AUTOMATIC CONTROL ENGINEERING

SWITCHING CONTROLLER LAB

PURPOSE: The purpose of this lab is to give you some

experience with switching control of a simple system.

PROCEDURE: Operate the setup using the PIC control
code pipe.c. From the sensor signal trace estimate
the amplitude Eo, and the period To of the limit cycles
generated by the following nonlinear controllers: (1)
proportional with saturation (2) ideal relay
switching (3) relay with deadband. When proportional

is acting alone the borderline gain and period are Kp

and Te. For ideal relay case, compare E, with
[4Q,]/ [nKe] . For relay with deadband case, compare

critical deadband Bx with [2Q.]/[nKe]. For each case,

compare the period To with Ts.

L€ 1DUiel | |ONuUo0) SSaD01]

BOURGITISID SN(EA JOE JOUILOD [RUISIXO

jeuIeIUL [eUIBIxXe

= adis

=9

5 1onv03
pueq
|jeuoodosd % E
s ooZ
—

O o0
JuewWoe Bupedwos UGS BUCIUOD.

ﬂv

HITTIOHILNOD

A————— I'

1053UOD GIICIL

| e A e

LIMIT CYCLE OSCILLATIONS

Systems controlled by nonlinear controllers often
undergo finite amplitude oscillations which neither
grow nor decay. It seems the gain of the controller
is equal to the borderline proportional gain. One can
form a gain for the controller by dividing the
amplitude of the fundamental component in its output
by the amplitude of its input. This gain is known as
a Describing Function. Consider the ideal relay

controller. Its Describing Function is

DF = [4QO/TC] /Eo = [4Qo]/[nEo]

Note that small E, oscillations have high gain and
thus grow whereas large E, oscillations have low gain

and thus decay. At the limit cycle

DF = [4Qo]/[ﬂ:Eo] = K

Eo = [4Q.]/ [7K]

/***************************************

PIC CODE FOR PIPE FLOW SETUP
BREADBOARD

***************************************/

/* header files */

#include <16£f876.h>

#fuses HS,NOWDT

#fuses NOPROTECT, NOLVP

#fuses NOBROWNOUT, NOPUT

#device ADC=10 // 10 BIT

#use delay(clock=20000000)

#use i2c (master,sda=PIN_C4,scl=PIN C3,slow)
#org 0x1F00,0x1FFF{}

/* declare types */
float target,data,s;
float control, sum, rate;
float error,wrong,sign;
float change,step,bias;
float gp,gi,gd,gs;
float band, size;

float signal;

float a,b,c;

int heater;

int power;

void heat (int bits);

void main ()

{

/* set up ports */
setup adc_ ports (ALL ANALOG) ;
setup adc (ADC_CLOCK INTERNAL) ;
setup timer 2 (T2 DIV BY 16,254,1);
setup ccpl (CCP_PWM) ;
set pwml duty(0);
set adc channel (2);
delay us(21);

/* set data */
target=6.0;
s=1023.0/10.0;
target=target*s;
sum=0.0;band=0.0;
wrong=0.0;step=0.005;
gp=0.0;91=0.0;9d=0.0;
bias=6.0*s;g9s=0.0;
a=3.5%s;b=8.5*s;

delay ms (7000) ;

while (TRUE)

/* read sensor */
data=read adc();
delay ms(5);

/* calculate error */
error=target-data;

/* proportional control */
control=gp*error;

/* intergral control */
control=control+gi*sum;

/* calculate error sum */
sum=sumt+error*step;

/* calculate error rate */
change=error-wrong;
rate=change/step;

/* derivative control */
control=control+gd*rate;

/* calculate error sign */
size=abs (error);
if (size<band) {sign=0.0;}

if (error>+band) {sign=+1.
if (error<-band) {sign=-1.

/* switching control */
control=control+gs*sign;

/* saturation */
signal=control+bias;
if (signal<a) {signal=a;}
if (signal>b) {signal=b;}

/* heater signal */
c=signal/1024.0;
heater=c*c*254.0;
power=c*254.0;
set pwml duty (heater);
heat (power) ;

/* store error */
wrong=error;

}
}

void heat (int bits)
{
i2c_start();
i2c7write(0x5e
i2c_write(0);
i2c write(blts

i2c_stop();

[eoNe]

~e

~e

——

