
AUTOMATIC CONTROL ENGINEERING

FEEDBACK CONTROL CONCEPT

The sketch on the next page shows a typical feedback or error

driven control system. What has to be controlled is generally

referred to as the plant. What the plant is doing is known as its

response. What it should be doing is known as the command. The

plant receives a control signal from a drive and a disturbance

signal from the surroundings. The goal is to pick a controller

that can make the response follow closely command signals but

reject disturbances. The controller acts on an error signal: this

is command minus some measure of the response. This is why it is

usually called error driven control. Two types of error driven

control are PID and Switching. PID stands for proportional

integral derivative. Proportional generates a signal which is

proportional to error. Integral generates a signal which is

proportional to the integral of the error. Derivative generates a

signal which is proportional to the rate of change of error.

Switching generally gives out signals with constant levels.

AUTONOMOUS UNDERWATER VEHICLE DEPTH CONTROL

To illustrate some error driven control strategies we will

consider the task of controlling the submergence depth of a small

autonomous underwater vehicle or auv. According to Newton's Second

Law of Motion, the equation governing its up and down motion is:

 M d2R/dt2 = B + D - W

where R is the depth of the auv, M is its overall mass, B is the

control force from the propulsion system, D is a disturbance load

caused for example by sudden weight changes and W is a drag load.

Drag load has two components: wake drag and wall drag:

 W = X dR/dt |dR/dt| + Y dR/dt

where X and Y account mainly for the size and shape of the auv.

A simple model of the propulsion system is:

 J dB/dt + I B = Q

where Q is the control signal. There are two basic types of

propulsion systems that could be used to move the auv up and down.

One is an air/water ballast tank. In this case, the control signal

Q would produce a change in buoyancy and J would account for the

fact that this is caused by a flow: I would be zero. If J was very

large, the control force B would build up very slowly. The other

type of propulsion system uses motor driven propellors to generate

B. Usually, for protection, these would be located inside a duct.

In this case, I would account for the size and shape of the blades

and duct, while J would account for things like rotor inertia.

Again, if J was very large, the control force B would build up

very slowly. One could determine J and I experimentally.

The PID error driven strategy lets the control signal Q be:

 Q = KP E + KI Edτ + KD dE/dt

where E = C - R is the depth error and KP KI KD are gains: C is the

command depth. Usually, gains are constants. However, they can be

made a function of the state of the system or its surroundings. In

this case, control is said to be adaptive.

Imagine the auv is at the water surface and it suddenly commanded

to go to some constant command depth C. Assume that there is a

disturbance with a constant level D acting downward. Also assume

the auv is using motor driven propellors for propulsion.

Proportional by itself would cause the propellors to spin in such

a way that the auv would move towards the command depth. The

amount of spin would be proportional to depth error. When the auv

reaches the command depth, the proportional control signal would

be zero. If the auv was held at the command depth, its propellors

would stop spinning. The disturbance would cause the auv to stop

below the command depth. This offset would be such that the

propellors generate just enough upward force to balance the

downward disturbance. The offset would be DI/KP. When D is known,

something called feedforward compensation can be used to get rid

of the offset. Basically, we measure D and subtract ID from Q in

the drive equation. When motions settle down, the drive gives out

an extra signal minus D which cancels D. But we must know D.

Another way to get rid of the offset is to give the auv a false

command C*. If the false command C* was set at [C-DI/KP], the auv

would end up at C. It would hang below C* by DI/KP and thus end up

at C. If the gain KP was very large, offsets such as DI/KP would

probably be tolerable. However, large gain would generate very

large Q when the depth is well away from the command depth. Very

large Q could burn out drives. To avoid this, a limit is usually

put on the magnitude of Q. In this case, the control is referred

to as proportional with saturation. If the disturbance was greater

than the saturation limits, then control would be impossible.

Integral by itself would cause the propellors to spin in such a

way that the auv would move towards the command depth. The amount

of spin would be proportional to the integral of depth error. As

the auv moves towards the command depth, the propellors would spin

faster and faster. Obviously, this would cause the auv to

overshoot the command depth. Because of these overshoots, integral

cannot be used alone. The good thing about integral is, if the

system is stable, it gives zero offsets. If the auv was held with

positive depth error, the integral control signal would get bigger

and bigger. This is known as integral windup. If it was released

after a long time, it would take a very large integrated negative

error to cancel out the windup due to integrated positive error. A

simple way to avoid integral windup is to activate integral only

within a band surrounding the command depth. All we need is for

the band to be wide enough for proportional to get the auv within

the band so that integral can then home it into the command depth.

Derivative like integral cannot be used alone. Assume that the

command C is a constant, and let the auv be stopped far away from

the command depth. In this case, dE/dt would be zero. So, the

controller would not generate a force to move the auv to the

command depth. Derivative mimics drag load and helps motions

settle down. It generates a control signal which opposes motion.

Something called rate feedback could also be used to help make

motions settle down. The controller would act on depth error E

minus a constant times the depth rate dR/dt. Substitution into the

governing equations shows that rate feedback mimics drag. Note

that derivative could be used to make the auv move at a constant

speed: dC/dt is made a constant. Drag and the dR/dt part of dE/dt

would tend to limit speed.

With all three components of PID acting together, as soon as the

auv passes through the command depth, proportional would tend to

counteract integral. Also, proportional would get the auv closer

to the command depth faster, so it would limit integral windup.

Derivative would help counteract overshoots. The auv would home in

quickly on the command depth with minimal overshoots. So, we get

the good characteristics of all three controllers.

There are many types of switching control. They often have trouble

with overshoots. Basic relay switching is the simplest. It would

try to make the propellors rotate at a constant speed: the

direction of rotation would depend on the sign of depth error.

Relay with deadband would allow the auv to drift once it gets

inside a band surrounding the command depth. The propulsion device

would be shut down and drag load would cause the auv to slow down.

Relay with hysteresis would reverse the direction of control

before the auv gets to the command depth. In this case, the

propulsion device would act as a brake. A bias signal could be

added to counteract disturbances.

Propulsion system dynamics would cause the control force to lag

the control signal. The amount of lag depends on how large J is

relative to I. Consider the case where proportional control is

acting alone and the error is initially positive. For a slowly

reacting propulsion system, positive error would cause a positive

control force to gradually build up. As it builds up, this force

would move the auv towards the command depth. However, when the

auv gets to the command depth, because of lag, the control force

would still be positive, and this would cause overshoot. In some

cases, these overshoots would settle down. In other cases, they

would not settle down but would limit because of wake drag.

Control signals for an auv would be generated within a computer

control loop. The loop period must be much smaller than the basic

period of auv motion: otherwise severe overshoots could develop.

If the auv was controlled remotely by a computer onboard a ship,

the time taken for the depth signal to travel from the auv to the

ship and the time taken for the drive signal to travel back from

the ship to the auv could cause overshoots, because the auv would

be responding to past error not present error.

SUBSEA ROBOT SPRING/DASHPOT PID ANALOGY

Equations governing subsea robot depth motion are:

 M d2R/dt2 + X dR/dt|dR/dt| + Y dR/dt = B + D

 J dB/dt + I B = Q

 Q = KP(C-R) + KI(C-R)dτ + KD(dC/dt-dR/dt)

Let the drive be a propellor in a duct driven by a DC motor. For

most of what follows, we will assume that the drive is fast acting,

so that J is approximately zero. In this case,

 B = KP/I (C-R) + KI/I (C-R)dτ + KD/I (dC/dt-dR/dt)

 B = KP (C-R) + KI (C-R)dτ + KD (dC/dt-dR/dt)

We will also assume that the robot is initially at one depth and it

is suddenly commanded to go to another depth. When proportional

control is acting alone, the control force B is a linear function

of depth error. This pulls the robot towards the command depth. As

the robot approaches the command depth, the propellor slows down.

Note that a spring with its ends attached to the robot and the

command depth would move the robot the same way. Because the drive

is spring like, disturbances D cause the robot to settle down away

from the command depth. When integral control is acting alone, the

control force B gradually builds up and pulls the robot towards the

command depth. As the robot approaches the command depth, the

propellor goes faster and faster. This causes the robot to

overshoot the command depth. As soon as it overshoots, the control

force starts to decrease: meaning the propellor starts to slow

down. It takes time for the control force to go to zero. Beyond

this point, the control force changes sign and acts initially like

a brake and causes the robot to stop and then start back towards

the command depth. Again, when it reaches the command depth, it

overshoots it. These overshoots do not settle down. If they did, B

would equal minus D and R would equal C. One could replace the

integral drive with a spring with one end attached to the robot and

the other end free to move. Initially the free end moves towards

the command depth. This causes the spring to stretch and pull the

robot towards the command depth. The spring stretching mimics the

integration of error. The spring keeps stretching until the robot

overshoots the command depth. Then, it gradually slackens. It takes

time for the spring to totally slacken so it pulls the robot beyond

the command depth. When the spring is totally slack, the free end

starts back towards the command depth. In this case, the spring

acts initially like a brake and causes the robot to stop and then

start back towards the command depth. With proportional and

integral acting together it is possible for the robot to settle at

the command depth. Proportional suppresses the overshoots caused by

integral and integral gets rid of offsets. Derivative control is

not spring like. The equation for B shows that it instead mimics a

dashpot. When the drive is slow acting, control actions are not

instantaneous. This can cause severe overshoots.

CAR/DRIVER PID ANALOGY

Imagine a car at position A on a straight road that is

suddenly commanded to go to position B on the same road. A

proportional driver would suddenly depress the gas peddle

down to some level. This would cause the car to gradually

pick up speed. As the car moves towards B, the driver would

depress the gas peddle less and less. The amount of

depression would be a linear function of position error or

distance between B and the car position. When the car

reaches B, peddle depression would be zero. Because of its

momentum, the car would overshoot B. As soon as it does so,

the driver would suddenly put the car into reverse and

depress the gas peddle an amount again dependent on position

error. This would cause the car to gradually come to a stop

and reverse direction back towards B. If there was no wind

and the road was horizontal, wake drag and drive friction

would gradually make the car come to rest at B. Otherwise,

it would come to rest away from B. An integral driver

starting at A would gradually depress the gas peddle based

on the integral of position error. This would move the car

towards B but at a faster and faster speed. When the car

reaches B, peddle depression would be maximum. Obviously,

the car would overshoot B. As soon as it does so, the driver

would gradually depress the gas peddle less and less.

Basically, the position error would now be negative, and

integrated error would gradually decrease. When it reaches

zero, the peddle depression would also be zero, and the

driver would suddenly put the car into reverse and gradually

depress the gas peddle again based on the integral of

position error. This would cause the car to gradually come

to a stop and reverse direction back towards B. When the car

reaches B, it would again overshoot. The car would never

settle at B but would oscillate back and forth at an

amplitude dependent on wake drag and drive friction. The

mean position error would be zero, even when there was wind

or the road was not horizontal. A proportional plus integral

driver could make the car settle at B, even when there was

wind or the road was not horizontal. The proportional part

would bring the car close to B before the integral part

could build up too much signal. The integral part would then

home the car into B. Whereas the proportional plus integral

driver would work only the gas peddle, a proportional plus

integral plus derivative driver would also use the brake.

The derivative part would apply the brake an amount based on

speed. This would help control overshoots if they are a

problem. Driver reaction time could cause severe overshoots.

Its control is based on past error not present error.

ZIEGLER NICHOLS GAINS

Ziegler and Nichols, through a series of experiments on simple

systems, developed criteria for picking gains in a controller

that would give good tracking performance. For a system that can

be made unstable with proportional acting alone, the procedure

they recommend is as follows. With proportional acting alone,

increase its gain until the system becomes borderline stable. Let

the borderline gain be KP: let its period be TP. According to

Ziegler and Nichols, reasonable PID gains are:

KP = 0.6*KP KI = KP/TI KD = KP*TD

TI = 0.5*TP TD = 0.125*TP

When only proportional and integral are acting, they recommend

the following PI gains:

KP = 0.45*KP KI = KP/TI

TI = 0.83*TP

When only proportional is acting, they recommend:

KP = 0.5*KP

AUTONOMOUS UNDERWATER VEHICLE

ZIEGLER NICHOLS GAINS

To illustrate a procedure for getting Ziegler Nichols gains,

we will consider the task of controlling the submergence

depth of a small autonomous underwater vehicle or auv.

According to Newton's Second Law of Motion, the equation

governing the up and down motion of the auv is:

M d2R/dt2 = B + D - W

where R is the depth of the auv, M is its overall mass, B is

the control force from the propulsion system, D is a

disturbance load caused for example by sudden weight changes

and W is a drag load consisting of wake drag and wall drag:

W = X dR/dt |dR/dt| + Y dR/dt

where X and Y account for the size and shape of the auv. Here

we linearize the drag to get:

W = N dR/dt

A simple model of the propulsion system is:

J dB/dt + I B = Q

where Q is the control signal: J and I are drive constants.

The PID error driven strategy lets the control signal Q be:

Q = KP E + KI Edτ + KD dE/dt

where E = C - R is the depth error and KP KI KD are the

controller gains: C is the command depth.

To get Ziegler Nichols gains, we start by assuming only

proportional is active. Manipulation of the governing

equations gives:

J [M d3R/dt3 + N d2R/dt2 - dD/dt]

+ I [M d2R/dt2 + N dR/dt - D] = KP C - KP R

We then assume that C and D are both constants and that the

auv is undergoing a limit cycle oscillation for which

R = Ro + R Sin [t]

Substitution into the modified drive equation gives

- J M 3 R Cos[t] - J N 2 R Sin[t]

- I M 2 R Sin[t] + I N  R Cos[t]

- I Do = KP Co - KP Ro - KP R Sin[t]

This equation is of the form:

i Sin[t] + j Cos[t] + k = 0

Mathematics requires that i=0 j=0 k=0:

- J N 2 - I M 2 + KP = 0

- J M 3 + I N  = 0

 + I Do + KP Co - KP Ro = 0

Manipulation of these equations gives

Ro = Co + I Do / KP

2 = [I N] / [J M]

KP = [J N + I M] 2

= [J N + I M] [I N] / [J M]

For the illustration we let : M=50 N=50 J=0.5 I=0.1. The

above equations give =0.447, KP=6 and TP=14. Substitution

into the Ziegler Nichols gains equations gives: KP = 3.6; KI

= 0.54; KD = 6.3. An m code for the auv is given below. This

is followed by a Ziegler Nichols response generated by the

code. A SIMULINK Block diagram follows the m code response.

It gives basically the same response as the code.

PIPE FLOW SETUP

ZIEGLER NICHOLS GAINS

To illustrate a procedure for getting Ziegler Nichols gains,

we will consider the task of controlling the temperature of

the air flowing down the pipe in the lab pipe flow setup.

Basically the setup consists of a fan which draws air from

atmosphere and sends it down a pipe. A heater just downstream

of the fan is used to heat the air. It receives a signal from

a controller. The temperature of the air at the pipe exit is

measured by a thermistor. The governing equations are:

X dR/dt + Y R = H + D

A dH/dt + B H = Z Q

Q = KP E + KI Edτ + KD dE/dt

 E = C - R

where R is the temperature of the air at the heater, R is

the temperature of the air at the sensor, C is the command

temperature, E is the temperature error, Q is the control

signal, H is the heat generated by the heater, D is a

disturbance heat and KP KI KD are the controller gains. Note

that R is what R was T seconds back in time: T is the time

it takes for the air to travel down the pipe.

To get Ziegler Nichols gains, we start by assuming only

proportional is active. Manipulation of the governing

equations gives:

A [X d2R/dt2 + Y dR/dt - dD/dt]

+ B (X dR/dt + Y R - D) = Z KP C - Z KP R

We then assume that C and D are both constants and that the

setup is undergoing a limit cycle oscillation for which

R = Ro + R Sin [t] R = Ro + R Sin [(t-T)]

Substitution into the modified drive equation gives

 - A X 2 R Sin[t] + A Y  R Cos[t]

+ B X  R Cos[t] + B Y Ro + B Y R Sin[t]

- B Do = Z KP Co - Z KP Ro - Z KP R Sin[(t-T)]

A trigonometric identity gives

Sin[(t-T)] = Sin[t] Cos[T] - Cos[t] Sin[T]

Substitution into the modified drive equation gives an

equation of the form

i Sin[t] + j Cos[t] + k = 0

Setting i=0 and j=0 and k=0 gives

- A X 2 + B Y + Z KP Cos[T] = 0

A Y  + B X  - Z KP Sin[T] = 0

B Y Ro - B Do - Z KP Co + Z KP Ro = 0

Manipulation of the first two equations gives

KP = [A X 2 - B Y] / [Z Cos[T]]

KP = [A Y  + B X ] / [Z Sin[T]]

Sin[T]/Cos[T] = Tan[T]

= [A Y  + B X ] / [A X 2 - B Y]

The last equation gives . Once  is known we can then solve

for KP. For the illustration, we let: X=0.25 Y=1.0 A=0.1

B=1.0 Z=1.0 T=0.5. The above equations give =3.97, KP=1.5

and TP=1.58. Substitution into the Ziegler Nichols gains

equations gives: KP=0.9; KI=1.2; KD=0.17. An m code for the

setup is given below. This is followed by a Ziegler Nichols

response. A SIMULINK Block diagram follows the response. It

gives basically the same response as the code.

GH NYQUIST PLOT

A GH plot is basically a polar open loop frequency

response plot. Consider the case where only

proportional control is being used. When GH=-1, a

command sine wave produces a response which has the

same magnitude as the command but is 180o out of

phase. If the command was suddenly removed and the

loop was suddenly closed, the negative of the

response would take the place of the command and

keep the system oscillating. The system would be

borderline stable with gain K. If the gain was

bigger than K, the command would produce a response

bigger than itself. When this takes over, it would

produce growing or unstable oscillations. If the

gain was smaller than K, the command would produce a

response smaller than itself. When this takes over,

it would produce decaying or stable oscillations.

REVIEW OF LAPLACE TRANSFORMATION

Laplace Transformation converts ordinary differential equations or

ODEs into algebraic equations or AEs. Manipulation of the AEs

followed by Inverse Laplace Transformation gives responses back in

time. Manipulation of the AEs also gives the system transfer

functions or TFs. Most control theories are based on TFs.

The Laplace Transform Integral is:

 

 F(S) =  [f(t)] =  f(t) e-St dt .
 o

Usually, mechanical engineers do not have to evaluate this

integral. All of the important cases have already been worked out.

Some Laplace Transform (LT) pairs used to reduce ODEs to AEs are:

  [df/dt] = S F(S) - f(0)   fdτ = F(S) / S

  [d2f/dt2] = S2 F(S) - S f(0) - df(0)/dt

  [d3f/dt3] = S3 F(S) - S2 f(0) - S df(0)/dt - d2f(0)/dt2

Usually, initial condition terms are set to zero for control

because, in most cases, a system starts from some rest state.

Manipulation of algebraic equations often gives factors of the

form: Γ/(S-λ). Inverse Transformation gives back in time: Γe+λt.

Typical commands/disturbances into control systems include: a step

with height A / a pulse with height A and short duration T / a

sine or cosine wave with amplitude A and frequency ω / a linear

ramp in time with slope A. Laplace Transform pairs for these are:

 (Step with Height A) = A/S

 (Short Duration Pulse) = AT

 (Sine Wave) = Aω/(S2+ω2)

 (Cosine Wave) = AS/(S2+ω2)

 (Linear Ramp) = A/S2 .

Control systems often have time delays or transport lags inherent

in them. These can seriously degrade performance. When a signal is

delayed in time by T seconds, Laplace Transformation gives:

  (f[t-T]) = e-ST F(S) .

The Final Value Theorem states that

 Lim f(t) = Lim S F(S) .

 t S0

This can be used to get the final state of stable systems

subjected to step commands or step disturbances. Ideally for a

step command the final state should be equal to the command while

for a step disturbance the final state should be zero. The Final

Value Theorem gives unrealistic results when systems are unstable.

COMPUTER SIMULATION OF CONTROL SYSTEMS

PREAMBLE

Simulation allows one to study the behavior of a system

before it is actually constructed. This can serve as an aid

to system design. Simulations are inexpensive and easy to

put together. They can handle all sorts of phenomena. These

include transport lag and computer loop rate phenomena.

Simulations can also handle multiple strong nonlinearities.

They are often used as a check on more conventional

analysis. However, simulations are like experiments. For

complex systems, it is hard to make sense of responses.

Before digital computers were developed, systems were

simulated using analog electronics. When digital computers

became common place, simulations made use of time stepping

procedures. Basically, these follow local slopes or rates

step by step in time. Special software packages based on

these procedures have been developed. Probably, the popular

package is SIMULINK under MATLAB.

AUTONOMOUS UNDERWATER VEHICLE

TIME STEPPING SIMULATION

To illustrate time stepping we will consider the task of

controlling the submergence depth of a small autonomous

underwater vehicle or auv. The governing equations are:

M d2R/dt2 = B + D - W

W = X dR/dt |dR/dt| + Y dR/dt

J dB/dt + I B = Q

Q = KP E + KI Edτ + KD dE/dt

E = C - R

where R is the depth of the auv, M is its overall mass, B is

the control force from the propulsion system, D is a

disturbance load caused for example by sudden weight changes,

W is a drag load consisting of wake drag and wall drag, E is

the depth error, C is the command depth, M X Y J I are

process constants and KP KI KD are the controller gains.

Manipulation of the governing equations gives

dR/dt = U

dU/dt = (B + D - W) / M

W = X U |U| + Y U

dB/dt = (Q - I B) / J

Q = KP E + KI Edτ + KD dE/dt

E = C - R

Application of time stepping gives

RNEW = ROLD + t * UOLD

UNEW = UOLD + t * (BOLD + DOLD - WOLD) /M

WOLD = X UOLD |UOLD| + Y UOLD

BNEW = BOLD + t * (QOLD - I BOLD) / J

QOLD = KP EOLD + KI  EOLD t + KD EOLD/t

EOLD = COLD - ROLD

An m code for the auv is given below. This is followed by a

Ziegler Nichols response generated by the code.

PIPE FLOW SETUP

TIME STEPPING SIMULATION

To illustrate time stepping we will consider the task of

controlling the temperature of air flowing down a pipe. The

setup is shown on the next page. The governing equations are:

X dR/dt + Y R = H + D

A dH/dt + B H = Z Q

Q = KP E + KI Edτ + KD dE/dt

 E = C - R

where R is the temperature of the air at the heater, R is

the temperature of the air at the sensor, C is the command

temperature, E is the temperature error, Q is the control

signal, H is the heat generated by the heater, D is a

disturbance heat (plus or minus), X Y A B Z are process

constants and KP KI KD are the controller gains. Note that R

is what R was T seconds back in time: T is the time it

takes for the air to travel down the pipe.

Manipulation of the governing equations gives

dR/dt = (H + D - Y R) / X

dH/dt = (Z Q - B H) / A

Q = KP E + KI Edτ + KD dE/dt

E = C - R

Application of time stepping gives

RNEW = ROLD + t * (HOLD + DOLD - Y ROLD) / X

HNEW = HOLD + t * (Z QOLD - B HOLD) / A

QOLD = KP EOLD + KI  EOLD t + KD EOLD/t

EOLD = COLD - ROLD

An m code for the setup is given below. This is followed by

a Ziegler Nichols response generated by the code.

SIMULINK CONTROL SYSTEM SIMULATION

SIMULINK makes use of a block diagram representation of the

system. One activates SIMULINK by typing SIMULINK and

pressing enter in the main MATLAB window. Blocks are formed

by picking blocks from groups of blocks in the main

SIMULINK window. The group labeled SOURCES contains blocks

that could be used for commands and disturbances. The group

labeled SINKS contains blocks that could be used for

display of responses. The group labeled CONTINUOUS contains

many common transfer functions and state space blocks. The

group labeled DISCRETE contains blocks that could be used

to mimic loop rate phenomena. The group labeled MATH

contains blocks for things like summation junctions and

gains. The group labeled NONLINEAR contains various types

of nonlinearities and switching controllers. Many of the

switching controllers can be formed using LOOK UP TABLE

under the group of blocks labeled FUNCTIONS & TABLES. The

PID controller can be found under ADDITIONAL LINEAR under

SIMULINK EXTRAS under BLOCK SETS & TOOL BOXES.

Block diagram construction makes extensive use of the click

and drag functions of the left and right buttons of the

mouse. To illustrate the construction, imagine you have an

empty MINE window open on the screen. From the SIMULINK

window, double left click on the SOURCES icon. Then, from

its window, left click on the STEP block and drag it to the

MINE window. All other blocks can be moved this way. You

can also use COPY and PASTE. To move blocks around in the

MINE window, just left click and drag them. You can also

use CUT and PASTE. To join blocks with lines, you again use

left click and drag. To create break lines, you use right

click on the break point and drag. To change parameters,

double left click on the block to activate a block menu.

To run a simulation, first pick PARAMETERS under SIMULATION

to set things like ODE integration scheme. Then, pick START

under SIMULATION to run the simulation.

SIMULINK block diagrams for AUV Depth Control and Pipe Flow

Temperature Control are attached. Also attached are Ziegler

Nichols responses of each system to a step in command.

AUTONOMOUS UNDERWATER VEHICLE

To illustrate SIMULINK we will consider the task of

controlling the submergence depth of a small autonomous

underwater vehicle or auv. The governing equations are:

M d2R/dt2 + N dR/dt = B + D

J dB/dt + I B = Q

Q = KP E + KI Edτ + KD dE/dt

E = C - R

Laplace transformation gives

[M S2 + N S] R = B + D

[J S + I] B = Q

Q = [KP + KI/S + KD S] E

Transfer functions are

R / [B + D] = 1 / [M S2 + N S]

B / Q = 1 / [J S + I]

Q / E = [KP + KI/S + KD S]

PIPE FLOW SETUP

To illustrate SIMULINK we will consider the task of

controlling the temperature of air flowing down a pipe. The

governing equations are:

X dR/dt + Y R = H + D

A dH/dt + B H = Z Q

Q = KP E + KI Edτ + KD dE/dt

 E = C - R

Laplace transformation gives

[X S + Y] R = H + D

[A S + B] H = Z Q

Q = [KP + KI/S + KD S] E

E = C - R R = e-TS R

Transfer functions are

R / [H + D] = 1 / [X S + Y]

H / Q = Z / [A S + B]

Q / E = [KP + KI/S + KD S]

E = C - R R / R = e-TS

NONLINEAR PHENOMENA

Linear theory predicts that, when an unstable system is

disturbed from a rest state, the transients which develop grow

indefinitely. For example, when transients are oscillatory, the

oscillation amplitude tends to  as time tends to . In reality,

infinite amplitudes are never observed. Sometimes large

amplitudes cause the system to break down. Often nonlinearities

limit amplitudes to some finite level before breakdown can

occur. These finite amplitude oscillations are known as limit

cycles. Sometimes limit cycle amplitudes are very small: in this

case, system is often considered to be practically stable.

Nonlinearities can also cause systems which are stable in a

linear sense to be practically unstable.

When a system has strong multiple nonlinearities, simulation is

the only option. When a system has only one strong nonlinearity,

such as a switching controller, one can use its Describing

Function DF. In some texts, the letter N is used to denote it

instead of DF. The DF replaces the nonlinear controller.

When a system with a nonlinear controller is undergoing a limit

cycle, its behavior resembles a borderline stable linear system:

no growth or decay. The controller seems to be able to adjust

its gain to make the system borderline stable. The describing

function DF for a nonlinear controller approximates this

adjustable gain. To get DF, the system is assumed to be

undergoing a limit cycle and to be nonforced. Also the signal

fedback to the controller is taken to be a pure sinusoid. This

is usually a good assumption because the linear elements which

follow the controller generally act as a low pass filter: they

let only the fundamental component out of the controller get

back to the controller. When the input into the nonlinear

controller is:

IN = Eo Sinωt

its output is generally of the form:

ON = OB + OS Sinωt + OC Cosωt + Higher Harmonics .

With the same input:

IDF = Eo Sinωt

the describing function gives out:

ODF = OB + OS Sinωt + OC Cosωt .

So a describing function analysis ignores higher harmonics. This

is appropriate because they are filtered away anyhow. For most

control situations, the bias term OB is zero.

When a system is undergoing a limit cycle, its linear elements

are forced sinusoidally by the limit cycle. In this case, each

transfer function reduces to the form:

O/I = TF = A + Bj

where

I = Sinωt O = A Sinωt + B Cosωt .

By analogy, the DF for a nonlinear controller is:

ODF / IDF = DF = OS/Eo + OC/Eo j

where

IDF = Eo Sinωt ODF = OS Sinωt + OC Cosωt .

As an illustration of the development of a describing function,

consider the ideal relay controller. When it has a sinusoidal

input, its output is a square wave. A Fourier Series analysis of

a square wave gives the components:

 T

OS = 2/T  Q(t) Sint dt = 4Qo/
 0

 T

OC = 2/T  Q(t) Cost dt = 0

 0

 T

OB = 2/T  Q(t) dt = 0
 0

So the fundamental output is:

ODF = [4Qo/] Sinωt

The input is

IDF = Eo Sinωt

So the Describing Function is

DF = [4Qo]/[Eo]

RELAY CONTROLLERS

AUTONOMOUS UNDERWATER VEHICLE

To illustrate nonlinear phenomena, we will consider the task

of controlling the submergence depth of a small autonomous

underwater vehicle or auv. The schematic of the system is

shown on the next page. Relay controllers resemble the

proportional controller. For the proportional controller

case, the governing equations for the auv are:

M d2R/dt2 = B + D - W

W = X dR/dt |dR/dt| + Y dR/dt

J dB/dt + I B = Q

Q = KP E E = C - R

where R is the depth of the auv, M is its overall mass, B is

the control force from the propulsion system, D is a

disturbance load caused for example by sudden weight changes,

W is a drag load consisting of wake drag and wall drag, E is

the depth error, C is the command depth, M X Y J I are

process constants and KP is the controller gain.

Linearization allows us to write W as:

W = N dR/dt

To give a numerical example we will let the parameters be:

M = 50.0 N = 50.0

J = 0.5 I = 0.1

Theory shows that the borderline proportional gain KP for the

auv is 6 and the borderline period TP is 14.

The describing function for an ideal relay controller is:

DF = [4 Qo] / [π Eo]

At a limit cycle this is equal to the borderline

proportional gain KP. Setting DF equal to KP gives:

Eo = [4 Qo] / [π DF] = [4Qo] / [π KP]

The saturation limit for the controller is 12. Substitution

into the amplitude equation gives Eo equal to 2.5.

An m code for the auv for the ideal relay controller case

is given below. This is followed by a response generated by

the code. As can be seen, it agrees with DF predictions.

PIPE FLOW SETUP

To illustrate nonlinear phenomena, we will consider the task

of controlling the temperature of air flowing down a pipe.

The setup is shown on the next page. Relay controllers

resemble the proportional controller. For the proportional

controller case, the governing equations for the setup are:

X dR/dt + Y R = H + D

A dH/dt + B H = Z Q

Q = KP E E = C - R

where R is the temperature of the air at the heater, R is

the temperature of the air at the sensor, C is the command

temperature, E is the temperature error, Q is the control

signal, H is the heat generated by the heater, D is a

disturbance heat (plus or minus), X Y A B Z are process

constants and KP is the controller gain. Note that R is what

R was T seconds back in time: T is the time it takes for

the air to travel down the pipe.

To give a numerical example we will let the parameters be:

X = 0.25 Y = 1.0

A = 0.1 B = 1.0

Z = 1.0 T = 0.5

Theory shows that the borderline proportional gain KP for the

setup is 1.5 and the borderline period TP is 1.58.

The describing function for an ideal relay controller is:

DF = [4 Qo] / [π Eo]

At a limit cycle this is equal to the borderline

proportional gain KP. Setting DF equal to KP gives:

Eo = [4 Qo] / [π DF] = [4Qo] / [π KP]

The saturation limit for the controller is 5. Substitution

into the amplitude equation gives Eo equal to 4.2.

An m code for the setup for the ideal relay controller case

is given below. This is followed by a response generated by

the code. As can be seen, it agrees with DF predictions.

	BASICS
	PID
	GAINS
	LOOP
	LAPLACE
	TRACES
	CYCLES
	RELAY

