
AUTOMATIC CONTROL ENGINEERING 

 

FEEDBACK CONTROL CONCEPT 

The sketch on the next page shows a typical feedback or error 

driven control system. What has to be controlled is generally 

referred to as the plant. What the plant is doing is known as its 

response. What it should be doing is known as the command. The 

plant receives a control signal from a drive and a disturbance 

signal from the surroundings. The goal is to pick a controller 

that can make the response follow closely command signals but 

reject disturbances. The controller acts on an error signal: this 

is command minus some measure of the response. This is why it is 

usually called error driven control. Two types of error driven 

control are PID and Switching. PID stands for proportional 

integral derivative. Proportional generates a signal which is 

proportional to error. Integral generates a signal which is 

proportional to the integral of the error. Derivative generates a 

signal which is proportional to the rate of change of error. 

Switching generally gives out signals with constant levels.  

 

AUTONOMOUS UNDERWATER VEHICLE DEPTH CONTROL 

To illustrate some error driven control strategies we will 

consider the task of controlling the submergence depth of a small 

autonomous underwater vehicle or auv. According to Newton's Second 

Law of Motion, the equation governing its up and down motion is: 

 

                  M d2R/dt2  =  B  +  D  -  W 



 

 

 



 

 

 

 

 



where R is the depth of the auv, M is its overall mass, B is the 

control force from the propulsion system, D is a disturbance load 

caused for example by sudden weight changes and W is a drag load. 

Drag load has two components: wake drag and wall drag: 

 

                W  =  X dR/dt |dR/dt|  +  Y dR/dt    

 

where X and Y account mainly for the size and shape of the auv. 

 

A simple model of the propulsion system is: 

 

                     J dB/dt  +  I B  =  Q 

 

where Q is the control signal. There are two basic types of 

propulsion systems that could be used to move the auv up and down. 

One is an air/water ballast tank. In this case, the control signal 

Q would produce a change in buoyancy and J would account for the 

fact that this is caused by a flow: I would be zero. If J was very 

large, the control force B would build up very slowly. The other 

type of propulsion system uses motor driven propellors to generate 

B. Usually, for protection, these would be located inside a duct. 

In this case, I would account for the size and shape of the blades 

and duct, while J would account for things like rotor inertia. 

Again, if J was very large, the control force B would build up 

very slowly. One could determine J and I experimentally. 

 

The PID error driven strategy lets the control signal Q be: 



 

             Q  =  KP E  +  KI Edτ  +  KD dE/dt     

 

where E = C - R is the depth error and KP KI KD are gains: C is the 

command depth. Usually, gains are constants. However, they can be 

made a function of the state of the system or its surroundings. In 

this case, control is said to be adaptive.  

 

Imagine the auv is at the water surface and it suddenly commanded 

to go to some constant command depth C. Assume that there is a 

disturbance with a constant level D acting downward. Also assume 

the auv is using motor driven propellors for propulsion.  

 

Proportional by itself would cause the propellors to spin in such 

a way that the auv would move towards the command depth. The 

amount of spin would be proportional to depth error. When the auv 

reaches the command depth, the proportional control signal would 

be zero. If the auv was held at the command depth, its propellors 

would stop spinning. The disturbance would cause the auv to stop 

below the command depth. This offset would be such that the 

propellors generate just enough upward force to balance the 

downward disturbance. The offset would be DI/KP. When D is known, 

something called feedforward compensation can be used to get rid 

of the offset. Basically, we measure D and subtract ID from Q in 

the drive equation. When motions settle down, the drive gives out 

an extra signal minus D which cancels D. But we must know D. 

Another way to get rid of the offset is to give the auv a false 



command C*. If the false command C* was set at [C-DI/KP], the auv 

would end up at C. It would hang below C* by DI/KP and thus end up 

at C. If the gain KP was very large, offsets such as DI/KP would 

probably be tolerable. However, large gain would generate very 

large Q when the depth is well away from the command depth. Very 

large Q could burn out drives. To avoid this, a limit is usually 

put on the magnitude of Q. In this case, the control is referred 

to as proportional with saturation. If the disturbance was greater 

than the saturation limits, then control would be impossible. 

 

Integral by itself would cause the propellors to spin in such a 

way that the auv would move towards the command depth. The amount 

of spin would be proportional to the integral of depth error. As 

the auv moves towards the command depth, the propellors would spin 

faster and faster. Obviously, this would cause the auv to 

overshoot the command depth. Because of these overshoots, integral 

cannot be used alone. The good thing about integral is, if the 

system is stable, it gives zero offsets. If the auv was held with 

positive depth error, the integral control signal would get bigger 

and bigger. This is known as integral windup. If it was released 

after a long time, it would take a very large integrated negative 

error to cancel out the windup due to integrated positive error. A 

simple way to avoid integral windup is to activate integral only 

within a band surrounding the command depth. All we need is for 

the band to be wide enough for proportional to get the auv within 

the band so that integral can then home it into the command depth. 

Derivative like integral cannot be used alone. Assume that the 



command C is a constant, and let the auv be stopped far away from 

the command depth. In this case, dE/dt would be zero. So, the 

controller would not generate a force to move the auv to the 

command depth. Derivative mimics drag load and helps motions 

settle down. It generates a control signal which opposes motion. 

Something called rate feedback could also be used to help make 

motions settle down. The controller would act on depth error E 

minus a constant times the depth rate dR/dt. Substitution into the 

governing equations shows that rate feedback mimics drag. Note 

that derivative could be used to make the auv move at a constant 

speed: dC/dt is made a constant. Drag and the dR/dt part of dE/dt 

would tend to limit speed.  

 

With all three components of PID acting together, as soon as the 

auv passes through the command depth, proportional would tend to 

counteract integral. Also, proportional would get the auv closer 

to the command depth faster, so it would limit integral windup. 

Derivative would help counteract overshoots. The auv would home in 

quickly on the command depth with minimal overshoots. So, we get 

the good characteristics of all three controllers. 

 

There are many types of switching control. They often have trouble 

with overshoots. Basic relay switching is the simplest. It would 

try to make the propellors rotate at a constant speed: the 

direction of rotation would depend on the sign of depth error. 

Relay with deadband would allow the auv to drift once it gets 

inside a band surrounding the command depth. The propulsion device 



would be shut down and drag load would cause the auv to slow down. 

Relay with hysteresis would reverse the direction of control 

before the auv gets to the command depth. In this case, the 

propulsion device would act as a brake. A bias signal could be 

added to counteract disturbances.  

 

Propulsion system dynamics would cause the control force to lag 

the control signal. The amount of lag depends on how large J is 

relative to I. Consider the case where proportional control is 

acting alone and the error is initially positive. For a slowly 

reacting propulsion system, positive error would cause a positive 

control force to gradually build up. As it builds up, this force 

would move the auv towards the command depth. However, when the 

auv gets to the command depth, because of lag, the control force 

would still be positive, and this would cause overshoot. In some 

cases, these overshoots would settle down. In other cases, they 

would not settle down but would limit because of wake drag.    

 

Control signals for an auv would be generated within a computer 

control loop. The loop period must be much smaller than the basic 

period of auv motion: otherwise severe overshoots could develop. 

If the auv was controlled remotely by a computer onboard a ship, 

the time taken for the depth signal to travel from the auv to the 

ship and the time taken for the drive signal to travel back from 

the ship to the auv could cause overshoots, because the auv would 

be responding to past error not present error. 

 



  
SUBSEA ROBOT SPRING/DASHPOT PID ANALOGY 

 

Equations governing subsea robot depth motion are: 
 
 
        M d2R/dt2 + X dR/dt|dR/dt| + Y dR/dt = B + D  

 

                     J dB/dt + I B = Q   

 
         Q = KP(C-R) + KI(C-R)dτ + KD(dC/dt-dR/dt) 
 
 
Let the drive be a propellor in a duct driven by a DC motor. For 

most of what follows, we will assume that the drive is fast acting, 

so that J is approximately zero. In this case, 

 
   B  =  KP/I (C-R)  +  KI/I (C-R)dτ  +  KD/I (dC/dt-dR/dt)  
 

     B  =  KP (C-R)  +   KI (C-R)dτ  +  KD (dC/dt-dR/dt) 
 
 
We will also assume that the robot is initially at one depth and it 

is suddenly commanded to go to another depth. When proportional 

control is acting alone, the control force B is a linear function 

of depth error. This pulls the robot towards the command depth. As 

the robot approaches the command depth, the propellor slows down. 

Note that a spring with its ends attached to the robot and the 

command depth would move the robot the same way. Because the drive 

is spring like, disturbances D cause the robot to settle down away 

from the command depth. When integral control is acting alone, the 

control force B gradually builds up and pulls the robot towards the 

command depth. As the robot approaches the command depth, the 

propellor goes faster and faster. This causes the robot to 



overshoot the command depth. As soon as it overshoots, the control 

force starts to decrease: meaning the propellor starts to slow 

down. It takes time for the control force to go to zero. Beyond 

this point, the control force changes sign and acts initially like 

a brake and causes the robot to stop and then start back towards 

the command depth. Again, when it reaches the command depth, it 

overshoots it. These overshoots do not settle down. If they did, B 

would equal minus D and R would equal C. One could replace the 

integral drive with a spring with one end attached to the robot and 

the other end free to move. Initially the free end moves towards 

the command depth. This causes the spring to stretch and pull the 

robot towards the command depth. The spring stretching mimics the 

integration of error. The spring keeps stretching until the robot 

overshoots the command depth. Then, it gradually slackens. It takes 

time for the spring to totally slacken so it pulls the robot beyond 

the command depth. When the spring is totally slack, the free end 

starts back towards the command depth. In this case, the spring 

acts initially like a brake and causes the robot to stop and then 

start back towards the command depth. With proportional and 

integral acting together it is possible for the robot to settle at 

the command depth. Proportional suppresses the overshoots caused by 

integral and integral gets rid of offsets. Derivative control is 

not spring like. The equation for B shows that it instead mimics a 

dashpot. When the drive is slow acting, control actions are not 

instantaneous. This can cause severe overshoots. 



CAR/DRIVER PID ANALOGY 

 

Imagine a car at position A on a straight road that is 

suddenly commanded to go to position B on the same road. A 

proportional driver would suddenly depress the gas peddle 

down to some level. This would cause the car to gradually 

pick up speed. As the car moves towards B, the driver would 

depress the gas peddle less and less. The amount of 

depression would be a linear function of position error or 

distance between B and the car position. When the car 

reaches B, peddle depression would be zero. Because of its 

momentum, the car would overshoot B. As soon as it does so, 

the driver would suddenly put the car into reverse and 

depress the gas peddle an amount again dependent on position 

error. This would cause the car to gradually come to a stop 

and reverse direction back towards B. If there was no wind 

and the road was horizontal, wake drag and drive friction 

would gradually make the car come to rest at B. Otherwise, 

it would come to rest away from B. An integral driver 

starting at A would gradually depress the gas peddle based 

on the integral of position error. This would move the car 

towards B but at a faster and faster speed. When the car 

reaches B, peddle depression would be maximum. Obviously, 

the car would overshoot B. As soon as it does so, the driver 

would gradually depress the gas peddle less and less. 

Basically, the position error would now be negative, and 



integrated error would gradually decrease. When it reaches 

zero, the peddle depression would also be zero, and the 

driver would suddenly put the car into reverse and gradually 

depress the gas peddle again based on the integral of 

position error. This would cause the car to gradually come 

to a stop and reverse direction back towards B. When the car 

reaches B, it would again overshoot. The car would never 

settle at B but would oscillate back and forth at an 

amplitude dependent on wake drag and drive friction. The 

mean position error would be zero, even when there was wind 

or the road was not horizontal. A proportional plus integral 

driver could make the car settle at B, even when there was 

wind or the road was not horizontal. The proportional part 

would bring the car close to B before the integral part 

could build up too much signal. The integral part would then 

home the car into B. Whereas the proportional plus integral 

driver would work only the gas peddle, a proportional plus 

integral plus derivative driver would also use the brake. 

The derivative part would apply the brake an amount based on 

speed. This would help control overshoots if they are a 

problem. Driver reaction time could cause severe overshoots. 

Its control is based on past error not present error.

 

 



ZIEGLER NICHOLS GAINS 

 

Ziegler and Nichols, through a series of experiments on simple 

systems, developed criteria for picking gains in a controller 

that would give good tracking performance. For a system that can 

be made unstable with proportional acting alone, the procedure 

they recommend is as follows. With proportional acting alone, 

increase its gain until the system becomes borderline stable. Let 

the borderline gain be KP: let its period be TP. According to 

Ziegler and Nichols, reasonable PID gains are: 

 

KP = 0.6*KP      KI = KP/TI      KD = KP*TD 

   

TI = 0.5*TP       TD = 0.125*TP 

 

When only proportional and integral are acting, they recommend 

the following PI gains:   

 

KP = 0.45*KP      KI = KP/TI 

                    

TI = 0.83*TP 

 

When only proportional is acting, they recommend: 

 

KP = 0.5*KP 



 

AUTONOMOUS UNDERWATER VEHICLE 

 

ZIEGLER NICHOLS GAINS 

 

To illustrate a procedure for getting Ziegler Nichols gains, 

we will consider the task of controlling the submergence 

depth of a small autonomous underwater vehicle or auv. 

According to Newton's Second Law of Motion, the equation 

governing the up and down motion of the auv is: 

 

M d2R/dt2  =  B  +  D  -  W 

 

where R is the depth of the auv, M is its overall mass, B is 

the control force from the propulsion system, D is a 

disturbance load caused for example by sudden weight changes 

and W is a drag load consisting of wake drag and wall drag: 

 

W  =  X dR/dt |dR/dt|  +  Y dR/dt 

 

where X and Y account for the size and shape of the auv. Here 

we linearize the drag to get: 

 

W = N dR/dt 

 

A simple model of the propulsion system is: 

 

J dB/dt  +  I B  =  Q 

 

where Q is the control signal: J and I are drive constants.  

 

 



The PID error driven strategy lets the control signal Q be: 

 

Q  =  KP E  +  KI Edτ  +  KD dE/dt 

 

where E = C - R is the depth error and KP KI KD are the 

controller gains: C is the command depth. 

 

To get Ziegler Nichols gains, we start by assuming only 

proportional is active. Manipulation of the governing 

equations gives:  

  

J [ M d3R/dt3  +  N d2R/dt2  -  dD/dt] 

 

+  I [ M d2R/dt2  +  N dR/dt  - D ]   =  KP C  -  KP R  

 

We then assume that C and D are both constants and that the 

auv is undergoing a limit cycle oscillation for which 

 

R = Ro + R Sin [t] 

 

Substitution into the modified drive equation gives 

 

- J  M  3 R Cos[t] - J  N  2 R Sin[t] 

 

- I  M  2 R Sin[t]  +  I  N    R Cos[t] 

 

- I  Do   =   KP  Co  -  KP  Ro  -  KP  R Sin[t]  

 

This equation is of the form:  

 

 

 



 

i Sin[t]  +  j Cos[t]  +  k  =  0 

 

Mathematics requires that i=0 j=0 k=0: 

 

-  J N 2   - I M 2  +  KP  =  0 

 

- J M 3   +  I N    =  0 

 

              + I Do   +  KP Co   -  KP Ro   =  0 

 

Manipulation of these equations gives 

 

Ro  =   Co  + I Do / KP 

 

2  = [I N] / [J M] 

 

KP  =  [J N  + I M] 2 

= [J N  + I M] [I N] / [J M] 

 

             

For the illustration we let : M=50 N=50 J=0.5 I=0.1. The 

above equations give =0.447, KP=6 and TP=14. Substitution 

into the Ziegler Nichols gains equations gives: KP = 3.6; KI 

= 0.54; KD = 6.3. An m code for the auv is given below. This 

is followed by a Ziegler Nichols response generated by the 

code. A SIMULINK Block diagram follows the m code response. 

It gives basically the same response as the code.  

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 



 

 

 

 



 

PIPE FLOW SETUP 

 

ZIEGLER NICHOLS GAINS 

 

 

To illustrate a procedure for getting Ziegler Nichols gains, 

we will consider the task of controlling the temperature of 

the air flowing down the pipe in the lab pipe flow setup. 

Basically the setup consists of a fan which draws air from 

atmosphere and sends it down a pipe. A heater just downstream 

of the fan is used to heat the air. It receives a signal from 

a controller. The temperature of the air at the pipe exit is 

measured by a thermistor. The governing equations are:  

 

X dR/dt + Y R = H + D 

 

 

A dH/dt + B H = Z Q 

 

 

Q = KP E + KI Edτ + KD dE/dt 

 

 

 E = C - R 

 

where R is the temperature of the air at the heater, R is 

the temperature of the air at the sensor, C is the command 

temperature, E is the temperature error, Q is the control 

signal, H is the heat generated by the heater, D is a 

disturbance heat and KP KI KD are the controller gains. Note 

that R is what R was T seconds back in time: T is the time 

it takes for the air to travel down the pipe. 

 

 



 

To get Ziegler Nichols gains, we start by assuming only 

proportional is active. Manipulation of the governing 

equations gives:  

  

A [ X d2R/dt2  +  Y dR/dt  -  dD/dt] 

 

+  B ( X dR/dt  +  Y R  - D)  =  Z KP C  -  Z KP R    

 

We then assume that C and D are both constants and that the 

setup is undergoing a limit cycle oscillation for which 

 

R = Ro + R Sin [t]      R = Ro + R Sin [(t-T)] 

 

Substitution into the modified drive equation gives 

 

 - A X 2 R Sin[t] + A Y  R Cos[t] 

 

+  B X  R Cos[t]  +  B Y Ro  +  B Y R Sin[t]     

 

- B Do   =  Z KP Co -  Z KP Ro  -  Z KP R Sin[(t-T)] 

 

A trigonometric identity gives 

 

Sin[(t-T)]  =  Sin[t] Cos[T] - Cos[t] Sin[T] 

 

Substitution into the modified drive equation gives an 

equation of the form 

 

i Sin[t]  +  j Cos[t]  +  k  =  0 

 

 



 

 

Setting i=0 and j=0 and k=0 gives 

 

 

- A X 2  +  B Y  +  Z  KP Cos[T] =   0 

 

A Y    +  B X   -  Z KP Sin[T] =  0  

 

B Y Ro  -  B Do   -  Z KP Co   +   Z KP Ro  =  0 

 

Manipulation of the first two equations gives 

 

KP = [A X 2 - B Y] / [Z Cos[T]] 

 

KP = [A Y  + B X ] / [Z Sin[T]] 

 

Sin[T]/Cos[T] = Tan[T] 

= [A Y  + B X ] / [A X 2 - B Y] 

 

The last equation gives . Once  is known we can then solve 

for KP. For the illustration, we let: X=0.25 Y=1.0 A=0.1 

B=1.0 Z=1.0 T=0.5. The above equations give =3.97, KP=1.5 

and TP=1.58. Substitution into the Ziegler Nichols gains 

equations gives: KP=0.9; KI=1.2; KD=0.17. An m code for the 

setup is given below. This is followed by a Ziegler Nichols 

response. A SIMULINK Block diagram follows the response. It 

gives basically the same response as the code.  

 

 

 

 



 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

 

 

 



 

GH NYQUIST PLOT 

 

A GH plot is basically a polar open loop frequency 

response plot. Consider the case where only 

proportional control is being used. When GH=-1, a 

command sine wave produces a response which has the 

same magnitude as the command but is 180o out of 

phase. If the command was suddenly removed and the 

loop was suddenly closed, the negative of the 

response would take the place of the command and 

keep the system oscillating. The system would be 

borderline stable with gain K. If the gain was 

bigger than K, the command would produce a response 

bigger than itself. When this takes over, it would 

produce growing or unstable oscillations. If the 

gain was smaller than K, the command would produce a 

response smaller than itself. When this takes over, 

it would produce decaying or stable oscillations.  

 

 



 

 

 

 

 

 

 



 

 

 



REVIEW OF LAPLACE TRANSFORMATION 

 

Laplace Transformation converts ordinary differential equations or 

ODEs into algebraic equations or AEs. Manipulation of the AEs 

followed by Inverse Laplace Transformation gives responses back in 

time. Manipulation of the AEs also gives the system transfer 

functions or TFs. Most control theories are based on TFs. 

  

The Laplace Transform Integral is: 
 
 

                                            

               F(S) =  [f(t)] =   f(t) e-St dt     . 
                                  o 
 
 

Usually, mechanical engineers do not have to evaluate this 

integral. All of the important cases have already been worked out. 

 

Some Laplace Transform (LT) pairs used to reduce ODEs to AEs are: 
 
 
                                             

           [df/dt] = S F(S) - f(0)      fdτ = F(S) / S   

              [d2f/dt2] =  S2 F(S) - S f(0) - df(0)/dt  

     [d3f/dt3] =  S3 F(S) - S2 f(0) - S df(0)/dt - d2f(0)/dt2 

 

Usually, initial condition terms are set to zero for control 

because, in most cases, a system starts from some rest state.  

 

Manipulation of algebraic equations often gives factors of the 

form: Γ/(S-λ). Inverse Transformation gives back in time: Γe+λt. 



Typical commands/disturbances into control systems include: a step 

with height A / a pulse with height A and short duration T / a 

sine or cosine wave with amplitude A and frequency ω / a linear 

ramp in time with slope A. Laplace Transform pairs for these are: 

 

           (Step with Height A) = A/S             

           (Short Duration Pulse) = AT 

           (Sine Wave) = Aω/(S2+ω2) 

           (Cosine Wave) = AS/(S2+ω2) 

           (Linear Ramp) = A/S2      . 

 

Control systems often have time delays or transport lags inherent 

in them. These can seriously degrade performance. When a signal is 

delayed in time by T seconds, Laplace Transformation gives:  

 

             (f[t-T]) = e-ST F(S) . 

 

The Final Value Theorem states that 

 

        Lim  f(t)   =   Lim  S F(S)     . 

        t             S0   

This can be used to get the final state of stable systems 

subjected to step commands or step disturbances. Ideally for a 

step command the final state should be equal to the command while 

for a step disturbance the final state should be zero. The Final 

Value Theorem gives unrealistic results when systems are unstable.  



 

 

COMPUTER SIMULATION OF CONTROL SYSTEMS 

 

PREAMBLE 

Simulation allows one to study the behavior of a system 

before it is actually constructed. This can serve as an aid 

to system design. Simulations are inexpensive and easy to 

put together. They can handle all sorts of phenomena. These 

include transport lag and computer loop rate phenomena. 

Simulations can also handle multiple strong nonlinearities. 

They are often used as a check on more conventional 

analysis. However, simulations are like experiments. For 

complex systems, it is hard to make sense of responses. 

Before digital computers were developed, systems were 

simulated using analog electronics. When digital computers 

became common place, simulations made use of time stepping 

procedures. Basically, these follow local slopes or rates 

step by step in time. Special software packages based on 

these procedures have been developed. Probably, the popular 

package is SIMULINK under MATLAB.  

 

 

 



 

AUTONOMOUS UNDERWATER VEHICLE 

TIME STEPPING SIMULATION 

 

To illustrate time stepping we will consider the task of 

controlling the submergence depth of a small autonomous 

underwater vehicle or auv. The governing equations are:  

 

M d2R/dt2  =  B  +  D  -  W 

 

W  =  X dR/dt |dR/dt|  +  Y dR/dt 

 

J dB/dt  +  I B  =  Q 

 

Q  =  KP E  +  KI Edτ  +  KD dE/dt 

 

E  =  C - R 

 

where R is the depth of the auv, M is its overall mass, B is 

the control force from the propulsion system, D is a 

disturbance load caused for example by sudden weight changes, 

W is a drag load consisting of wake drag and wall drag, E is 

the depth error, C is the command depth, M X Y J I are 

process constants and KP KI KD are the controller gains.  

 



 

Manipulation of the governing equations gives 

 

dR/dt = U 

dU/dt  =  (B + D - W) / M 

W  =  X U |U|  +  Y U 

dB/dt  =  (Q - I B) / J 

Q  =  KP E  +  KI Edτ  +  KD dE/dt 

E = C - R 

 

Application of time stepping gives 

 

RNEW  =  ROLD  +  t * UOLD 

UNEW  =  UOLD  +  t * (BOLD + DOLD  - WOLD) /M   

WOLD  =  X UOLD  |UOLD|  +  Y UOLD 

BNEW  =  BOLD  +  t * (QOLD -  I BOLD) / J  

QOLD    =  KP EOLD    +  KI  EOLD  t  +  KD EOLD/t 

EOLD  = COLD  - ROLD   

 

An m code for the auv is given below. This is followed by a 

Ziegler Nichols response generated by the code. 

 



 

 

 

 

 

 

 



 

 

 

 

 

 



 

PIPE FLOW SETUP 

TIME STEPPING SIMULATION 

 

To illustrate time stepping we will consider the task of 

controlling the temperature of air flowing down a pipe. The 

setup is shown on the next page. The governing equations are:  

 

X dR/dt + Y R = H + D 

 

A dH/dt + B H = Z Q 

 

Q = KP E + KI Edτ + KD dE/dt 

 

 E = C - R 

 

where R is the temperature of the air at the heater, R is 

the temperature of the air at the sensor, C is the command 

temperature, E is the temperature error, Q is the control 

signal, H is the heat generated by the heater, D is a 

disturbance heat (plus or minus), X Y A B Z are process 

constants and KP KI KD are the controller gains. Note that R 

is what R was T seconds back in time: T is the time it 

takes for the air to travel down the pipe. 



 

 

 

 

 

 

 



 

 

Manipulation of the governing equations gives 

 

dR/dt  =  (H  + D - Y R) / X 

dH/dt  =  (Z Q - B H) / A 

Q  =  KP E  +  KI Edτ  +  KD dE/dt 

E = C - R 

 

Application of time stepping gives 

 

RNEW  =  ROLD  +  t * (HOLD + DOLD  - Y ROLD) / X 

HNEW  =  HOLD  +  t * (Z QOLD -  B HOLD) / A  

QOLD    =  KP EOLD    +  KI  EOLD  t  +  KD EOLD/t 

EOLD  = COLD  - ROLD   

 

 

An m code for the setup is given below. This is followed by 

a Ziegler Nichols response generated by the code. 

 

 

 

 

 



 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

SIMULINK CONTROL SYSTEM SIMULATION 

 

SIMULINK makes use of a block diagram representation of the 

system. One activates SIMULINK by typing SIMULINK and 

pressing enter in the main MATLAB window. Blocks are formed 

by picking blocks from groups of blocks in the main 

SIMULINK window. The group labeled SOURCES contains blocks 

that could be used for commands and disturbances. The group 

labeled SINKS contains blocks that could be used for 

display of responses. The group labeled CONTINUOUS contains 

many common transfer functions and state space blocks. The 

group labeled DISCRETE contains blocks that could be used 

to mimic loop rate phenomena. The group labeled MATH 

contains blocks for things like summation junctions and 

gains. The group labeled NONLINEAR contains various types 

of nonlinearities and switching controllers. Many of the 

switching controllers can be formed using LOOK UP TABLE 

under the group of blocks labeled FUNCTIONS & TABLES. The 

PID controller can be found under ADDITIONAL LINEAR under 

SIMULINK EXTRAS under BLOCK SETS & TOOL BOXES.  

 

 

 



 

Block diagram construction makes extensive use of the click 

and drag functions of the left and right buttons of the 

mouse. To illustrate the construction, imagine you have an 

empty MINE window open on the screen. From the SIMULINK 

window, double left click on the SOURCES icon. Then, from 

its window, left click on the STEP block and drag it to the 

MINE window. All other blocks can be moved this way. You 

can also use COPY and PASTE. To move blocks around in the 

MINE window, just left click and drag them. You can also 

use CUT and PASTE. To join blocks with lines, you again use 

left click and drag. To create break lines, you use right 

click on the break point and drag. To change parameters, 

double left click on the block to activate a block menu.  

 

To run a simulation, first pick PARAMETERS under SIMULATION 

to set things like ODE integration scheme. Then, pick START 

under SIMULATION to run the simulation.  

 

SIMULINK block diagrams for AUV Depth Control and Pipe Flow 

Temperature Control are attached. Also attached are Ziegler 

Nichols responses of each system to a step in command.  

 

 



 

AUTONOMOUS UNDERWATER VEHICLE 

 

To illustrate SIMULINK we will consider the task of 

controlling the submergence depth of a small autonomous 

underwater vehicle or auv. The governing equations are:  

 

M d2R/dt2  + N dR/dt =  B  +  D 

J dB/dt  +  I B  =  Q 

Q  =  KP E  +  KI Edτ  +  KD dE/dt 

E  =  C - R 

 

Laplace transformation gives 

 

[ M S2 + N S ] R = B + D 

[ J S + I ] B = Q 

Q = [KP  +  KI/S +  KD S ] E 

 

Transfer functions are 

 

R / [ B + D ] =  1 /  [ M S2 + N S ] 

B / Q = 1 /  [ J S + I ] 

Q / E = [KP  +  KI/S +  KD S ] 

 

 



 

 

 

 



 

 

 

 



 

PIPE FLOW SETUP 

 

To illustrate SIMULINK we will consider the task of 

controlling the temperature of air flowing down a pipe. The 

governing equations are:  

 

X dR/dt + Y R = H + D 

A dH/dt + B H = Z Q 

Q = KP E + KI Edτ + KD dE/dt 

 E = C - R 

 

Laplace transformation gives 

 

[ X S + Y ] R = H + D 

[ A S + B ] H = Z Q 

Q = [KP  +  KI/S +  KD S ] E 

E = C - R        R = e-TS R 

 

Transfer functions are 

  

R / [ H + D ] =  1 / [ X S + Y ] 

H / Q = Z / [ A S + B ] 

Q / E = [KP  +  KI/S +  KD S ] 

E = C - R       R / R = e-TS 



 

 

 

 

 



 

 

 

 



  

 

NONLINEAR PHENOMENA 

 

Linear theory predicts that, when an unstable system is 

disturbed from a rest state, the transients which develop grow 

indefinitely. For example, when transients are oscillatory, the 

oscillation amplitude tends to  as time tends to . In reality, 

infinite amplitudes are never observed. Sometimes large 

amplitudes cause the system to break down. Often nonlinearities 

limit amplitudes to some finite level before breakdown can 

occur. These finite amplitude oscillations are known as limit 

cycles. Sometimes limit cycle amplitudes are very small: in this 

case, system is often considered to be practically stable. 

Nonlinearities can also cause systems which are stable in a 

linear sense to be practically unstable.  

 

When a system has strong multiple nonlinearities, simulation is 

the only option. When a system has only one strong nonlinearity, 

such as a switching controller, one can use its Describing 

Function DF. In some texts, the letter N is used to denote it 

instead of DF. The DF replaces the nonlinear controller. 

 



 

 

When a system with a nonlinear controller is undergoing a limit 

cycle, its behavior resembles a borderline stable linear system: 

no growth or decay. The controller seems to be able to adjust 

its gain to make the system borderline stable. The describing 

function DF for a nonlinear controller approximates this 

adjustable gain. To get DF, the system is assumed to be 

undergoing a limit cycle and to be nonforced. Also the signal 

fedback to the controller is taken to be a pure sinusoid. This 

is usually a good assumption because the linear elements which 

follow the controller generally act as a low pass filter: they 

let only the fundamental component out of the controller get 

back to the controller. When the input into the nonlinear 

controller is: 

           

IN  =  Eo Sinωt 

                      

its output is generally of the form: 

 

ON  =  OB  +  OS Sinωt  +  OC Cosωt  +  Higher Harmonics  . 

 

With the same input: 

 

 

 

 

 



 

 

IDF  =  Eo Sinωt 

  

the describing function gives out:   

 

ODF  =  OB  +  OS Sinωt  +  OC Cosωt  . 

 

So a describing function analysis ignores higher harmonics. This 

is appropriate because they are filtered away anyhow. For most 

control situations, the bias term OB is zero.    

 

When a system is undergoing a limit cycle, its linear elements 

are forced sinusoidally by the limit cycle. In this case, each 

transfer function reduces to the form: 

                

O/I = TF = A + Bj 

where  

 

I = Sinωt         O = A Sinωt + B Cosωt . 

 

By analogy, the DF for a nonlinear controller is: 

 

ODF / IDF  =  DF  =  OS/Eo  +  OC/Eo j 

where 

 

 

 



 

IDF = Eo Sinωt      ODF  =  OS Sinωt  +  OC Cosωt  . 

 

As an illustration of the development of a describing function, 

consider the ideal relay controller. When it has a sinusoidal 

input, its output is a square wave. A Fourier Series analysis of 

a square wave gives the components:   

 

                         T               

OS = 2/T       Q(t) Sint dt   =  4Qo/ 
                         0 

                             

                          T 

OC = 2/T       Q(t) Cost dt   =  0 

                          0 

 

                              T 

OB = 2/T       Q(t) dt   =  0 
                              0 

 

 

So the fundamental output is:  

 

ODF =  [4Qo/] Sinωt 

 

The input is 

 

IDF = Eo Sinωt 

 

So the Describing Function is  

 

DF = [4Qo]/[Eo]  

 



 

RELAY CONTROLLERS 

 

AUTONOMOUS UNDERWATER VEHICLE 

 

To illustrate nonlinear phenomena, we will consider the task 

of controlling the submergence depth of a small autonomous 

underwater vehicle or auv. The schematic of the system is 

shown on the next page. Relay controllers resemble the 

proportional controller. For the proportional controller 

case, the governing equations for the auv are:  

 

M d2R/dt2  =  B  +  D  -  W 

 

W  =  X dR/dt |dR/dt|  +  Y dR/dt 

 

J dB/dt  +  I B  =  Q 

 

Q  =  KP E        E  =  C - R 

 

where R is the depth of the auv, M is its overall mass, B is 

the control force from the propulsion system, D is a 

disturbance load caused for example by sudden weight changes, 

W is a drag load consisting of wake drag and wall drag, E is 

the depth error, C is the command depth, M X Y J I are 

process constants and KP is the controller gain.  



 

 

 

 

 



 

Linearization allows us to write W as: 

 

W  =  N dR/dt 

 

To give a numerical example we will let the parameters be: 

M = 50.0   N = 50.0 

J = 0.5   I = 0.1 

Theory shows that the borderline proportional gain KP for the 

auv is 6 and the borderline period TP is 14.   

The describing function for an ideal relay controller is: 

DF  = [4 Qo] / [π Eo] 

 

At a limit cycle this is equal to the borderline 

proportional gain  KP. Setting DF equal to KP gives: 

 

Eo =  [4 Qo] / [π DF] = [4Qo] / [π KP] 

 

The saturation limit for the controller is 12. Substitution 

into the amplitude equation gives Eo equal to 2.5. 

 

An m code for the auv for the ideal relay controller case 

is given below. This is followed by a response generated by 

the code. As can be seen, it agrees with DF predictions. 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

 

 



 

PIPE FLOW SETUP 

 

To illustrate nonlinear phenomena, we will consider the task 

of controlling the temperature of air flowing down a pipe. 

The setup is shown on the next page. Relay controllers 

resemble the proportional controller. For the proportional 

controller case, the governing equations for the setup are:  

 

X dR/dt + Y R = H + D 

 

A dH/dt + B H = Z Q 

 

Q = KP E       E = C - R 

 

where R is the temperature of the air at the heater, R is 

the temperature of the air at the sensor, C is the command 

temperature, E is the temperature error, Q is the control 

signal, H is the heat generated by the heater, D is a 

disturbance heat (plus or minus), X Y A B Z are process 

constants and KP is the controller gain. Note that R is what 

R was T seconds back in time: T is the time it takes for 

the air to travel down the pipe. 



 

 

 

 

 

 

 



 

To give a numerical example we will let the parameters be: 

X = 0.25  Y = 1.0 

A = 0.1  B = 1.0 

Z = 1.0    T = 0.5 

Theory shows that the borderline proportional gain KP for the 

setup is 1.5 and the borderline period TP is 1.58.   

The describing function for an ideal relay controller is: 

DF  = [4 Qo] / [π Eo] 

 

At a limit cycle this is equal to the borderline 

proportional gain  KP. Setting DF equal to KP gives: 

 

Eo =  [4 Qo] / [π DF] = [4Qo] / [π KP] 

 

The saturation limit for the controller is 5. Substitution 

into the amplitude equation gives Eo equal to 4.2. 

 

An m code for the setup for the ideal relay controller case 

is given below. This is followed by a response generated by 

the code. As can be seen, it agrees with DF predictions. 
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