FLUIDS IN MOTION

CONSERVATION

LAWS



FORMULATIONS
The Lagrangian Formulation focuses on a specific group of fluid
particles in a flow. It is the most natural way to develop the
governing equations but it not very practical from a mathematical
point of view because there are just too many groups in a flow to
follow. The Eulerian Formulation focuses on a specific region in
space. Mathematically this control volume approach is much more
practical. Here we start with the Lagrangian Formulation but use

the Transport Theorem to switch to the Eulerian Formulation.

CONSERVATION OF MASS
Consider an arbitrary specific group of fluid particles with volume
V and surface S anywhere within a flow. A differential volume dV
within V would contain mass pdV where p is the fluid density.
Integration over the volume gives the total mass of the group.
According to Conservation of Mass, the time rate of change of the
mass of the group is zero. Mathematically we can write

D/Dt | p dv = 0
v

Using the Transport Theorem this can be rewritten as

[ 6p/0t v + [ p wv.n ds = 0
\Y S



where v is the fluid velocity and n is the unit outward normal at
points on S. For steady flow in a streamtube with a single inlet

and a single outlet conservation of mass reduces to

[cCAlour - [PCAlwy = D7IOUT - M = 0

where C is the flow speed and A is the tube area.

CONSERVATION OF MOMENTUM
Consider again an arbitrary specific group of fluid particles with
volume V and surface S anywhere within a flow. A differential
volume dV within V would contain momentum pdVw. Integration over V
gives the total momentum of the group. According to Conservation of
Momentum, the time rate of change of the momentum of the group is
equal to the net force acting on it. The forces acting can be of
two types: surface forces and body forces. Surface forces in turn
can be of two types: pressure and viscous traction. Body forces are
generally due only to gravity. Mathematically we can write

D/Dt | pv dVv = [ o ds + [ pb dv

\Y S \Y

where o i1s a vector representing the stress or force per unit area

at any point on the surface S and b is a vector representing the



body force per unit mass at any point within the wvolume V. Using

the Transport Theorem the integral can be rewritten as

[ 6pov/ot av + [ ov v.ndsS = + [ ods + [ pb dv

\Y% S S Y
For short streamtubes friction and gravity are often insignificant.
In this case for steady flow in a streamtube with a single inlet

and a single outlet conservation of momentum reduces to

[ovCA]our - [ovCA]l iy = (MVv]our - [Mv]

- [PAn]our - [PAn],y + R

where R 1s the wall force on the fluid in the streamtube.

CONSERVATION OF ENERGY
Consider once more an arbitrary specific group of fluid particles
with volume V and surface S anywhere within a flow. A differential
volume dV within V would contain energy edV where e is the fluid
energy density. The energy density consists of internal energy and

observable kinetic and potential energies:

e = u + v.v/2 + gz

Integration over the volume gives the total energy of the group.

According to Conservation of Energy, the time rate of change of the



energy of the group is equal to rate at which heat flows to the
group from the surroundings plus the rate at which the surroundings

does work on the group. Mathematically we can write

D/Dt | pe dv = - [ q.n ds + [ v.o ds
\ S s

A body force due to gravity work term is not present in this
integral because it has already been accounted for as potential
energy 1n energy density. Using the Transport Theorem the integral

can be rewritten as

[ 6pe/ot av + [ pev.nds = -Jqnds + [ wv.o ds
\ S S S

For steady adiabatic isothermal flow in a streamtube with a single

inlet and a single outlet conservation of energy becomes

[ (oCA) (C?/2+9z+P/p) lour - [ (oCA) (C?/2+gz+P/p) ] 1
=  (Mgh)ogr - (Mgh)y = T - 1=

where h is the flow head

h = C?/29 + P/pg + =z

and T accounts for losses and T accounts for shaft work.



REYNOLDS TRANSPORT THEOREM

Consider an arbitrary specific group of fluid particles anywhere in
a flow and follow it for a short period of time At. Let o be any
property of the fluid within the group. The Lagrangian rate of

change of the integral of o over the volume V of the group is

D/Dt [ a(t) dv = Lim [ Ja(t) av - [ oa(t) d4v 1 / At
V (t) At—0 v (t") V (t)

*

where t = t + At. Now adding and subtracting the integral of o(t )

over V(t) inside the [] brackets allows us to rewrite the limit as
Lim [ [ oty av - [ o(t) av 1 / ot
At—0 V(t) V(t)
+ Lim [ [Jo(’) av - [ o)) av 1 / ot
At—0 v(t") V(t)

The first limit gives the Eulerian local derivative

[ 6o/t av
V(t)
Geometric considerations give AV = [vAt].[ndS] where S(t) is the

surface which encloses V(t). At any point on this surface v is the
velocity of the fluid and n is the unit outward normal there. The

AV equation allows us to replace the second limit with



[ a(t) v.n ds
S (t)

So we can replace the original integral as follows

D/Dt | oa(t) dv = [ éa/ét dav + | a(t) v.n dS
V(t) V(t) S (t)

This is Reynolds Transport Theorem.

rF



CONSERVATION LAWS IN INTEGRAL FORM

Conservation of Mass states that the time rate of change of mass of a
specific group of fluid particles in a flow is zero. Conservation of
Momentum states that the time rate of change of momentum of a
specific group must balance with the net load acting on it.
Conservation of Energy states that the time rate of change of energy
of a specific group must balance with heat and work interactions of

the group with its surroundings. Mathematically one can write:

Conservation of Mass

D/Dt [ p dv - Jop/ot @V + [ pw.nds = 0
Vv Vv S

Conservation of Momentum

/Dt | [pv] dv = [ d[pv]/ot dv + | [pv] v.n ds
\4 Vv S
= [ods + [ ob av
s v

Conservation of Energy

p/Dt | [pe] av = [ d[pel/ot av + | [pe] w.n ds
v v s

= - f qg.n dS + [ v.o ds
S S



where V is volume, S is surface area, t 1is time, n is outward unit
normal on S, v is velocity, p is density, o denotes surface stresses
such as pressure and viscous traction, b denotes body forces such as

gravity, e is energy density and q denotes heat flux.

CONSERVATION LAWS IN STREAM TUBE FORM

Conservation of Mass for a stream tube is:

[pCAlour — [PCA]lmw = 0

In this equation, p is density, C is flow speed and A is tube area.

Letting pCA equal M allows one to rewrite mass as

l\7IOUT_ My =0 Moyr = M1y
Conservation of Momentum for a stream tube is:
[ovCA]our — [pVvCA]ly = - [PAn]oyr - [PAn]y + R

Expansion gives

[MUlJougr = [MU]Jw = - [PAny]Jour — [PAny]in + Ry
[MV]OUT - [MV]IN = - [PAnylour - [PAny]linx + Ry

[MWloyr — [MW]w = - [PAn;lour - [PAn;]lmww + R,



In these equations, P is pressure, U V W are velocity components and

R is the wall force on the fluid.

Conservation of Energy for a stream tube is
[peCA]our — [peCA]lwy =

[M (C?/2 + gz)lour — [M (C%/2 + gz)]m

= - [PAC]oyr + [PAClyy + T - T

Manipulation gives

[Mghlopr - [Mghly = + T -1
where h is known as head and is given by
h = C°/2g + P/og + z

It represents each energy as an equivalent height of fluid. One can

represent shaft power and lost power as

rf = D’.[ghT ]: = D’.[ghL

The head loss is given by

h; = (fL/D +ZK) C?/2g

where f is pipe friction factor, L is pipe length, D is pipe diameter

and K accounts for losses at constrictions.






TURBOMACHINE POWER

Swirl is the only component of fluid velocity that has a moment arm
around the axis of rotation or shaft of a turbomachine. Because of
this, it is the only one that can contribute to shaft power. The

shaft power equation is:

The swirl or tangential component of fluid velocity is Vyp. The symbol
A indicates we are looking at changes from inlet to outlet. The
tangential momentum at an inlet or an outlet is pQ Vy. Multiplying
momentum by moment arm R gives the torque T. Multiplying torque by
the speed w gives the power I®. The power equation is good for pumps
and turbines. Power 1is absorbed at an inlet and expelled at an
outlet. If the outlet power is greater than the inlet power, then the
machine is a pump. If the outlet power is less than the inlet power,
then the machine is a turbine. Geometry can be used to connect Vr to

the flow rate Q and the rotor speed w.



