

AUTOMATIC CONTROL ENGINEERING

SWITCHING CONTROLLER LAB

PURPOSE: The purpose of this lab is to give you some

experience with switching control of a simple system.

PROCEDURE: Operate the setup using the PIC control

code pipe.c. From the sensor signal trace estimate

the amplitude Eo and the period To of the limit cycles

generated by the following nonlinear controllers: (1)

proportional with saturation (2) ideal relay

switching (3) relay with deadband. When proportional

is acting alone the borderline gain and period are KP

and TP. For ideal relay case, compare Eo with

[4Qo]/[KP]. For relay with deadband case, compare

critical deadband B* with [2Qo]/[KP]. For each case,

compare the period To with TP.

LIMIT CYCLE OSCILLATIONS

Systems controlled by nonlinear controllers often

undergo finite amplitude oscillations which neither

grow nor decay. It seems the gain of the controller

is equal to the borderline proportional gain. One can

form a gain for the controller by dividing the

amplitude of the fundamental component in its output

by the amplitude of its input. This gain is known as

a Describing Function. Consider the ideal relay

controller. Its Describing Function is

DF = [4Qo/]/Eo = [4Qo]/[Eo]

Note that small Eo oscillations have high gain and

thus grow whereas large Eo oscillations have low gain

and thus decay. At the limit cycle

DF = [4Qo]/[Eo] = K

Eo = [4Qo]/[K]

/***************************************

 PIC CODE FOR PIPE FLOW SETUP

 BREADBOARD

***************************************/

/* header files */

#include <16f876.h>

#fuses HS,NOWDT

#fuses NOPROTECT,NOLVP

#fuses NOBROWNOUT,NOPUT

#device ADC=10 // 10 BIT

#use delay(clock=20000000)

#use i2c(master,sda=PIN_C4,scl=PIN_C3,slow)

#org 0x1F00,0x1FFF{}

/* declare types */

float target,data,s;

float control,sum,rate;

float error,wrong,sign;

float change,step,bias;

float gp,gi,gd,gs;

float band,size;

float signal;

float a,b,c;

int heater;

int power;

void heat(int bits);

void main()

{

/* set up ports */

 setup_adc_ports(ALL_ANALOG);

 setup_adc(ADC_CLOCK_INTERNAL);

 setup_timer_2(T2_DIV_BY_16,254,1);

 setup_ccp1(CCP_PWM);

 set_pwm1_duty(0);

 set_adc_channel(2);

 delay_us(21);

/* set data */

 target=6.0;

 s=1023.0/10.0;

 target=target*s;

 sum=0.0;band=0.0;

 wrong=0.0;step=0.005;

 gp=0.0;gi=0.0;gd=0.0;

 bias=6.0*s;gs=0.0;

 a=3.5*s;b=8.5*s;

 delay_ms(7000);

 while(TRUE)

{

/* read sensor */

 data=read_adc();

 delay_ms(5);

/* calculate error */

 error=target-data;

/* proportional control */

 control=gp*error;

/* intergral control */

 control=control+gi*sum;

/* calculate error sum */

 sum=sum+error*step;

/* calculate error rate */

 change=error-wrong;

 rate=change/step;

/* derivative control */

 control=control+gd*rate;

/* calculate error sign */

 size=abs(error);

 if(size<band) {sign=0.0;}

 if(error>+band) {sign=+1.0;}

 if(error<-band) {sign=-1.0;}

/* switching control */

 control=control+gs*sign;

/* saturation */

 signal=control+bias;

 if(signal<a) {signal=a;}

 if(signal>b) {signal=b;}

/* heater signal */

 c=signal/1024.0;

 heater=c*c*254.0;

 power=c*254.0;

 set_pwm1_duty(heater);

 heat(power);

/* store error */

 wrong=error;

}

}

void heat(int bits)

{

 i2c_start();

 i2c_write(0x5e);

 i2c_write(0);

 i2c_write(bits);

 i2c_stop();

}

