

JOE CROW

NAME : _____

AUTOMATIC CONTROL ENGINEERING

QUIZ #2

NO NOTES OR TEXTS ALLOWED

NON PROGRAMMABLE CALCULATORS ALLOWED

NO OTHER ELECTRONIC DEVICE ALLOWED

ASK NO QUESTIONS

The equations for a certain system are:

PLANT

$$X \frac{d^2R}{dt^2} + Y \frac{dR}{dt} + Z R = M P + D$$

DRIVE

$$U \frac{d^2P}{dt^2} + V \frac{dP}{dt} + W P = N Q$$

CONTROLLER

$$Q = K E$$

$$E = C - R$$

where R is the actual state, C is the command state, E is the state error, P is the drive signal, D is a disturbance, Q is the control signal, K is the gain and $X Y Z U V W$ are system parameters:

$$U=1 \quad V=2 \quad W=1 \quad X=1 \quad Y=4 \quad Z=4 \quad M=4 \quad N=2$$

Determine the proportional gain K_p and period T_p for borderline stable operation.

Manipulation of the plant equation gives

$$\begin{aligned} P &= [Xd^2R/dt^2 + YdR/dt + ZR - D] / M \\ dP/dt &= [Xd^3R/dt^3 + Yd^2R/dt^2 + ZdR/dt - dD/dt] / M \\ d^2P/dt^2 &= [Xd^4R/dt^4 + Yd^3R/dt^3 + Zd^2R/dt^2 - d^2D/dt^2] / M \end{aligned}$$

Substitution into the drive equation gives

$$\begin{aligned} U [Xd^4R/dt^4 + Yd^3R/dt^3 + Zd^2R/dt^2 - d^2D/dt^2] / M \\ + V [Xd^3R/dt^3 + Yd^2R/dt^2 + ZdR/dt - dD/dt] / M \\ + W [Xd^2R/dt^2 + YdR/dt + ZR - D] / M \\ = N K (C - R) \end{aligned}$$

During borderline stable operation

$$R = R_o + \Delta R \sin[\omega t] \quad C = C_o \quad D = D_o$$

Substitution into the RCD equation gives

$$\begin{aligned} &+ \omega^4 \Delta R \sin[\omega t] - \omega^3 6 \Delta R \cos[\omega t] \\ &- \omega^2 13 \Delta R \sin[\omega t] + \omega 12 \Delta R \cos[\omega t] \\ &+ 4 \Delta R \sin[\omega t] + 4 R_o - D_o \\ &= 4 2 K (C_o - R_o - \Delta R \sin[\omega t]) \end{aligned}$$

This is of the form

$$i \sin[\omega t] + j \cos[\omega t] + k = 0$$

It gives $\omega = \sqrt{2}$ and $K = 2.25$ and $R_o = [8K C_o + D_o] / [4 + 8K]$.

Use Describing function theory to determine the amplitude and period of the limit cycle generated when the system is controlled by an ideal relay controller with a lower saturation limit of -24V DC and an upper limit of +24V DC. Is the system practically stable with this limit cycle?

The describing function for an ideal relay is

$$DF = [4Q_o] / [\pi E_o]$$

At a limit cycle $DF = K$. Manipulation gives

$$\begin{aligned} E_o &= [4Q_o] / [\pi K] \\ &= [4*24] / [\pi*2.25] = 13.58 \end{aligned}$$

The limit cycle period is the borderline period

$$T_o = [2\pi] / \omega = 4.44$$

The system is not identified. So it is impossible to judge whether it is practically stable or not.

Develop a simulation template for getting the response of the system step by step in time.

Manipulation gives the rate equations

$$dR/dt = G$$

$$dP/dt = H$$

$$dG/dt = [M P + D - Y G - Z R] / X$$

$$dH/dt = [N Q - V H - W P] / U$$

The time stepping template is

$$R_{\text{NEW}} = R_{\text{OLD}} + \Delta t G_{\text{OLD}}$$

$$P_{\text{NEW}} = P_{\text{OLD}} + \Delta t H_{\text{OLD}}$$

$$G_{\text{NEW}} = G_{\text{OLD}} + \Delta t [M P_{\text{OLD}} + D_{\text{OLD}} - Y G_{\text{OLD}} - Z R_{\text{OLD}}] / X$$

$$H_{\text{NEW}} = H_{\text{OLD}} + \Delta t [N Q_{\text{OLD}} - V H_{\text{OLD}} - W P_{\text{OLD}}] / U$$

The control signal is

$$Q_{\text{OLD}} = K_P E_{\text{OLD}} + K_I \sum E_{\text{OLD}} \Delta t + K_D \Delta E_{\text{OLD}} / \Delta t$$

$$E_{\text{OLD}} = C_{\text{OLD}} - R_{\text{OLD}}$$

At end of step make OLD equal NEW for next step.

Determine the system GH function. Determine the overall system characteristic equation.

The plant transfer function is

$$R/[P+D] = M / [X S^2 + Y S + Z]$$

The drive transfer function is

$$P/Q = N / [U S^2 + V S + W]$$

The controller transfer function is

$$Q/E = K \quad E = C - R$$

The GH function is

$$K [N M] / [[X S^2 + Y S + Z] [U S^2 + V S + W]]$$

The characteristic equation is

$$[S^2 + 4S + 4] [S^2 + 2S + 1] + 8 K = 0$$

$$[S^4 + 6S^3 + 13S^2 + 12S + 4] + 8 K = 0$$

Use Routh Hurwitz criteria to check the borderline proportional gain of the system. Use the criteria to check the stability when the proportional gain is half the borderline gain.

The characteristic equation is

$$[S^4 + 6S^3 + 13S^2 + 12S + 4] + 8K = 0$$

This is of the form

$$a S^4 + b S^3 + c S^2 + d S + e = 0$$

For stable operation all coefficients be positive and the test functions $x=bc-ad$ and $y=xd-b^2e$ must also be positive. Substitution shows that $x=66$. For borderline operation y is zero. This gives

$$66*12 - 6*6*[4+8K] = 0$$

$$K = 2.25$$

Manually sketch the GH plot for the case where the system has a proportional controller and the gain is half the borderline gain. Interpret the plot. Estimate the system stability margins.

The GH function is

$$K [N M] / [[X S^2 + Y S + Z] [U S^2 + V S + W]]$$

$$\begin{aligned} GH &= 2.25/2 [2^*4] / [[S^2+4S+4] [S^2+2S+2]] \\ &= 9 / [S^4 + 6S^3 + 13S^2 + 12S + 4] \end{aligned}$$

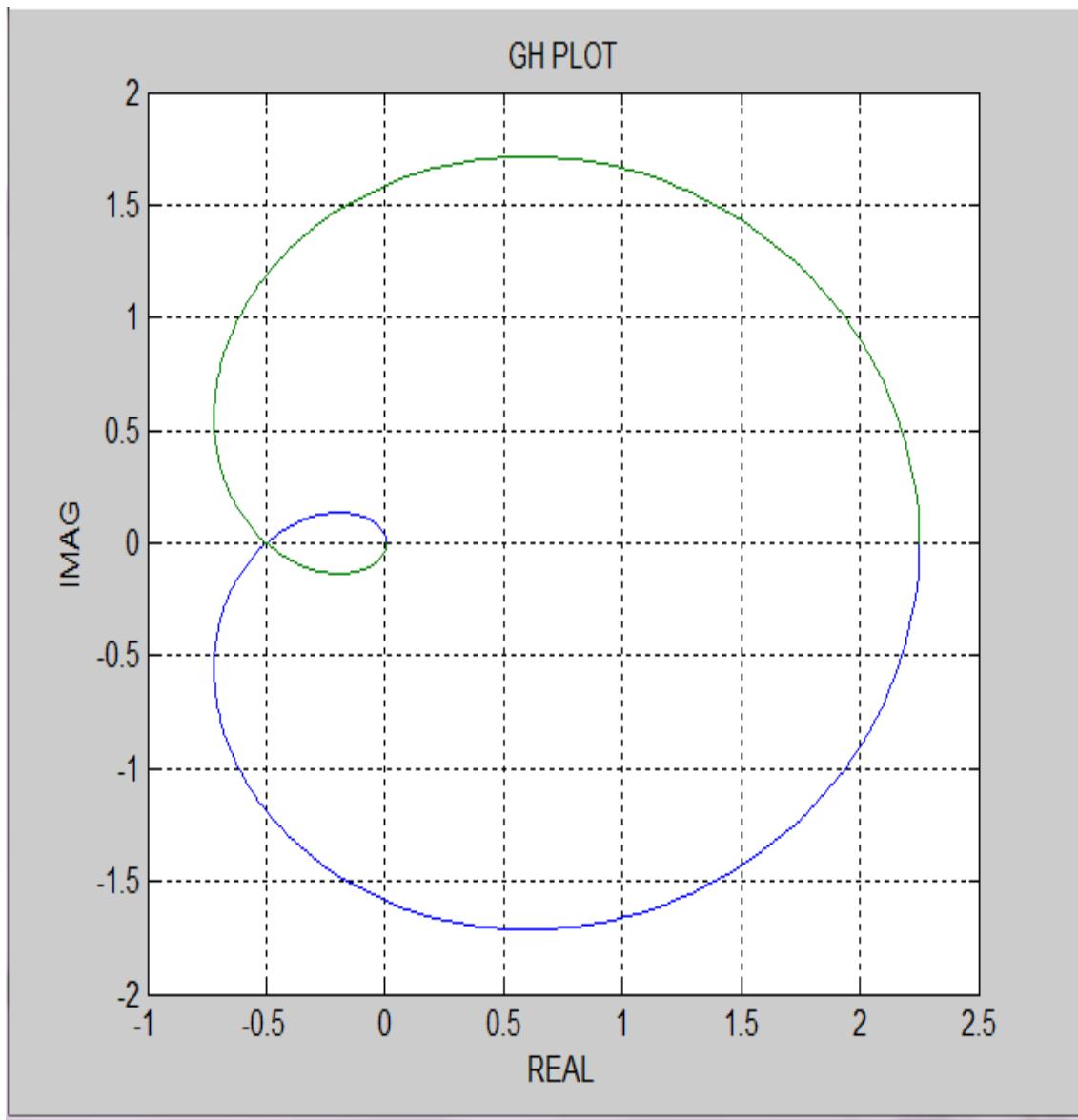
Along the imaginary axis in the S plane $S=j\omega$. Substitution into GH gives

$$GH = 9 / [\omega^4 - 6\omega^3j - 13\omega^2 + 12\omega j + 4]$$

If the imaginary parts inside the square brackets on the right sum to zero, the remaining real terms produce a real number. This gives

$$\omega^2 = 2 \quad GH = -0.5$$

As ω tends to zero, GH tends to plus 2.25. As ω tends to infinity, GH tends to plus 0. The GH plot is sketched on the next page.



Use the Root Locus concept to check the borderline gain and period of the system.

The GH function is

$$\begin{aligned} GH &= \mathbf{K} [2*4] / [[S^2+4S+4] [S^2+2S+2]] \\ &= \mathbf{K} 8 / [(S+2) (S+2) (S+1) (S+1)] \end{aligned}$$

Nyquist suggests $\omega=\sqrt{2}$. Substitution of $S=j\omega$ with $\omega=\sqrt{2}$ into the GH function gives

$$\begin{aligned} GH &= \mathbf{K} 8 / [(j\omega+2) (j\omega+2) (j\omega+1) (j\omega+1)] \\ &= \mathbf{K} 8 / [(j\sqrt{2}+2) (j\sqrt{2}+2) (j\sqrt{2}+1) (j\sqrt{2}+1)] \end{aligned}$$

This gives angles which add up to 180° :

$$35.3^\circ \quad 35.3^\circ \quad 54.7^\circ \quad 54.7^\circ$$

It gives magnitudes which imply \mathbf{K} is 2.25:

$$8 \quad \sqrt{6} \quad \sqrt{6} \quad \sqrt{3} \quad \sqrt{3}$$

