AUTOMATIC CONTROL ENGINEERING

ZIEGLER NICHOLS GAINS LAB

PURPOSE: The purpose of this lab is to give you some
experience with getting the Ziegler Nichols gains of

a simple system using a PIC microcontroller.

SETUP: A heater is used to adjust the temperature of
air flowing down a pipe. A thermistor 1is wused to
sense the temperature. A PIC calculates a control
signal and sends it to the heater using a DAC and an

OP AMP. It can also use PWM and an H BRIDGE.

PROCEDURE: Operate the setup using the PIC control
code pipe.c. Estimate the borderline gain Ke and
period Tp when proportional i1is acting alone. Use
these to calculate the Ziegler Nichols gains of the
system. Examine the performance of the system with

the Ziegler Nichols gains.

ZIEGLER NICHOLS GAINS

CLOSED LOOP PROCEDURE

Ziegler and Nichols, through a series of experiments
on simple systems, developed criteria for picking
gains in a controller that would give good tracking
performance. For a system that can be made unstable
with proportional acting alone, the procedure they
recommend for getting proper gains is as follows.
With proportional acting alone and the system
operating closed loop, increase the proportional gain
until the system becomes borderline stable. Let the
borderline gain be Kp and its period be Tep. According

to Ziegler Nichols proper PID gains are:

Kp = C Kp K: = Kp/Ts Kp = Kp*Tp

C=O.6 TI = Tp/2 TD = Tp/8

When only P and I are acting, they recommend:

Kp = C KP KI = KP/TI

C=0.45 T: = 5/6 Tp

L€ ADUiel | |ONU0) SSaD01d

JOLIOD [RUISIXS

BOUBQINISID GNEA o5
euleIuL [PUIB xS

2 afiis

CO

purq
1euonsodosd %6
s ooz

oe o0+

=—— s

HITIOHLNOD

wewse Bupedwos

A——— I'

1053005
snonuuos

—_—
JUDWEIe BUeIILoD

.D:toohiltls

KKK AKRKAAKRKA A KRR AR AR A AR A AR A A A A A A A XA A AKX XK k%

PIC CODE FOR PIPE FLOW SETUP
BREADBOARD

***************************************/

/* header files */

#include <16£f876.h>

#fuses HS,NOWDT

#fuses NOPROTECT, NOLVP

#fuses NOBROWNOUT, NOPUT

#device ADC=10 // 10 BIT

#use delay(clock=20000000)

#use i2c (master,sda=PIN_C4,scl=PIN C3,slow)
#org 0x1F00,0x1FFF{}

/* declare types */
float target,data,s;
float control, sum, rate;
float error,wrong,sign;
float change,step,bias;
float gp,gi,gd,gs;
float band, size;

float signal;

float a,b,c;

int heater;

int power;

void heat (int bits);

void main ()

{

/* set up ports */
setup adc ports (ALL ANALOG) ;
setup adc (ADC_CLOCK INTERNAL) ;
setup timer 2 (T2 DIV BY 16,254,1);
setup ccpl (CCP_PWM) ;
set pwml duty(0);
set adc channel (2);
delay us(21);

/* set data */
target=6.0;
s=1023.0/10.0;
target=target*s;
sum=0.0;band=0.0;
wrong=0.0;step=0.005;
gp=10.0;g9i=0.0;gd=0.0;
bias=0.0*s;gs=0.0;
a=0.0*s;b=10.0%*s;

delay ms (7000) ;

while (TRUE)

{
/*

/*

/*

/*
/*

/*

/*

/*

/*

/*

/*

/*

}
}

read sensor */
data=read adc();
delay ms(5);

calculate error */
error=target-data;
proportional control */
control=gp*error;

intergral control */
control=control+gi*sum;
calculate error sum */
sum=sumt+error*step;

calculate error rate */
change=error-wrong;
rate=change/step;
derivative control */
control=control+gd*rate;

calculate error sign */
size=abs (error);

if (size<band) {sign=0.0;}

if (error>+band) {sign=+1.0;}
if (error<-band) {sign=-1.0;}
switching control */
control=control+gs*sign;

saturation */
signal=control+bias;

if (signal<a) {signal=a;}
if (signal>b) {signal=b;}

heater signal */
c=signal/1024.0;
heater=c*c*254.0;
power=c*254.0;

set pwml duty (heater);
heat (power) ;

store error */
Wrong=error;

void heat (int bits)

{

i2c_start

()
i2c_write (0
i2c_write(0);
i2c write (b

x5e

1ts

i2c_stop();

