
 

 
 



 
 
 

 
 



 

 

TURBOMACHINE POWER 

 

 
Swirl is the only component of fluid velocity that has a 

moment arm around the axis of rotation or shaft of a 

turbomachine. Because of this, it is the only one that can 

contribute to shaft power. The shaft power equation is:  

 

P = Δ [T ω] = Δ [ρQ VT R ω] 

 
The swirl or tangential component of fluid velocity is VT. 

The symbol Δ indicates we are looking at changes from inlet 

to outlet. The tangential momentum at an inlet or an outlet 

is ρQ VT. Multiplying momentum by moment arm R gives the 

torque T. Multiplying torque by the speed ω gives the power 

P. The power equation is good for pumps and turbines. Power 

is absorbed at an inlet and expelled at an outlet. If the 

outlet power is greater than the inlet power, then the 

machine is a pump. If the outlet power is less than the inlet 

power, then the machine is a turbine. Geometry can be used to 

connect VT to the flow rate Q and the rotor speed ω. 

 

Theoretical analysis of turbomachines makes use of a number 

of velocities. These are: the tangential flow velocity VT; 

the normal flow velocity VN; the blade or bucket velocity VB; 

the relative velocity VR; the jet velocity VJ.     

 

 

 

 



 

 

 

 

 

 

 

 



 

 

 

 

 



 

 

 

ELECTRICAL ANALOGY  

 
Electrical power P is V I where V is volts and I is current. 

By analogy, fluid power P is P Q where P is pressure and Q is 

volumetric flow rate. Note that power is force F times speed 

C. In a flow, force F is pressure P times area A. So power is 

P times A times C. Now volumetric flow rate Q is C times A. 

So power becomes P times Q. One can write pressure P in terms 

of head H as: P=ρgH. Power becomes: P=ρgHQ. Voltage drop 

along a wire is V=RI where R is the resistance of the wire. 

By analogy, the pressure drop along a pipe due to losses is 

P=RQ2 where R is the resistance of the pipe. 

 

 

TURBOMACHINE SCALING LAWS 

Scaling laws allow us to predict prototype behavior from 

model data. Generally the model and prototype must look the 

same. This is known as geometric similitude. The flow 

patterns at both scales must also look the same. This is 

known as kinematic or motion similitude. Finally, certain 

force ratios in the flow must be the same at both scales. 

This is known as kinetic or dynamic similitude. Sometimes 

getting all force ratios the same is impossible and one 

must use engineering judgement to resolve the issue.  

 



 

 

SCALING LAWS FOR TURBINES 

 

 

For turbines, we are interested mainly in the power of the 

device as a function of its rotational speed. The simplest 

way to develop a nondimensional power is to divide power P 

by something which has the units of power. The power in a 

flow is equal to its dynamic pressure P times its 

volumetric flow rate Q:  

                                

P Q 

 

So, we can define a power coefficient CP:   

 

CP  =  P / [P Q]  

                        

To develop a nondimensional version of the rotational speed 

of the turbine, we can divide the tip speed of the blades 

R by the flow speed U, which is usually equal to a jet 

speed VJ. So, we can define a speed coefficient CS:   

 

CS  = R / VJ 

 

 

 



 

SCALING LAWS FOR PUMPS 

 

For a pump, it is customary to let N be the rotor RPM and D 

be the rotor diameter. All flow speeds U scale as ND and all 

areas A scale as D2. Pressures are set by the dynamic 

pressure ρU2/2. Ignoring constants, one can define a 

reference pressure [ρN2D2] and a reference flow [ND3]. Since 

fluid power is just pressure times flow, one can also define 

a reference power [ρN3D5]. Dividing dimensional quantities by 

reference quantities gives the scaling laws: 

 

Pressure Coefficient    CP = P / [ρN2D2] 

 

Flow Coefficient    CQ = Q / [ND3] 

 

Power Coefficient   CP = P / [ρN3D5] 

  

On the pressure versus flow characteristic of a pump, there 

is a best efficiency point (BEP) or best operating point 

(BOP). For geometrically similar pumps that have the same 

operating point on the CP versus CQ curve, the coefficients 

show that if D is doubled, P increases 4 fold, Q increases 8 

fold and P increases 32 fold, whereas if N is doubled, P 

increases 4 fold, Q doubles and P increases 8 fold.   

 

 

 

 

 



 

 

 

PELTON WHEEL TURBINE THEORY 

 

The power output of the turbine is: P = T ω where T is the 

torque on the rotor and ω is the rotational speed of the 

rotor. The torque is:  

 

T =  (ρQ VT R) 
 
 
The tangential flow velocities at inlet and outlet are: 

   

VIN = VJ      VOUT = (VJ - VB) K Cosβ + VB 

 

where β is the bucket outlet angle and K is a loss factor. 

The blade and jet velocities are:  

 

VB = R ω        VJ = k √[2P/ρ] 

 

So power becomes: 

 

P =  ρQ (VJ - VB) (1 – K Cosβ) VB 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 



 

 

 

FRANCIS TURBINE THEORY 

 

The power output of the turbine is: P = T ω  where T is 

the torque on the rotor and ω is the rotational speed of 

the rotor. The torque is:  

 

T =  (ρQ VT R) 
 
 
The tangential flow velocities at inlet and outlet are: 

   

VIN = VN Cot[α]      VOUT = VB + VN Cot[β]  

 

where α is the inlet guide vane angle and β is the blade 

outlet angle. The blade and normal velocities are:  

 

VB = R ω     VN = Q / [π 2R h] 

 

where h is the depth of the rotor. So power becomes: 

 

P =  ρQ (VIN RIN – VOUT ROUT) ω 

= ρQ ( [VTVB]IN – [VTVB]OUT ) 

 

 

 

 

 

 



 

 

 

 



 

 

KAPLAN TURBINE THEORY 

 

The power output of the turbine is: P = T ω  where T is 

the torque on the rotor and ω is the rotational speed of 

the rotor. The torque is:  

 

T =  (ρQ VT R) 
 
 
The tangential flow velocities at inlet and outlet are: 

   

VIN = VN Cot[α]      VOUT = VB + VN Cot[β]  

 

where α is the inlet guide vane angle and β is the blade 

outlet angle. The blade and normal velocities are:  

 

VB = (RO+RI)/2 ω     VN = Q / [π (RO RO – RI RI)] 

 

where RO and RI are outer radius and inner radius of the 

blade respectively. So power becomes: 

 

P =  ρQ (VIN RIN – VOUT ROUT) ω 

= ρQ ( [VTVB]IN – [VTVB]OUT ) 

 

 

 

 

 

 



 

 



 

 

CENTRIFUGAL PUMP THEORY 

 

The power output of the pump is:  

 

P = T ω  =  (ρQ VT R) ω 

 

The tangential flow velocities at inlet and outlet are: 

   

VIN = VN Cot[α]      VOUT = VB + VN Cot[β]  

 

The blade and normal velocities are:  

 

VB = R ω     VN = Q / [π 2R h] 

 

Power output is also  

P = P Q 

 

Manipulation gives 

 

P = P / Q  =  (ρ VT R) ω 

= ρ (VOUT ROUT – VIN RIN) ω 

= ρ ( [VTVB]OUT – [VTVB]IN ) 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

 

PROPELLOR PUMP THEORY 

 

The power output of the pump is:  

 

P = T ω =  (ρQ VT R) ω 

 
 
The tangential flow velocities at inlet and outlet are: 

   

VIN = VN Cot[α]      VOUT = VB + VN Cot[β]  

 

The blade and normal velocities are:  

 

VB = (RO+RI)/2 ω        VN = Q / [π (RO RO – RI RI)] 

 

Power output is also  

 

P = P Q 

 

Manipulation gives 

 

P = P / Q  =  (ρ VT R) ω 

= ρ (VOUT ROUT – VIN RIN) ω 

= ρ ( [VTVB]OUT – [VTVB]IN ) 

 

 

 

 

 



 

 

 

 

 

 

 

 


	PAGES.pdf
	PAGES.pdf
	TURBO

	TURBO

