
 

                   

NAME:                    JOE CROW           

___________________________________________________________ 

 

 

ENGINEERING 6951 

 

AUTOMATIC CONTROL ENGINEERING 

 

 

FINAL EXAM 

 

FALL 2011 

 

 

MARKS IN SQUARE [] BRACKETS 

 

 

 

 

INSTRUCTIONS 

 

NO NOTES OR TEXTS ALLOWED 

NO CALCULATORS ALLOWED 

GIVE CONCISE ANSWERS 

ASK NO QUESTIONS  



 

SYSTEM DESCRIPTION 

 

Rollers are used to control the thickness of material 

sheets. A hydraulic actuator forces rollers onto the sheet. 

The thickness sensor is located downstream of the rollers 

and this introduces a transport lag. Here we use the Pade 

approximant to approximate this lag. The governing 

equations for the system are: 

  

SENSOR    + T/2 dP/dt + P  =  - T/2 dR/dt + R 

 

THICKNESS ERROR     E = C – P         

 

 CONTROL SIGNAL     Q  =  K E  

 

OIL FLOW TO ACTUATOR     M  =  A Q       

 

VELOCITY OF ACTUATOR      B V  =   M  +  N 

 

SHEET THICKNESS   X dR/dt  =  V 

 

where R is the actual thickness of the sheet at the 

rollers, P is the thickness of the sheet at the sensor, C 

is the command thickness, T is the time lag, V is the 

actuator velocity, M is a control flow to the actuator, N 

is a disturbance flow due to leakage, Q is the control 

signal, E is the error signal, T K A B X are constants.  

 

                 T=2    A=1    B=1    X=1 



Sketch an overall block diagram for the system. [10] 

 

 

The transfer functions are:  

 

+ T/2 S P + P  =  - T/2 S R + R 

 

P/R = [1 - T/2 S] / [1 + T/2 S] 

 

 

E = C – P        Q  =  K E    M  =  A Q         

 

B V  =   M  +  N      V/[M + N] = 1/B     

 

X S R  =  V      R/V = 1/[XS] 

 



 

Derive equations for the system Ziegler Nichols gains. 

[Hint: Differentiate sensor equation wrt time.] [10] 

 

Differentiation gives 

 

+ T/2 d2P/dt2 + dP/dt  =  - T/2 d2R/dt2 + dR/dt 

 

X dR/dt  =  V     X d2R/dt2  =  dV/dt 

 

V = [A K (C-P) + N] / B 

 

dV/dt = [A K (dC/dt-dP/dt) + dN/dt] / B 

 

 

Substitution into the sensor equation gives 

 

+ T/2 d2P/dt2 + dP/dt  = 

 

- T/2 [A K (dC/dt-dP/dt) + dN/dt] / [B X] 

 

+ [A K (C-P) + N] / [B X] 

 

Assume that the system is borderline with P: 

 

P = Po + P Sin[ωt] 

 

Assume that the inputs are constants: 

  

 

 



 

C = Co     N = No 

 

 

Substitution into the sensor equation gives 

 

 

- T/2 ω2 P Sin[ωt]  + ω P Cos[ωt]   = 

 

+ T/2 [A K] ω P Cos[ωt] / [B X] 

 

+ [[A K] [Co-Po] + No] / [B X]  - [A K] P Sin[ωt] / [B X] 

 

 

This is of the form  

 

i Sin[ωt]  +  j Cos[ωt]  +  k  =  0 

 

Mathematics requires that 

 

i = 0    j = 0    k = 0 

 

K = [T/2]/A    ω2 = [AK]/[T/2]    Po = Co + No/[AK] 

 

Plugging in numbers gives 

 

K = 1     ω = 1      Po = Co + No 

      



 

 

Develop equations that would allow the behavior of the 

system to be predicted step by step in time. For this, use 

an exact representation of the transport lag. [10] 

 

 

The exact representation of the transport lag is 

 

P(t) = R(t-T) 

 

When this is used, the only ODE is 

 

X dR/dt  =  V 

 

An application of time stepping to this gives 

 

RNEW = ROLD + t [VOLD/X] 

 

The algebraic equations are 

 

EOLD = COLD – POLD       QOLD  =  K EOLD 

 

MOLD  =  A QOLD      VOLD  = [MOLD + NOLD]/B 

 

 



 

 

Determine the characteristic equation for the system. [10] 

 

 

The GH function is: 

 

[ A * K ] * [ 1 - T/2 S ] 
_______________________________ 

 
B * [ X S ] * [ 1 + T/2 S ]  

 

K * [ 1 - S ] 
______________ 

 
S * [ 1 + S ]  

 

This is of the form  

 

GH = N/D 

 

The characteristic equation is: 

 

N + D  =  0 

 

K * [1 - S]  +  S * [1 + S]  =  0 
 

 

S2   +  [1 – K] S  +  K  =  0 



 

 

Use the Routh Hurwitz criteria to determine the borderline 

gain of the system. [5] Is the system stable when K is half 

the borderline gain? [5] 

 

 

For stable operation of a system, all coefficients in its 

characteristic equation must be positive. In addition, 

certain tests functions must be positive.  

 

A quadratic characteristic equation has the form  

 

a S2   +  b S  +  c  =  0 

 

It has no test functions. For stable operation, each of its 

coefficients must be positive: a>0 b>0 c>0.   

 

For thickness control, this implies 

 

K > 0       [1 - K] > 0 

 

This gives the borderline gain K=1. When K is half the 

borderline gain K, [1-K] is 1/2 which is greater than zero 

so the system is stable with this gain. 

 

 



Sketch the Nyquist plot when K is half the borderline gain. 

[10] What are the system stability margins? [5] Explain the 

significance of GH equal to minus one. [2.5] What function 

would model the transport lag exactly? [2.5]  

 

The GH function is 

 

[ A * K ] * [ 1 - T/2 S ] 
_______________________________ 

 
B * [ X S ] * [ 1 + T/2 S ]  

 

K * [ 1 - S ] 
______________ 

 
S * [ 1 + S ]  

 

Along the imaginary axis in the S plane S=jω 

 

K * [ 1 - ωj ] 
_________________ 

 
ωj * [ 1 + ωj ]  

 
 

K * ( 1 – ωj ) * ( 1 – ωj )  

_____________________________ 

  
ωj * ( 1 + ωj )* ( 1 – ωj ) 

 
 

K * ( 1 - 2ωj  - ω2 )  
____________________ 

 
ωj * ( 1 + ω2 )  

 

 



 

As ω approaches zero, the GH function reduces to  

 

K * ( 1 )  
_____________     

 
ωj * ( 1 )  

 

which tends to minus infinity j. 

 

 

As ω approaches infinity the GH function reduces to  

 

 
                   K * ( -ω2 )          -K 

_______________       _____ 
   

 ωj * ( +ω2 )           ωj  

 

 

which tends to plus zero j.  

 

A real axis cross over occurs when ω2 is equal to one. In 

this case, the GH function becomes 

 

 
            0.5 * ( - 2ωj )        0.5 * ( - 2j )  

________________       _______________ 
 

            ωj * ( 1 + ω2 )          j * ( 2 )  

 

which is equal to minus 0.5. 

 

 

 



The GH plot is shown on the next page. Inspection of the 

plot shows that the net clockwise rotations is zero. 

Inspection of the GH function shows that the number of 

unstable poles is zero. The number of unstable zeros is: 

 

N = NZ – Np         NZ = N + Np 

 

This gives NZ equal to zero. So the system is stable.  

 

The gain margin is one over the magnitude of GH where it 

crosses the negative real axis. Here it is 2. The phase 

margin is the angle to where the GH plot crosses a unit 

circle centered on the origin. One could get this by 

plotting more points on the GH plot.    

 

A GH plot is basically a polar open loop frequency response 

plot. When GH is equal to minus one, a command sine wave 

produces a response which has the same magnitude as the 

command but is 180o out of phase. If the command was suddenly 

removed and the loop was suddenly closed, the negative of the 

response would take the place of the command and keep the 

system oscillating. If the gain was bigger than K, the 

command would produce a response bigger than itself. When 

this takes over, it would produce growing or unstable 

oscillations. If the gain was smaller than K, the command 

would produce a response smaller than itself. When this takes 

over, it would produce decaying or stable oscillations.  

The function e-TS models transport lags exactly. 

 

 

 



 

 

 



 

Use Root Locus concept to check the borderline gain. [10] 

 

 

The GH function is: 

 

K * [ 1 - S ] 
______________ 

 
S * [ 1 + S ]  

 

 

 

Nyquist suggests ω=1. In this case the angles are: 

 

-45    -90    -45       =   -180 

 

The magnitudes are: 

 

        [K * 2] / [1 * 2]  =  1      K = 1 

 

 

 



 

 

Determine the amplitude and the period of the limit cycle 

generated when the system is controlled by an ideal relay 

controller with DF=1/Eo. [5] Is the limit cycle stable? 

[2.5] Is the system practically stable? [2.5]. For this 

problem, assume that R is in millimeters. [BONUS: For relay 

with deadband: What is the critical deadband?] 

 

 

At a limit cycle the DF is equal to the borderline gain: 

 

DF = K = 1/Eo 

 

Eo = 1/K = 1 

 

The limit cycle frequency is ω=1. So the period is 

 

To = 2/ω = 2 

 

This is a system which is stable when K is below the 

borderline gain K. So the limit cycle is stable. If the 

sheet being rolled was around 1mm thick, the system would 

be practically unstable. If the sheet was 10cm thick, it 

might be practically stable.   

 

Relay with deadband controller: DF theory shows that the 

critical deadband is half the limit cycle amplitude. 



 

 

 

 

 



Write a short m code that would predict the behavior of the 

system step by step in time. For this, use an exact 

representation of the transport lag. [5] Add statements to 

the code that would mimic loop rate phenomena. [5] 

 

 

A=1;B=1;X=1;K=0.5; 

ROLD=0.0; POLD=0.0; 

COLD=1.0; NOLD=0.0; 

NIT=10000; MIT=50; PIT=10; 

EOLD=COLD-POLD; JIT=0; 

QOLD=K*EOLD; DELT=0.01; 

for IT=1:NIT 

JIT=JIT+1; 

if(JIT==1) 

if(IT>MIT)  

 POLD=R(IT-MIT); 

 EOLD=COLD–POLD;  

end;end; 

if(JIT==PIT) 

QOLD=K*EOLD; 

JIT=0;end; 

MOLD=A*QOLD;       

VOLD=[MOLD+NOLD]/B; 

RNEW=ROLD+DELT*[VOLD/X]; 

ROLD=RNEW;R(IT)=RNEW; 

T(IT)=IT*DELT; 

end 

plot(T,R) 

 



 

BONUS [5] 

 

Briefly explain EITHER the basis for the Nyquist procedure 

OR the basis for the Describing Function procedure. 

 

NYQUIST PROCEDURE: The 1+GH function is made up of S-Z and 

S-P factors, where Z denote a zero while P denote a pole. 

When S moves clockwise around a contour which surrounds the 

entire right half or unstable half of the S plane, unstable 

zero factors cause clockwise rotations of 1+GH whereas 

unstable pole factors cause counterclockwise rotations. 

Only unstable zero or pole factors cause such rotations. 

Stable zero or pole factors only cause the 1+GH function to 

swing back and forth or nod up and down. The net clockwise 

rotations N is equal to the number of unstable zeros NZ 

minus the number of unstable poles NP. One gets N by 

inspection of the 1+GH plot and NP from inspection of the 

1+GH function. This allows one to calculate NZ = N + NP.  

 

DESCRIBING FUNCTION PROCEDURE: Many systems with nonlinear 

controllers behave like a borderline stable system with a 

borderline proportional gain. The controller seems to be 

able to adjust its gain to make the system borderline 

stable. The describing function DF for a nonlinear 

controller approximates this adjustable gain. 

 


