
 

 

 

 

CONTROL SYSTEM STABILITY 

 

The standard form block diagram is 

 

 

 

This gives the transfer function 

 

O / I = G / [1 + GH] 

 

A unit impulse jars a system from a rest state and the motion thereafter is 

nonforced. It is a good input to test stability. For a unit impulse input I=1 

and the response becomes 

 

 



 

 

 

O = H = G / [1 + GH] = N / D 

 

where N and D are polynomials. The characteristic equation is  

 

D = 0 

 

Partial Fraction Expansion (PFE) gives 

 

O = ∑  / [S - ] 

 

where each  is a root of the characteristic equation.  

 

Inverse Laplace Transformation (ILT) gives 

 

O = ∑  e
+t 

 

The G and H transfer functions can be written as 

 

G = A/B     H=X/Y 

 

GH = A/B X/Y = AX/BY = N/D 

                

where A B X Y N D are polynomials. In this case 

 



 

 

 

O = G / [1+GH] = A/B / [1+A/B X/Y]  

= AY / [BY + AX] = N / D 

 

This shows that  

 

D = N + D 

 

The [1+GH] function is: 

 

1 + GH = 1+ N/D = [N+D] / D = D / D 

 

Setting D equal to 0 gives the overall characteristic equation. Setting D 

equal to 0 gives the characteristic equation for the sub systems.   

 

The [1+GH] function can be factored to give: 

 

  π [S-Z] / π [S-P] 

 

where the symbol π indicates product. Zeros Z are values of S which make 

[1+GH] zero. Poles P are values of S which make [1+GH] infinite. Note 

that each [S-Z] factor is basically a vector with its origin at Z. Similarly 

each [S-P] factor is basically a vector with its origin at P.   

 

 
 



 

 

 
 

NYQUIST CONCEPT 
 
 

The Nyquist Concept starts by surrounding the entire unstable half of the S 

plane with a clockwise contour. The [1+GH] function is basically a vector 

made from zero and pole factors which are also vectors:  

 

                 Γ (S-Z1) (S-Z2) ::::: (S-Zn)  
  π [S-Z] / π [S-P]   =  ———————————————  =  RΘ 

                  (S-P1) (S-P2) ::::: (S-Pm) 

 

When the tip of the S vector moves clockwise around the Nyquist contour, 

zeros Z inside it cause clockwise rotations of [1+GH] while poles P inside it 

cause counter clockwise rotations. Only zeros and poles inside cause such 

rotations: zeros and poles outside only cause [1+GH] to nod up and down. 

The sketches on the next page show a complex conjugate pair of roots 

inside the Nyquist contour and the corresponding [1+GH] plot. As can be 

seen, the [1+GH] vector rotates twice clockwise as the tip of the S vector 

moves clockwise around the Nyquist contour. These clockwise rotations are 

caused by the two unstable zeros inside the contour. Subtracting one from 

[1+GH] and its origin gives GH and minus one.  One can use a GH plot 

with a radius drawn from minus one to determine rotations.        

 

 
 
  



 

 

 

 

 

  



 

 

 

 

 

 

 

 



 

 

 

ROOT LOCUS CONCEPT 

 

When S is a Z or root of the overall characteristic equation, [1+GH] is 

equal to zero. This implies that GH is equal to minus unity:  GH = -1. This 

means its magnitude is unity and its angle is plus or minus 180 degrees. So 

any S which satisfies these constraints is a root of the overall characteristic 

equation. To determine borderline proportional gain and period the angle 

constraint is used to determine the period and the magnitude constraint is 

used to determine the gain.  Consider the GH function 

 
GH =  K X [ (S-v) (S-w) ] / [ (S-a) (S-b) (S-c) ] 

 
Its poles and zeros are shown in the sketch. The location of the square 

point in the sketch is adjusted to satisfy the angle constraint: 

 
α + β - ε - κ - σ   =  ±180 

 
 The magnitude constraint requires that  

 
K [X V W] / [A B C] = 1 

 

where the lengths V W A B C can be measured. Manipulation gives  

 
K = [A B C] / [X V W] 

 

 

 



 

 

 

 

 

 

 

 



 

 

 

 

CONTROL SYSTEM DESIGN 

 

 

STABILITY MARGINS 
 

The degree of stability of a control system depends on how close the GH 

plot is to the minus one point. Two measures of closeness are the gain 

margin GM and the phase margin PM. Engineering experience suggests 

that GM should be at least 2 and PM should be at least 30 degrees.   

 

 

WEDGE CIRCLE REGION 
 

Most systems have a dominant pair of roots which control how stable it is. 

Theory shows that the damping factor associated with these roots is 

constant along radial lines drawn from the origin in the S plane while the 

undamped natural frequency is constant along semi circles with center at 

the origin of the S plane. The wedge circle region is where roots should be 

located to get good damping and speed of response.  



 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 


