

 AUTOMATIC CONTROL ENGINEERING

 ZIEGLER NICHOLS GAINS LAB

PURPOSE: The purpose of this lab is to give you some

experience with getting the Ziegler Nichols gains of

a simple system using a PIC microcontroller.

SETUP: A heater is used to adjust the temperature of

air flowing down a pipe. A thermistor is used to

sense the temperature. A PIC calculates a control

signal and sends it to the heater using a DAC and an

OP AMP. It can also use PWM and an H BRIDGE.

PROCEDURE: Operate the setup using the PIC control

code pipe.c. Estimate the borderline gain KP and

period TP when proportional is acting alone. Use

these to calculate the Ziegler Nichols gains of the

system. Examine the performance of the system with

the Ziegler Nichols gains.

ZIEGLER NICHOLS GAINS

CLOSED LOOP PROCEDURE

Ziegler and Nichols, through a series of experiments

on simple systems, developed criteria for picking

gains in a controller that would give good tracking

performance. For a system that can be made unstable

with proportional acting alone, the procedure they

recommend for getting proper gains is as follows.

With proportional acting alone and the system

operating closed loop, increase the proportional gain

until the system becomes borderline stable. Let the

borderline gain be KP and its period be TP. According

to Ziegler Nichols proper PID gains are:

KP = C KP KI = KP/TI KD = KP*TD

C=0.6 TI = TP/2 TD = TP/8

When only P and I are acting, they recommend:

KP = C KP KI = KP/TI

C=0.45 TI = 5/6 TP

 PIC CODE FOR PIPE FLOW SETUP

 BREADBOARD

***************************************/

/* header files */

#include <16f876.h>

#fuses HS,NOWDT

#fuses NOPROTECT,NOLVP

#fuses NOBROWNOUT,NOPUT

#device ADC=10 // 10 BIT

#use delay(clock=20000000)

#use i2c(master,sda=PIN_C4,scl=PIN_C3,slow)

#org 0x1F00,0x1FFF{}

/* declare types */

float target,data,s;

float control,sum,rate;

float error,wrong,sign;

float change,step,bias;

float gp,gi,gd,gs;

float band,size;

float signal;

float a,b,c;

int heater;

int power;

void heat(int bits);

void main()

{

/* set up ports */

 setup_adc_ports(ALL_ANALOG);

 setup_adc(ADC_CLOCK_INTERNAL);

 setup_timer_2(T2_DIV_BY_16,254,1);

 setup_ccp1(CCP_PWM);

 set_pwm1_duty(0);

 set_adc_channel(2);

 delay_us(21);

/* set data */

 target=6.0;

 s=1023.0/10.0;

 target=target*s;

 sum=0.0;band=0.0;

 wrong=0.0;step=0.005;

 gp=10.0;gi=0.0;gd=0.0;

 bias=0.0*s;gs=0.0;

 a=0.0*s;b=10.0*s;

 delay_ms(7000);

 while(TRUE)

{

/* read sensor */

 data=read_adc();

 delay_ms(5);

/* calculate error */

 error=target-data;

/* proportional control */

 control=gp*error;

/* intergral control */

 control=control+gi*sum;

/* calculate error sum */

 sum=sum+error*step;

/* calculate error rate */

 change=error-wrong;

 rate=change/step;

/* derivative control */

 control=control+gd*rate;

/* calculate error sign */

 size=abs(error);

 if(size<band) {sign=0.0;}

 if(error>+band) {sign=+1.0;}

 if(error<-band) {sign=-1.0;}

/* switching control */

 control=control+gs*sign;

/* saturation */

 signal=control+bias;

 if(signal<a) {signal=a;}

 if(signal>b) {signal=b;}

/* heater signal */

 c=signal/1024.0;

 heater=c*c*254.0;

 power=c*254.0;

 set_pwm1_duty(heater);

 heat(power);

/* store error */

 wrong=error;

}

}

void heat(int bits)

{

 i2c_start();

 i2c_write(0x5e);

 i2c_write(0);

 i2c_write(bits);

 i2c_stop();

}

