C2/2g    hIN = H 

 

This gives  

 

C = √[2gH]  = 19.8 m/s      

 

Q = C A = C πD2/4   

= 0.010 m3/s = 10.0 L/s 

 

The power in the flow P is 

 

P = P Q = ρ C2/2 C A  

= 196020 0.010 = 19602 Watts  

 



 

When there is friction conservation of energy reduces to 

 

hOUT = hIN - hL 

 

hOUT = C2/2g    hIN = H 

 

hL = (fL/D + K) C2/2g 

 

 

Manipulation of energy gives 

 

C2/2g = H - (fL/D + K) C2/2g 

 

H = C2/2g + (fL/D + K) C2/2g 

                   

H = (1 + fL/D + K) C2/2g 

 

Assume that the entrance K is 1.0 and the friction factor f 

is 0.01. In this case    

 

C = √[2gH] 

 

H = H / (1 + fL/D + K) 

= 20 / (1 + 40 + 1) = 0.476 

 

C = √[2gH] = 3.06 m/s 

 

Q = C A  

= 0.00154 m3/s = 1.54 L/s 

 



 

The Reynolds Number based on the above flow is 

 

Re = ρ C D / µ 

 
= 1000 3.06 0.025 / 0.001  = 76500 

 

The Moody Chart gives f around 0.019. This gives  

 

C = √[2gH] 

 

H = H / (1 + fL/D + K) 

= 20 / (1 + 76 + 1) = 0.256 

 

C = √[2gH] = 2.25 m/s 

 

Q = C A  

= 0.00114 m3/s = 1.14 L/s 

 

The power in the flow P is 

 

P = P Q = ρ C2/2 C A  

= 2531 0.00114 = 2.9 Watts  

 

Friction has consumed most of the available power.  

 

 

 

 

 

 



 

A curve fit to the Moody Chart for smooth pipes is 

 

f = 1.325 / [ ln [5.74/Re0.9 ] ]2 

 

Substitution into this gives   

 

f = 1.325 / [ ln [5.74/[76500]0.9 ]2 =  0.019 

 

This agrees with the Moody chart value.  

 

 

When a pump is added conservation of energy becomes 

 

hOUT = hIN + hP - hL 

where 

 

hOUT = C2/2g    H = hIN + hP 

 

hL = (fL/D + K) C2/2g 

 

Manipulation of energy gives 

 

C2/2g = H - (fL/D + K) C2/2g 

 
H = C2/2g + (fL/D + K) C2/2g 

                   
H = (1 + fL/D + K) C2/2g 

 

Assume that K is 1.0 and f is 0.01. In this case    

 

 



 

C = √[2gH] 

 

H = H / (1 + fL/D + K) 

= 40 / (1 + 40 + 1) = 0.952 

 

C = √[2gH] = 4.32 m/s 

 

Q = C A  

= 0.002.18 m3/s = 2.18 L/s 

 

 

The Reynolds Number based on the above flow is 

 

Re = ρ C D / µ 

 
= 1000 4.32 0.025 / 0.001 

 
= 108000 

 

The Moody Chart gives f around 0.018. This gives  

 

C = √[2gH] 

 

H = H / (1 + fL/D + K) 

= 40 / (1 + 72 + 1) = 0.541 

 

C = √[2gH] = 3.26 m/s 

 

Q = C A  

= 0.00165 m3/s = 1.65 L/s 

 



 

 

 

The power in the flow P is 

 

P = P Q = ρ C2/2 C A  

= 5314 0.00165 = 8.8 Watts 

 

 

The specific speed of a pump is 

 

N   =  [N Q]/[H3/4] 

 

Here H is 65.6 feet and Q is 26.1 GPM. Assume that N is 1800 

RPM. In the case the specific speed is 

 

N  = 1800 5.10 / 23.1 = 397 

 

So a positive displacement pump is appropriate.  

 

 

If there was a hill surrounding the pond that the siphon had 

to climb over before going down to the cabin, then cavitation 

could occur if the hill was high enough. Imagine that the 

siphon has a U shape as shown in the sketch on the next page.  

 

 

 

 

 

 



 

 

 

 

 

 



 

 

As the water moves up the left leg of the siphon, pressure 

will fall because of friction and also because of the drop in 

hydrostatic pressure because we are moving vertically through 

a column of water. As the water moves through the horizontal 

leg of the siphon, pressure will continue to fall because of 

friction. However, when the water starts moving down the 

right leg, pressure will increase because the pressure rise 

due to movement down through a column of water will be 

greater than the pressure drop due to friction. So, the 

minimum pressure will occur at the upper right hand corner.  

 

Conservation of Energy from the surface of the pond to the 

upper right hand corner of the siphon gives 

 

hOUT = hIN - hL 

 

hOUT = P/ρg +  C2/2g + d       hIN = 0 

 

hL = (fL/D + K) C2/2g         L = n + d + m 

 

 

When P is set to the vapour pressure of water, the only 

unknown in this equation is d. One finds that for low flow, 

it is approximately 10m. For high flow, it is less than 10m.  

 

 


