

AUTOMATIC
CONTROL

ENGINEERING

HINCHEY

1

2

CONTROLS NOTES

FEEDBACK CONTROL CONCEPT

ZIEGLER NICHOLS GAINS

CONTROL SYSTEM SIMULATION

CONTROL SYSTEM STABILITY

CONTROL SYSTEM PERFORMANCE

SWITCHING CONTROLLERS

DIGITAL CONTROL

STATE SPACE CONTROL

SAMPLE TESTS

3

4

AUTOMATIC CONTROL ENGINEERING

FEEDBACK CONTROL CONCEPT

The sketch on the next page shows a typical feedback or error

driven control system. What has to be controlled is generally

referred to as the plant. What the plant is doing is known as its

response. What it should be doing is known as the command. The

plant receives a control signal from a drive and a disturbance

signal from the surroundings. The goal is to pick a controller

that can make the response follow closely command signals but

reject disturbances. The controller acts on an error signal: this

is command minus some measure of the response. This is why it is

usually called error driven control. Two types of error driven

control are PID and Switching. PID stands for proportional

integral derivative. Proportional generates a signal which is

proportional to error. Integral generates a signal which is

proportional to the integral of the error. Derivative generates a

signal which is proportional to the rate of change of error.

Switching generally gives out signals with constant levels.

AUTONOMOUS UNDERWATER VEHICLE DEPTH CONTROL

To illustrate some error driven control strategies we will

consider the task of controlling the submergence depth of a small

autonomous underwater vehicle or auv. According to Newton's Second

Law of Motion, the equation governing its up and down motion is:

 M d2R/dt2 = B + D - W

5

6

where R is the depth of the auv, M is its overall mass, B is the

control force from the propulsion system, D is a disturbance load

caused for example by sudden weight changes and W is a drag load.

Drag load has two components: wake drag and wall drag:

 W = X dR/dt |dR/dt| + Y dR/dt

where X and Y account mainly for the size and shape of the auv.

A simple model of the propulsion system is:

 J dB/dt + I B = Q

where Q is the control signal. There are two basic types of

propulsion systems that could be used to move the auv up and down.

One is an air/water ballast tank. In this case, the control signal

Q would produce a change in buoyancy and J would account for the

fact that this is caused by a flow: I would be zero. If J was very

large, the control force B would build up very slowly. The other

type of propulsion system uses motor driven propellors to generate

B. Usually, for protection, these would be located inside a duct.

In this case, I would account for the size and shape of the blades

and duct, while J would account for things like rotor inertia.

Again, if J was very large, the control force B would build up

very slowly. One could determine J and I experimentally.

The PID error driven strategy lets the control signal Q be:

7

 Q = KP E + KI Edτ + KD dE/dt

where E = C - R is the depth error and KP KI KD are gains: C is the

command depth. Usually, gains are constants. However, they can be

made a function of the state of the system or its surroundings. In

this case, control is said to be adaptive.

Imagine the auv is at the water surface and it suddenly commanded

to go to some constant command depth C. Assume that there is a

disturbance with a constant level D acting downward. Also assume

the auv is using motor driven propellors for propulsion.

Proportional by itself would cause the propellors to spin in such

a way that the auv would move towards the command depth. The

amount of spin would be proportional to depth error. When the auv

reaches the command depth, the proportional control signal would

be zero. If the auv was held at the command depth, its propellors

would stop spinning. The disturbance would cause the auv to stop

below the command depth. This offset would be such that the

propellors generate just enough upward force to balance the

downward disturbance. The offset would be DI/KP. When D is known,

something called feedforward compensation can be used to get rid

of the offset. Basically, we measure D and subtract ID from Q in

the drive equation. When motions settle down, the drive gives out

an extra signal minus D which cancels D. But we must know D.

Another way to get rid of the offset is to give the auv a false

8

command C*. If the false command C* was set at [C-DI/KP], the auv

would end up at C. It would hang below C* by DI/KP and thus end up

at C. If the gain KP was very large, offsets such as DI/KP would

probably be tolerable. However, large gain would generate very

large Q when the depth is well away from the command depth. Very

large Q could burn out drives. To avoid this, a limit is usually

put on the magnitude of Q. In this case, the control is referred

to as proportional with saturation. If the disturbance was greater

than the saturation limits, then control would be impossible.

Integral by itself would cause the propellors to spin in such a

way that the auv would move towards the command depth. The amount

of spin would be proportional to the integral of depth error. As

the auv moves towards the command depth, the propellors would spin

faster and faster. Obviously, this would cause the auv to

overshoot the command depth. Because of these overshoots, integral

cannot be used alone. The good thing about integral is, if the

system is stable, it gives zero offsets. If the auv was held with

positive depth error, the integral control signal would get bigger

and bigger. This is known as integral windup. If it was released

after a long time, it would take a very large integrated negative

error to cancel out the windup due to integrated positive error. A

simple way to avoid integral windup is to activate integral only

within a band surrounding the command depth. All we need is for

the band to be wide enough for proportional to get the auv within

the band so that integral can then home it into the command depth.

9

Derivative like integral cannot be used alone. Assume that the

command C is a constant, and let the auv be stopped far away from

the command depth. In this case, dE/dt would be zero. So, the

controller would not generate a force to move the auv to the

command depth. Derivative mimics drag load and helps motions

settle down. It generates a control signal which opposes motion.

Something called rate feedback could also be used to help make

motions settle down. The controller would act on depth error E

minus a constant times the depth rate dR/dt. Substitution into the

governing equations shows that rate feedback mimics drag. Note

that derivative could be used to make the auv move at a constant

speed: dC/dt is made a constant. Drag and the dR/dt part of dE/dt

would tend to limit speed.

With all three components of PID acting together, as soon as the

auv passes through the command depth, proportional would tend to

counteract integral. Also, proportional would get the auv closer

to the command depth faster, so it would limit integral windup.

Derivative would help counteract overshoots. The auv would home in

quickly on the command depth with minimal overshoots. So, we get

the good characteristics of all three controllers.

There are many types of switching control. They often have trouble

with overshoots. Basic relay switching is the simplest. It would

try to make the propellors rotate at a constant speed: the

direction of rotation would depend on the sign of depth error.

Relay with deadband would allow the auv to drift once it gets

10

inside a band surrounding the command depth. The propulsion device

would be shut down and drag load would cause the auv to slow down.

Relay with hysteresis would reverse the direction of control

before the auv gets to the command depth. In this case, the

propulsion device would act as a brake. A bias signal could be

added to counteract disturbances.

Propulsion system dynamics would cause the control force to lag

the control signal. The amount of lag depends on how large J is

relative to I. Consider the case where proportional control is

acting alone and the error is initially positive. For a slowly

reacting propulsion system, positive error would cause a positive

control force to gradually build up. As it builds up, this force

would move the auv towards the command depth. However, when the

auv gets to the command depth, because of lag, the control force

would still be positive, and this would cause overshoot. In some

cases, these overshoots would settle down. In other cases, they

would not settle down but would limit because of wake drag.

Control signals for an auv would be generated within a computer

control loop. The loop period must be much smaller than the basic

period of auv motion: otherwise severe overshoots could develop.

If the auv was controlled remotely by a computer onboard a ship,

the time taken for the depth signal to travel from the auv to the

ship and the time taken for the drive signal to travel back from

the ship to the auv could cause overshoots, because the auv would

be responding to past error not present error.

11

SUBSEA ROBOT SPRING/DASHPOT PID ANALOGY

Equations governing subsea robot depth motion are:

 M d2R/dt2 + X dR/dt|dR/dt| + Y dR/dt = B + D

 J dB/dt + I B = Q

 Q = KP(C-R) + KI(C-R)dτ + KD(dC/dt-dR/dt)

Let the drive be a propellor in a duct driven by a DC motor. For

most of what follows, we will assume that the drive is fast acting,

so that J is approximately zero. In this case,

 B = KP/I (C-R) + KI/I (C-R)dτ + KD/I (dC/dt-dR/dt)

 B = KP (C-R) + KI (C-R)dτ + KD (dC/dt-dR/dt)

We will also assume that the robot is initially at one depth and it

is suddenly commanded to go to another depth. When proportional

control is acting alone, the control force B is a linear function

of depth error. This pulls the robot towards the command depth. As

the robot approaches the command depth, the propellor slows down.

Note that a spring with its ends attached to the robot and the

command depth would move the robot the same way. Because the drive

is spring like, disturbances D cause the robot to settle down away

from the command depth. When integral control is acting alone, the

control force B gradually builds up and pulls the robot towards the

command depth. As the robot approaches the command depth, the

propellor goes faster and faster. This causes the robot to

12

overshoot the command depth. As soon as it overshoots, the control

force starts to decrease: meaning the propellor starts to slow

down. It takes time for the control force to go to zero. Beyond

this point, the control force changes sign and acts initially like

a brake and causes the robot to stop and then start back towards

the command depth. Again, when it reaches the command depth, it

overshoots it. These overshoots do not settle down. If they did, B

would equal minus D and R would equal C. One could replace the

integral drive with a spring with one end attached to the robot and

the other end free to move. Initially the free end moves towards

the command depth. This causes the spring to stretch and pull the

robot towards the command depth. The spring stretching mimics the

integration of error. The spring keeps stretching until the robot

overshoots the command depth. Then, it gradually slackens. It takes

time for the spring to totally slacken so it pulls the robot beyond

the command depth. When the spring is totally slack, the free end

starts back towards the command depth. In this case, the spring

acts initially like a brake and causes the robot to stop and then

start back towards the command depth. With proportional and

integral acting together it is possible for the robot to settle at

the command depth. Proportional suppresses the overshoots caused by

integral and integral gets rid of offsets. Derivative control is

not spring like. The equation for B shows that it instead mimics a

dashpot. When the drive is slow acting, control actions are not

instantaneous. This can cause severe overshoots.

13

CAR/DRIVER PID ANALOGY

Imagine a car at position A on a straight road that is

suddenly commanded to go to position B on the same road. A

proportional driver would suddenly depress the gas peddle

down to some level. This would cause the car to gradually

pick up speed. As the car moves towards B, the driver would

depress the gas peddle less and less. The amount of

depression would be a linear function of position error or

distance between B and the car position. When the car

reaches B, peddle depression would be zero. Because of its

momentum, the car would overshoot B. As soon as it does so,

the driver would suddenly put the car into reverse and

depress the gas peddle an amount again dependent on position

error. This would cause the car to gradually come to a stop

and reverse direction back towards B. If there was no wind

and the road was horizontal, wake drag and drive friction

would gradually make the car come to rest at B. Otherwise,

it would come to rest away from B. An integral driver

starting at A would gradually depress the gas peddle based

on the integral of position error. This would move the car

towards B but at a faster and faster speed. When the car

reaches B, peddle depression would be maximum. Obviously,

the car would overshoot B. As soon as it does so, the driver

would gradually depress the gas peddle less and less.

Basically, the position error would now be negative, and

14

integrated error would gradually decrease. When it reaches

zero, the peddle depression would also be zero, and the

driver would suddenly put the car into reverse and gradually

depress the gas peddle again based on the integral of

position error. This would cause the car to gradually come

to a stop and reverse direction back towards B. When the car

reaches B, it would again overshoot. The car would never

settle at B but would oscillate back and forth at an

amplitude dependent on wake drag and drive friction. The

mean position error would be zero, even when there was wind

or the road was not horizontal. A proportional plus integral

driver could make the car settle at B, even when there was

wind or the road was not horizontal. The proportional part

would bring the car close to B before the integral part

could build up too much signal. The integral part would then

home the car into B. Whereas the proportional plus integral

driver would work only the gas peddle, a proportional plus

integral plus derivative driver would also use the brake.

The derivative part would apply the brake an amount based on

speed. This would help control overshoots if they are a

problem. Driver reaction time could cause severe overshoots.

Its control is based on past error not present error.

15

16

ZIEGLER NICHOLS GAINS

Ziegler and Nichols, through a series of experiments on simple

systems, developed criteria for picking gains in a controller

that would give good tracking performance. For a system that can

be made unstable with proportional acting alone, the procedure

they recommend is as follows. With proportional acting alone,

increase its gain until the system becomes borderline stable. Let

the borderline gain be KP: let its period be TP. According to

Ziegler and Nichols, reasonable PID gains are:

KP = 0.6*KP KI = KP/TI KD = KP*TD

TI = 0.5*TP TD = 0.125*TP

When only proportional and integral are acting, they recommend

the following PI gains:

KP = 0.45*KP KI = KP/TI

TI = 0.83*TP

When only proportional is acting, they recommend:

KP = 0.5*KP

17

AUTONOMOUS UNDERWATER VEHICLE

ZIEGLER NICHOLS GAINS

To illustrate a procedure for getting Ziegler Nichols gains,

we will consider the task of controlling the submergence

depth of a small autonomous underwater vehicle or auv.

According to Newton's Second Law of Motion, the equation

governing the up and down motion of the auv is:

M d2R/dt2 = B + D - W

where R is the depth of the auv, M is its overall mass, B is

the control force from the propulsion system, D is a

disturbance load caused for example by sudden weight changes

and W is a drag load consisting of wake drag and wall drag:

W = X dR/dt |dR/dt| + Y dR/dt

where X and Y account for the size and shape of the auv. Here

we linearize the drag to get:

W = N dR/dt

A simple model of the propulsion system is:

J dB/dt + I B = Q

where Q is the control signal: J and I are drive constants.

18

The PID error driven strategy lets the control signal Q be:

Q = KP E + KI Edτ + KD dE/dt

where E = C - R is the depth error and KP KI KD are the

controller gains: C is the command depth.

To get Ziegler Nichols gains, we start by assuming only

proportional is active. Manipulation of the governing

equations gives:

J [M d3R/dt3 + N d2R/dt2 - dD/dt]

+ I [M d2R/dt2 + N dR/dt - D] = KP C - KP R

We then assume that C and D are both constants and that the

auv is undergoing a limit cycle oscillation for which

R = Ro + R Sin [t]

Substitution into the modified drive equation gives

- J M 3 R Cos[t] - J N 2 R Sin[t]

- I M 2 R Sin[t] + I N  R Cos[t]

- I Do = KP Co - KP Ro - KP R Sin[t]

This equation is of the form:

19

i Sin[t] + j Cos[t] + k = 0

Mathematics requires that i=0 j=0 k=0:

- J N 2 - I M 2 + KP = 0

- J M 3 + I N  = 0

 + I Do + KP Co - KP Ro = 0

Manipulation of these equations gives

Ro = Co + I Do / KP

2 = [I N] / [J M]

KP = [J N + I M] 2

= [J N + I M] [I N] / [J M]

For the illustration we let : M=50 N=50 J=0.5 I=0.1. The

above equations give =0.447, KP=6 and TP=14. Substitution

into the Ziegler Nichols gains equations gives: KP = 3.6; KI

= 0.54; KD = 6.3. An m code for the auv is given below. This

is followed by a Ziegler Nichols response generated by the

code. A SIMULINK Block diagram follows the m code response.

It gives basically the same response as the code.

20

21

22

23

PIPE FLOW SETUP

ZIEGLER NICHOLS GAINS

To illustrate a procedure for getting Ziegler Nichols gains,

we will consider the task of controlling the temperature of

the air flowing down the pipe in the lab pipe flow setup.

Basically the setup consists of a fan which draws air from

atmosphere and sends it down a pipe. A heater just downstream

of the fan is used to heat the air. It receives a signal from

a controller. The temperature of the air at the pipe exit is

measured by a thermistor. The governing equations are:

X dR/dt + Y R = H + D

A dH/dt + B H = Z Q

Q = KP E + KI Edτ + KD dE/dt

 E = C - R

where R is the temperature of the air at the heater, R is

the temperature of the air at the sensor, C is the command

temperature, E is the temperature error, Q is the control

signal, H is the heat generated by the heater, D is a

disturbance heat and KP KI KD are the controller gains. Note

that R is what R was T seconds back in time: T is the time

it takes for the air to travel down the pipe.

24

To get Ziegler Nichols gains, we start by assuming only

proportional is active. Manipulation of the governing

equations gives:

A [X d2R/dt2 + Y dR/dt - dD/dt]

+ B (X dR/dt + Y R - D) = Z KP C - Z KP R

We then assume that C and D are both constants and that the

setup is undergoing a limit cycle oscillation for which

R = Ro + R Sin [t] R = Ro + R Sin [(t-T)]

Substitution into the modified drive equation gives

 - A X 2 R Sin[t] + A Y  R Cos[t]

+ B X  R Cos[t] + B Y Ro + B Y R Sin[t]

- B Do = Z KP Co - Z KP Ro - Z KP R Sin[(t-T)]

A trigonometric identity gives

Sin[(t-T)] = Sin[t] Cos[T] - Cos[t] Sin[T]

Substitution into the modified drive equation gives an

equation of the form

i Sin[t] + j Cos[t] + k = 0

25

Setting i=0 and j=0 and k=0 gives

- A X 2 + B Y + Z KP Cos[T] = 0

A Y  + B X  - Z KP Sin[T] = 0

B Y Ro - B Do - Z KP Co + Z KP Ro = 0

Manipulation of the first two equations gives

KP = [A X 2 - B Y] / [Z Cos[T]]

KP = [A Y  + B X ] / [Z Sin[T]]

Sin[T]/Cos[T] = Tan[T]

= [A Y  + B X ] / [A X 2 - B Y]

The last equation gives . Once  is known we can then solve

for KP. For the illustration, we let: X=0.25 Y=1.0 A=0.1

B=1.0 Z=1.0 T=0.5. The above equations give =3.97, KP=1.5

and TP=1.58. Substitution into the Ziegler Nichols gains

equations gives: KP=0.9; KI=1.2; KD=0.17. An m code for the

setup is given below. This is followed by a Ziegler Nichols

response. A SIMULINK Block diagram follows the response. It

gives basically the same response as the code.

26

27

28

29

30

31

COMPUTER SIMULATION OF CONTROL SYSTEMS

PREAMBLE

Simulation allows one to study the behavior of a system

before it is actually constructed. This can serve as an aid

to system design. Simulations are inexpensive and easy to

put together. They can handle all sorts of phenomena. These

include transport lag and computer loop rate phenomena.

Simulations can also handle multiple strong nonlinearities.

They are often used as a check on more conventional

analysis. However, simulations are like experiments. For

complex systems, it is hard to make sense of responses.

Before digital computers were developed, systems were

simulated using analog electronics. When digital computers

became common place, simulations made use of time stepping

procedures. Basically, these follow local slopes or rates

step by step in time. Special software packages based on

these procedures have been developed. Probably, the popular

package is SIMULINK under MATLAB.

32

AUTONOMOUS UNDERWATER VEHICLE

TIME STEPPING SIMULATION

To illustrate time stepping we will consider the task of

controlling the submergence depth of a small autonomous

underwater vehicle or auv. The governing equations are:

M d2R/dt2 = B + D - W

W = X dR/dt |dR/dt| + Y dR/dt

J dB/dt + I B = Q

Q = KP E + KI Edτ + KD dE/dt

E = C - R

where R is the depth of the auv, M is its overall mass, B is

the control force from the propulsion system, D is a

disturbance load caused for example by sudden weight changes,

W is a drag load consisting of wake drag and wall drag, E is

the depth error, C is the command depth, M X Y J I are

process constants and KP KI KD are the controller gains.

33

Manipulation of the governing equations gives

dR/dt = U

dU/dt = (B + D - W) / M

W = X U |U| + Y U

dB/dt = (Q - I B) / J

Q = KP E + KI Edτ + KD dE/dt

E = C - R

Application of time stepping gives

RNEW = ROLD + t * UOLD

UNEW = UOLD + t * (BOLD + DOLD - WOLD) /M

WOLD = X UOLD |UOLD| + Y UOLD

BNEW = BOLD + t * (QOLD - I BOLD) / J

QOLD = KP EOLD + KI  EOLD t + KD EOLD/t

EOLD = COLD - ROLD

An m code for the auv is given below. This is followed by a

Ziegler Nichols response generated by the code.

34

35

36

PIPE FLOW SETUP

TIME STEPPING SIMULATION

To illustrate time stepping we will consider the task of

controlling the temperature of air flowing down a pipe. The

setup is shown on the next page. The governing equations are:

X dR/dt + Y R = H + D

A dH/dt + B H = Z Q

Q = KP E + KI Edτ + KD dE/dt

 E = C - R

where R is the temperature of the air at the heater, R is

the temperature of the air at the sensor, C is the command

temperature, E is the temperature error, Q is the control

signal, H is the heat generated by the heater, D is a

disturbance heat (plus or minus), X Y A B Z are process

constants and KP KI KD are the controller gains. Note that R

is what R was T seconds back in time: T is the time it

takes for the air to travel down the pipe.

37

38

Manipulation of the governing equations gives

dR/dt = (H + D - Y R) / X

dH/dt = (Z Q - B H) / A

Q = KP E + KI Edτ + KD dE/dt

E = C - R

Application of time stepping gives

RNEW = ROLD + t * (HOLD + DOLD - Y ROLD) / X

HNEW = HOLD + t * (Z QOLD - B HOLD) / A

QOLD = KP EOLD + KI  EOLD t + KD EOLD/t

EOLD = COLD - ROLD

An m code for the setup is given below. This is followed by

a Ziegler Nichols response generated by the code.

39

40

41

SIMULINK CONTROL SYSTEM SIMULATION

SIMULINK makes use of a block diagram representation of the

system. One activates SIMULINK by typing SIMULINK and

pressing enter in the main MATLAB window. Blocks are formed

by picking blocks from groups of blocks in the main

SIMULINK window. The group labeled SOURCES contains blocks

that could be used for commands and disturbances. The group

labeled SINKS contains blocks that could be used for

display of responses. The group labeled CONTINUOUS contains

many common transfer functions and state space blocks. The

group labeled DISCRETE contains blocks that could be used

to mimic loop rate phenomena. The group labeled MATH

contains blocks for things like summation junctions and

gains. The group labeled NONLINEAR contains various types

of nonlinearities and switching controllers. Many of the

switching controllers can be formed using LOOK UP TABLE

under the group of blocks labeled FUNCTIONS & TABLES. The

PID controller can be found under ADDITIONAL LINEAR under

SIMULINK EXTRAS under BLOCK SETS & TOOL BOXES.

42

Block diagram construction makes extensive use of the click

and drag functions of the left and right buttons of the

mouse. To illustrate the construction, imagine you have an

empty MINE window open on the screen. From the SIMULINK

window, double left click on the SOURCES icon. Then, from

its window, left click on the STEP block and drag it to the

MINE window. All other blocks can be moved this way. You

can also use COPY and PASTE. To move blocks around in the

MINE window, just left click and drag them. You can also

use CUT and PASTE. To join blocks with lines, you again use

left click and drag. To create break lines, you use right

click on the break point and drag. To change parameters,

double left click on the block to activate a block menu.

To run a simulation, first pick PARAMETERS under SIMULATION

to set things like ODE integration scheme. Then, pick START

under SIMULATION to run the simulation.

SIMULINK block diagrams for AUV Depth Control and Pipe Flow

Temperature Control are attached. Also attached are Ziegler

Nichols responses of each system to a step in command.

43

44

45

46

47

EXPERIMENTAL METHODS

MATLAB TUTORIAL

The equations governing the attitude of the Apollo

rocket relative to the vertical are:

 J d2R/dt2 - I R = B - G + D

 G = M H H = N dR/dt

 B = P Q Q = K (C-R)

where R is the actual attitude of the rocket, C is

the command or target attitude, B and G are control

torques, D is a disturbance torque and J I M N P

are plant and drive and controller constants.

 J=5000 I=50 M=100 N=7 P=100

Determine K for borderline stable operation of the

rocket. Develop a simulation template for the

rocket. Write an m code based on this template. Use

this to confirm the borderline gain K. Develop a

SIMULINK block diagram for the rocket. Use this to

confirm the borderline gain K. Add statements to the

code and blocks to the block diagram to get the

horizontal versus vertical trajectory of the rocket.

For this let the speed of the rocket be S=100.

48

49

50

51

52

53

54

55

MATLAB CONTROLS OVERVIEW

One can get responses of control systems to various inputs by

first forming the transfer function connecting input to output.

Typically this is a ratio of two polynomials like:

 a S2 + b S + c
 TF = ————————————————————————————
 n S4 + m S3 + p S2 + q S + r

In matlab we represent these polynomials with arrays of

coefficients in descending order:

> num=[a b c];
> den=[n m p q r];

We then form the transfer function as follows:

> sys=tf(num,den);

We can also form the transfer functions for various parts of the

system using the tf function and then use the series parallel and

feedback functions to get the overall sys. Once the sys function

is obtained we can get impulse and step responses as follows:

> impulse(sys)
> step(sys)

56

We can get the frequency response magnitude ratio MR and phase

shift Φ for a system using the bode function:

> bode(sys)

We can also get frequency response data using T(jω). For example

if we set ω we can get data as follows:

> S=complex(0.0,ω);
> num=a*S^2+b*S+c;
> den=n*S^4+m*S^3+p*S^2+q*S+r;
> tf=num/den

This gives a complex number: P+Qi. Manipulation gives:

 MR = [P^2+Q^2] Φ=tan-1 Q/P.

To get responses using Partial Fraction Expansion PFE and Inverse

Laplace Transformation ILT we can use the convolution function

conv to form the numerator and the denominator of R(S). The

residue function can then be used to do PFE. This gives the roots

of R(S) together with its residues:

> num=conv([a b],[n m]);
> den=conv([x y z],[u v w]);
> [r,p,k]=residue(num,den)

One can then use ILT to get R(t).

We can get the roots of a characteristics equation using the roots

function. It could also be used to construct Root Locus Plots:

57

> z=[0.1:0.1:10.0];

> for k=1:length(z)

 q=[x y a*z(k)+b u v w];

 p(:,k)=roots(q);

> end

> plot(real(p),imag(p))

> grid

When a parameter such as a gain can be isolated from GH, one can

get Root Locus Plots using the rlocus function as follows:

> num=[a b];

> den=[x y z];

> gh=tf(num,den);

> rlocus(gh)

One can get GH Plots and Stability Margins as follows:

> nyquist(gh)

> bode(gh)

> [mag,phase,w]=bode(gh);

> [GM,PM,WG,WP]=margin(mag,phase,w)

If a system has a time delay one can approximate it as a ratio of

two polynomials using the Pade Approximant as follows:

> [a,b]=pade(T,p);

The time delay is T and the order of the approximant is p. The

numerator of the approximant is a and its denominator is b. One

can use tf(a,b) to get an approximate transfer function for the

delay. An exact transfer function for a delay is: exp(-T*S).

58

59

60

61

62

63

REVIEW OF LAPLACE TRANSFORMATION

Laplace Transformation converts ordinary differential equations or

ODEs into algebraic equations or AEs. Manipulation of the AEs

followed by Inverse Laplace Transformation gives responses back in

time. Manipulation of the AEs also gives the system transfer

functions or TFs. Most control theories are based on TFs.

The Laplace Transform Integral is:

 
 F(S) =  [f(t)] =  f(t) e-St dt .
 o

Usually, mechanical engineers do not have to evaluate this

integral. All of the important cases have already been worked out.

Some Laplace Transform (LT) pairs used to reduce ODEs to AEs are:

  [df/dt] = S F(S) - f(0)   fdτ = F(S) / S

  [d2f/dt2] = S2 F(S) - S f(0) - df(0)/dt

  [d3f/dt3] = S3 F(S) - S2 f(0) - S df(0)/dt - d2f(0)/dt2

Usually, initial condition terms are set to zero for control

because, in most cases, a system starts from some rest state.

Manipulation of algebraic equations often gives factors of the

form: Γ/(S-λ). Inverse Transformation gives back in time: Γe+λt.

64

Typical commands/disturbances into control systems include: a step

with height A / a pulse with height A and short duration T / a

sine or cosine wave with amplitude A and frequency ω / a linear

ramp in time with slope A. Laplace Transform pairs for these are:

 (Step with Height A) = A/S

 (Short Duration Pulse) = AT

 (Sine Wave) = Aω/(S2+ω2)

 (Cosine Wave) = AS/(S2+ω2)

 (Linear Ramp) = A/S2 .

Control systems often have time delays or transport lags inherent

in them. These can seriously degrade performance. When a signal is

delayed in time by T seconds, Laplace Transformation gives:

  (f[t-T]) = e-ST F(S) .

The Final Value Theorem states that

 Lim f(t) = Lim S F(S) .
 t S0

This can be used to get the final state of stable systems

subjected to step commands or step disturbances. Ideally for a

step command the final state should be equal to the command while

for a step disturbance the final state should be zero. The Final

Value Theorem gives unrealistic results when systems are unstable.

65

 COMPLEX NUMBERS AND COMPLEX PLANES

There are two ways to represent complex numbers. These are shown

schematically in Figure 1:

 Cartesian z = x + y j Polar z = rθ = rejθ .

Manipulations give:

 r e+jθ = r Cosθ + j r Sinθ r e-jθ = r Cosθ - j r Sinθ

 Sinθ = (e+jθ - e-jθ)/ 2j Cosθ = (e+jθ + e-jθ)/ 2 .

When adding or subtracting complex numbers, it is easier to use

the Cartesian representation. Take two complex numbers z1 and z2:

 z1 = x1 + y1 j z2 = x2 + y2 j

where x1 y1 x2 y2 are known. One gets:

 z1 + z2 = (x1 + x2) + (y1 + y2) j

 z1 - z2 = (x1 - x2) + (y1 - y2) j .

When multiplying or dividing complex numbers, it is best to use

the Polar representation. Take two complex numbers z1 and z2:

66

 z1 = r1  θ1 z2 = r2  θ2

where r1 θ1 r2 θ2 are known. One gets:

 z1 z2 = r1 r2  θ1 + θ2 =

 (x1 x2 - y1 y2) + (x1 y2 + x2 y1) j

 z1 / z2 = r1 / r2  θ1 - θ2 =

 [(x1 x2 + y1 y2) + (x2 y1 - x1 y2) j] / [x2 x2 + y2 y2] .

The Nyquist Procedure for checking stability of feedback control

systems maps a closed contour in one complex plane known as the S

plane to another complex plane known as the GH plane. A function

of S known as the system GH function is the mapping function. As

an illustration consider a system with the GH function:

 GH = 2 / [S (S2 + S + 1)] .

The contour in the S plane that is mapped to the GH plane

surrounds the entire right half of the S plane. It is shown in

Figure 2. To illustrate the mapping, consider the point S = +j on

the S plane contour. Substitution into the GH function gives:

 GH = 2/[j(j2+j+1)] = 2/[j(-1+j+1)] = 2/[j(j)] = -2 .

This point and the complete contour in the GH plane are shown in

Figure 2. The GH plot shows that the system is unstable!

67

68

69

 SYSTEM TRANSFER FUNCTIONS

The response of a system to a unit impulse input at time t = 0 is

usually denoted by h(t). Its Laplace Transform H(S) is known as a

Unit Impulse Response Function. It turns out that: TF(S) = H(S)

where TF(S) is a system transfer function. For a system with input

x and output y, this is: TF(S) = Y(S)/X(S).

Why is TF(S) = H(S)? In other words: What is so special about the

unit impulse as an input? As shown in the sketch below, any input

x(t) into a system can be broken down into a sequence or train of

pulses. Superposition of the pulses generates a staircase like

approximation to x(t). In the limit as the pulse duration tends to

zero, this becomes exact. The pulse that comes on at time t = τ

has strength x(τ) and duration Δτ: thus its area is x(τ)Δτ. In the

limit as Δτ tends to zero, this pulse becomes basically a scaled

version of the unit impulse. The scaling factor is infinitesimal

and is the area x(τ)Δτ. The response of the system due to a unit

impulse input at t = τ is h(t-τ). The response due to an impulse

with area x(τ)Δτ at t = τ is x(τ)Δτ h(t-τ). The response at some

point in time due to all of the impulses up to that time is:

 N
 y(t) =  x(nΔτ)Δτ h(t-nΔτ)
 n=0

70

71

where N is the total number of impulses and n denotes a specific

impulse. In the limit as Δτ tends to zero, N tends to infinity,

and the summation becomes the Convolution Integral:

 t
 y(t) =  x(τ) h(t-τ) dτ .
 o

Laplace Transformation of this integral gives:

 Y(S) = X(S) H(S) = X(S) TF(S) .

Impulses do not exist in reality. In other words, there is no such

thing as an infinite strength, infinitesimal duration, signal.

But strong, short duration, pulses do exist, and they often mimic

the unit impulse. Why consider the unit impulse as an input? An

impulse jars a system to some state and the motion thereafter is

pure transient. If transients grow, the system is unstable: if

transients decay, the system is stable. Manipulation of H(S)

gives: H(S) = N(S)/D(S) where N(S) and D(S) are polynomials. PFE

applied to N(S)/D(S) gives factors of the form: N(S)/D(S) = 

Γ/[S-λ]. ILT applied to these factors gives: h(t) =  Γ e+λt. Each λ

is a value of S which satisfies the characteristic equation

D(S)=0. For stable operation, each root λ must be a negative real

number or a complex number with a negative real part.

72

To get the response of a system to an input, one starts with:

Y(S) = TF(S) X(S)

Partial Fraction Expansion or PFE gives

Y(S) =  A/[S-a]

Inverse Laplace Transformation or ILT gives

y(t) =  A e+at

Manipulation of this then gives the response in terms of

exponential and trigonometric functions in time.

The MATLAB residue function can be used to simplify PFE. The input

into this would be the numerator and denominator of Y(S). The

output would be the roots “a” and the residues “A”.

 > num=[a b c];
 > den=[x y z u v w];
 > [r,p,k]=residue(num,den)

Here r indicates residues and p indicates roots or poles.

73

AUTONOMOUS UNDERWATER VEHICLE

DEPTH CONTROL RESPONSES

To illustrate application of the Laplace Transformation

procedure we will consider the task of controlling the

submergence depth of a small autonomous underwater vehicle or

auv. According to Newton's Second Law of Motion, the equation

governing the up and down motion of the auv is:

 M d2R/dt2 = B + D - W

where R is the depth of the auv, M is its overall mass, B is

the control force from the propulsion system, D is a

disturbance load caused for example by sudden weight changes

and W is a drag load consisting of wake drag and wall drag:

 W = X dR/dt |dR/dt| + Y dR/dt

where X and Y account for the size and shape of the auv.

A simple model of the propulsion system is:

 J dB/dt + I B = Q

where Q is the control signal: J and I are drive constants.

The PID error driven strategy lets the control signal Q be:

 Q = KP E + KI Edτ + KD dE/dt

74

where E = C - R is the depth error and KP KI KD are the

controller gains: C is the command depth.

Laplace Transformation of the governing equations gives

 (M S2 + N S) R = B + D

 (J S + I) B = Q

 Q = (KP + KI/S + KD S) E

 E = C - R

Algebraic manipulation gives

 R KD S2 + KP S + KI
 ——— = —————————————————————————————————————-
 C MJ S4 + (NJ+MI) S3 + (NI+KD) S2 + KP S + KI

 R J S2 + I S
 ——— = —————————————————————————————————————-
 D MJ S4 + (NJ+MI) S3 + (NI+KD) S2 + KP S + KI

To give a numerical example we will let the parameters be:

 M = 50.0 N = 50.0. J = 0.5 I = 0.1

One can show that the Ziegler Nichols gains are:

 KP = 3.6 KI = 0.54 KD = 6.3

75

Substitution gives

 R 6.3 S2 + 3.6 S + 0.54
 ——— = —————————————————————————————————————-
 C 25.0 S4 + 30.0 S3 + 11.3 S2 + 3.6 S + 0.54

 R 0.5 S2 + 0.1 S
 ——— = —————————————————————————————————————-
 D 25.0 S4 + 30.0 S3 + 11.3 S2 + 3.6 S + 0.54

For the command case we will work through 4 cases: unit

impulse; unit step; unit sine; unit ramp. For a unit

impulse C(S)=1. In this case

 6.3 S2 + 3.6 S + 0.54
 R = —————————————————————————————————————-
 25.0 S4 + 30.0 S3 + 11.3 S2 + 3.6 S + 0.54

Dividing through top and bottom by 25.0 gives

 0.252 S2 + 0.144 S + 0.0216
 R = —————————————————————————————————————-
 S4 + 1.2 S3 + 0.452 S2 + 0.144 S + 0.0216

One can put this in the factored form

 0.252 S2 + 0.144 S + 0.0216
 R = —————————————————————————————————————-
 (S-a) (S-b) (S-v) (S-w)

 A B V W
 = —————— + —————— + —————— + ——————
 (S-a) (S-b) (S-v) (S-w)

Partial Fraction Expansion followed by Inverse Laplace

Transformation gives

76

 A e +at + B e +bt

 + (X+Yj) e +(x+yj)t + (X-Yj) e +(x-yj)t

where

 v = x + yj w = x - yj

 V = X + Yj W = X - Yj

Manipulation gives

 A e +at + B e +bt

 + 2X e +xt Cos[yt] - 2Y e +xt Sin[yt]

The MATLAB residue function gives

 a = -0.8253 b = -0.2375

 x = -0.0686 y = +0.3248

 A = -0.1867 B = +0.0205

 X = +0.0831 Y = -0.1758

For a step case C(S) = Co/S where Co is the height of the

step. In this case one gets

 0.252 S2 + 0.144 S + 0.0216 Co
 R = —————————————————————————————————— ——
 (S-a) (S-b) (S-v) (S-w) S

 A B V W Z
 —————— + —————— + —————— + —————— + ———
 (S-a) (S-b) (S-v) (S-w) S

77

Partial Fraction Expansion followed by Inverse Laplace

Transformation gives

 A e +at + B e +bt + Z

 + 2X e +xt Cos[yt] - 2Y e +xt Sin[yt]

The MATLAB residue function gives when Co = 1.0 :

 a = -0.8253 b = -0.2375

 x = -0.0686 y = +0.3248

 Z = 1.0

 A = +0.2262 B = -0.0863

 X = -0.5700 Y = -0.1355

For a sine case one gets

 0.252 S2 + 0.144 S + 0.0216 Co 
 R = —————————————————————————————————— —————
 (S-a) (S-b) (S-v) (S-w) (S2+2)

 A B V W N M
 —————— + ————— + ————— + ————— + ——— + ————
 (S-a) (S-b) (S-v) (S-w) (S-j) (S+j)

where N=G+Hj and M=G-Hj. Partial Fraction Expansion

followed by Inverse Laplace Transformation gives

 A e +at + B e +bt

 + 2X e +xt Cos[yt] - 2Y e +xt Sin[yt]

 + 2G Cos[t] - 2H Sin[t]

78

The MATLAB residue function gives when Co = 1.0 and  = 0.3:

 a = -0.8253 b = -0.2375

 x = -0.0686 y = +0.3248

 A = -0.0726 B = +0.0420

 X = +0.9906 Y = +0.7993

 G = -0.9753 H = -1.0085

For a ramp case one gets

 0.252 S2 + 0.144 S + 0.0216 Co
 R = —————————————————————————————————— ——
 (S-a) (S-b) (S-v) (S-w) S2

 A B V W N M
 —————— + ———— + ———— + ————— + ——— + ———
 (S-a) (S-b) (S-v) (S-w) S S2

Partial Fraction Expansion followed by Inverse Laplace

Transformation gives

 A e +at + B e +bt + N + Mt

 + 2X e +xt Cos[yt] - 2Y e +xt Sin[yt]

The MATLAB residue function gives when Co = 1.0:

 a = -0.8253 b = -0.2375

 x = -0.0686 y = +0.3248

 A = -0.2740 B = +0.3631

 X = -0.0445 Y = +1.7643

 N = 0.0 M = +1.0

79

80

81

PIPE FLOW SETUP

TEMPERATURE CONTROL RESPONSES

To illustrate application of the Laplace Transformation

procedure we will consider the task of controlling the

temperature of air flowing down a pipe. The setup is shown on

the next page. Basically it consists of a fan which draws air

from atmosphere and sends it down a pipe. A heater just

downstream of the fan is used to heat the air. It receives a

signal from a controller. The temperature of the air is

measured by a thermistor. The governing equations are:

X dR/dt + Y R = H + D

H = Z Q Q = KP E

E = C - R

where R is the temperature of the air at the heater, R is

the temperature of the air at the sensor, C is the command

temperature, E is the temperature error, Q is the control

signal, H is the heat generated by the heater, D is a

disturbance heat and KP is the controller gain. R is what R

was T seconds back in time, where T is the time it takes

for the air to travel down the pipe.

82

83

Laplace Transformation of the governing equations gives

(X S + Y) R = H + D

H = Z Q Q = KP E

E = C - R R = e-TS R

We approximate the time lag as follows:

e-TS = (1 - T/2 S) / (1 + T/2 S)

To give a numerical example we will let the parameters be:

X = 0.25 Y = 1.0 Z = 1.0

Substitution into the governing equations gives

(0.25 S + 1.0) R = D +

KP [C - (1 - T/2 S) / (1 + T/2 S) R]

Algebraic manipulation gives

(0.25 S + 1.0) (1 + T/2 S) R =

(1 + T/2 S) D + KP (1 + T/2 S) C

- KP (1 - T/2 S) R

More manipulation gives

84

[0.25 T/2 S2 + (0.25 + T/2 - KP T/2) S + (1.0 + KP)] R

= (1 + T/2 S) D + KP (1 + T/2 S) C

A typical time lag is 0.5 seconds. In this case we get

[0.0625 S2 + (0.5 - 0.25 KP) S + (1.0 + KP)] R

= (1.0 + 0.25 S) D + KP (1.0 + 0.25 S) C

Setting C equal to zero gives

 R 1.0 + 0.25 S
 ——— = —————————————————————————————————————-
 D 0.0625 S2 + (0.5 - 0.25 KP) S + (1.0 + KP)

Setting D equal to zero gives

 R KP (1.0 + 0.25 S)
 ——— = —————————————————————————————————————-
 C 0.0625 S2 + (0.5 - 0.25 KP) S + (1.0 + KP)

The characteristic equation for the setup is:

0.0625 S2 + (0.5 - 0.25 KP) S + (1.0 + KP) = 0

This has the form of a mass on a spring and a dashpot:

m S2 + c S + k = 0

85

The mass m is 0.0625: the dashpot c is (0.5 - 0.25 KP): the

spring k is (1.0 + KP). The equation shows that the damping

is zero when KP is equal to 2. This is a borderline gain.

The oscillation frequency is:

 = √ [k/m] = √ [(1.0 + KP) / 0.0625] = 6.92

This gives a borderline period TP equal to 0.91.

For the case where KP is equal to half KP

 R 1.0 + 0.25 S
 ——— = ————————————————————————
 C 0.0625 S2 + 0.25 S + 2.0

For a unit impulse command one gets

 1.0 + 0.25 S
 R = ————————————————————————
 0.0625 S2 + 0.25 S + 2.0

Partial Fraction Expansion gives

 A + Bj A - Bj
 R = ———————————— + ——————————
 S - (a + bj) S - (a - bj)

Inverse Laplace Transformation gives

(A+Bj) e +(a+bj)t + (A-Bj) e +(a-bj)t

Manipulation gives

+ 2A e +at Cos[bt] - 2B e +at Sin[bt]

86

The MATLAB residue function gives

A = +2.0 B = -0.76

a = -2.0 b = +5.3

For a unit step command one gets

 1.0 + 0.25 S 1
 R = ———————————————————————— ——
 0.0625 S2 + 0.25 S + 2.0 S

Partial Fraction Expansion gives

 M + Nj M - Nj P
 R = ———————————— + —————————— + ——
 S - (m + nj) S - (m - nj) S

Inverse Laplace Transformation gives

+ 2M e +mt Cos[nt] - 2N e +mt Sin[nt] + P

The MATLAB residue function gives

M = -0.25 N = -0.28

m = -2.0 n = +5.3

P = 0.5

87

88

89

90

91

CONTROL SYSTEM STABILITY

CHARACTERISTIC EQUATION: The overall transfer function for a

feedback control system is: TF = G / [1+GH] . The G and H

functions can be put into the form:

G(S) = A(S) / B(S) H(S) = X(S) / Y(S)

where A B X Y are polynomials. Substitution into the TF gives:

TF = A/B / [1 + A/B X/Y] = AY / [BY + AX] .

The transfer function can also be reduced to a ratio of two

polynomials N(s) and D(s). In terms of these polynomials the

characteristic equation is: D(S) = 0. Thus the characteristic

equation in terms of A B X Y is: AX + BY = 0 .

The GH function is: GH = A/B X/Y = AX/BY = N/D. So the

characteristic equation in terms of the GH function is:

N + D = 0 .

Note that the characteristic equations for the subsytems are all

contained in D(S)=0. Often D(S) is in factored form: so simple

inspection tells if the subsystems are stable or unstable. This is

not the case for the overall system because, even though both N(S)

and D(S) may be in factored form, adding them destroys this.

92

ROOT LOCUS PLOTS : As some parameter of a system is varied, each

root of its characteristic equation moves around in the S plane

and traces out a path known as a Root Locus. The Root Locus Method

is systematic set of sketching rules based on the GH function for

finding approximate location of these paths. Numerical schemes for

finding roots of polynomials can now be used to find Root Locus

paths exactly. So the Root Locus Method is obsolete. However the

paths themselves are very important because they show system

parameter values corresponding to the onset of instability. Root

Locus Plots for some simple systems are given in Figure 1. To

generate each plot, the parameter K was varied from 0 to .

ROUTH-HURWITZ CRITERIA : These criteria infer stability

information directly from the coefficients in the characteristic

equation. The method is based on the theorem of residues. It is

rarely derived from first principles in controls text books. It

shows that, when some of the coefficients of the characteristic

equation are positive and some are negative, the system is

unstable. It also shows that a zero coefficient implies that the

best a system can be is borderline stable. As a bare minimum, for

stable operation of a system, all of the coefficients must be

nonzero and all must have the same sign. Consider the cubic

characteristic equation:

93

A S3 + B S2 + C S + D = 0

where A is positive. For this case, Routh-Hurwitz shows that, for

stable operation, all coefficients must be positive, and they must

also produce a positive value when substituted into the test

function X=BC-AD. Consider the quartic characteristic equation:

A S4 + B S3 + C S2 + D S + E = 0

where A is positive. For this case, Routh-Hurwitz shows that, for

stable operation, all coefficients must be positive, and they must

also produce positive values when substituted into the test

functions X=BC-AD and Y=DX-B2E. Consider the quintic equation:

A S5 + B S4 + C S3 + D S2 + E S + F = 0

where A is positive. For this case, Routh-Hurwitz shows that, for

stable operation, all coefficients must be positive, and they must

also produce positive values when substituted into the test

functions X=BC-AD Z=BE-AF and Y=(DX-BZ)Z-X2F.

NYQUIST : A Nyquist Plot is a closed contour in the GH plane (or

the 1+GH plane). It is obtained by mapping a closed contour in the

S plane to the GH plane (or the 1+GH plane) using GH (or 1+GH) as

a mapping function. The closed contour in the S plane surrounds

the entire right half or unstable half of the S plane. A typical

94

mapping is shown in Figure 2. Stability is inferred from the plot

in the GH plane (or the 1+GH plane). Development of the Nyquist

Concept is based on the 1+GH function:

 N N + D
 1 + GH = 1 + — = ————— .
 D D

The overall characteristic function is N+D: the subsystems

characteristic function is D. The roots of N+D=0 are called the

zeros of the 1+GH function while the roots of D=0 are called the

poles of the 1+GH function. Zeros are roots of the overall

characteristic equation while poles are roots of the subsystem

characteristic equations. At a zero |1+GH|=0 while at a pole

|1+GH|=. One can construct a 3D image of |1+GH| by taking the S

plane as a horizontal plane and plotting |1+GH| vertically. At a

zero the image would touch the S plane. At a pole its height above

the S plane would be infinite. The plot could be used to determine

the stability of the system and its subsystems.

One could factor 1+GH to get its zeros Z and poles P:

 K (S-Z1) (S-Z2) ::::: (S-Zn)
 1 + GH = ——————————————————————————— .
 (S-P1) (S-P2) ::::: (S-Pm)

In the S plane, each (S-Z) or (S-P) factor is basically a vector

with radius r and angle θ: rθ. A typical vector is shown in

Figure 3. What happens to these vectors as the tip of the S vector

moves once in a clockwise sense around the contour which surrounds

the entire right half of the S plane? As shown in Figure 4,

95

vectors inside rotate clockwise 360o while vectors outside only nod

up and down. What are the implications of this for the 1+GH

function? Consider the Polar Form of 1+GH:

 K [πrZ  θZ] / [πrP  θP] = R  Θ

where π indicates product and  indicates sum. Zeros inside cause

clockwise rotations of 1+GH: poles inside cause counterclockwise

rotations of 1+GH. Only zeros and poles inside cause such

rotations: zeros and poles outside only cause 1+GH to nod up and

down. If clockwise rotations are considered positive and

counterclockwise rotations are considered negative, then the net

clockwise rotations of 1+GH must be: N = NZ - NP where NZ is the

number of zeros in the unstable half of the S plane while NP is the

number of poles there. For stable operation, NZ must be zero. When

NZ is positive, the system is unstable. Inspection of D gives NP.

Inspection of the 1+GH plot gives N. Substitution into NZ = N + NP

gives NZ. When a vector is drawn from the origin of the 1+GH plane

to the 1+GH plot, N is the net number of times that this vector

rotates clockwise when its tip moves along the plot.

The minus one point on the real axis in the GH plane corresponds

to the origin in the 1+GH plane. This implies that a rotation of

the GH vector drawn from the minus one point in the GH plane is

equivalent to a rotation of the 1+GH vector drawn from the origin

in the 1+GH plane. So one can get N from inspection of the GH plot

or the 1+GH plot. This is illustrated in Figure 5.

96

The basic Nyquist contour in the S plane consists of the imaginary

axis and an infinite radius semicircle. This contour surrounds the

entire right half or unstable half of the S plane. Sometimes there

are poles of GH on the imaginary axis in the S plane. They are

usually located at the origin. At a pole GH is infinite. To avoid

this, the contour is indented locally with an infinitesimal radius

counterclockwise semicircle centered on the pole.

To construct a GH plot, each section of the Nyquist contour is

mapped separately. The infinite radius semicircle usually maps to

the origin in the GH plane. An infinitesimal radius semicircle

always maps to an infinite radius semicircle in the GH plane. Each

pole on the imaginary axis produces one semicircle in the GH

plane. The imaginary axis in the S plane can be mapped point by

point to the GH plane. The negative imaginary axis portion is a

mirror image of the positive imaginary axis portion. The location

of these portions relative to the minus one point is usually

critical. One can get a rough sketch of these portions by first

fixing the small and large ω end points. One then examines the GH

function to see if it is possible to make it purely real or purely

imaginary. Purely real means there is a real axis crossover while

purely imaginary means there is an imaginary axis crossover. With

known end points and crossovers, one can quickly sketch the plot.

97

98

99

100

101

102

103

104

105

AUTONOMOUS UNDERWATER VEHICLE

NYQUIST APPLICATION

To illustrate application of the Nyquist Procedure we will

consider the task of controlling the submergence depth of a

small autonomous underwater vehicle or auv. The equations

governing the motion of the auv are:

M d2R/dt2 + N dR/dt = B + D

J dB/dt + I B = Q

Q = KP E E = C - R

Laplace Transformation of the governing equations gives

(M S2 + N S) R = B + D

(J S + I) B = Q

Q = KP E E = C - R

The GH function for the auv is:

KP / [(M S2 + N S) (J S + I)]

To give a numerical example we will let the parameters be:

M = 50.0 N = 50.0 J = 0.5 I = 0.1

In this case the GH function reduces to

GH = KP / [(50.0 S2 + 50.0 S) (0.5 S + 0.1)]

= KP / [25.0 S3 + 30.0 S2 + 5.0 S]

106

Letting S=j this can be written as:

GH = KP / [-25.0 3j – 30.0 2 + 5.0 j]

As  tends to 0 GH tends to -j while as  tends to  it

tends to +0j. There is a real axis crossover when

2=5/25=1/5. With this 2 the term in square brackets

reduces to -30/5 or -6. This implies that the borderline

stable gain KP which makes the crossover GH=-1 is 6. The

matlab GH plot for the borderline case is given below.

107

PIPE FLOW SETUP

NYQUIST APPLICATION

To illustrate application of the Nyquist Procedure we will

consider the task of controlling the temperature of air

flowing down a pipe. The governing equations are:

X dR/dt + Y R = H + D

H = Z Q Q = KP E

E = C - R

Laplace Transformation of the governing equations gives

(X S + Y) R = H + D

H = Z Q Q = KP E

E = C - R R = e-TS R

The GH function for the setup is:

KP Z e[-TS] / (X S + Y)

To give a numerical example we will let the parameters be:

X = 0.25 Y = 1.0 Z = 1.0 T = 0.5

In this case the GH function reduces to:

GH = KP e[-0.5S] / (0.25 S + 1.0)

Letting S=j this can be written as:

108

GH = KP [Cos(0.5) – j Sin(0.5)] / (0.25 j + 1.0)

= KP [P + Q j] / W

where

P = - 0.25  Sin(0.5) + Cos(0.5)

Q = - 0.25  Cos(0.5) - Sin(0.5)

W = (0.25)2 + 1.0

As  tends to 0 GH tends to KP while as  tends to  it tends

to 0. Real axis crossovers occur when Q is equal to 0.

Iteration shows that the first crossover occurs when =4.58.

This gives P/W=-0.66. This implies that the borderline stable

gain KP which makes the crossover GH=-1 is 1.52. The matlab

GH plot for the borderline case is given below.

109

NYQUIST PROCEDURE

The Nyquist procedure is based on the 1+GH function:

1 + GH = 1 + N/D = (N+D)/D .

The overall characteristic function is N+D: the subsystems

characteristic function is D. The roots of N+D=0 are called the

zeros of the 1+GH function while the roots of D=0 are called the

poles of the 1+GH function. Zeros Z are roots of the overall

characteristic equation while poles P are roots of the subsystem

characteristic equations. Manipulation of 1+GH gives:

 K (S-Z1) (S-Z2) ::::: (S-Zn)

1 + GH = ———————————————————————————

 (S-P1) (S-P2) ::::: (S-Pm)

= K [ΠrZ  ΣθZ] / [ΠrP  ΣθP]

= R  Θ .

So 1+GH is basically a vector with radius R and angle Θ. One can

plot this in a 1+GH plane. Let us surround the entire unstable

half of the S plane with a clockwise contour. When the tip of the

S vector moves clockwise around this contour, zeros inside it

cause clockwise rotations of 1+GH while poles inside it cause

counterclockwise rotations. Only zeros and poles inside cause such

rotations: zeros and poles outside only cause 1+GH to nod up and

down. One can imagine the 1+GH function to be a clock like

110

mechanism: unstable zeros cause its hand to rotate clockwise while

unstable poles cause its hand to rotate counterclockwise: stable

zeros and poles only cause its hand to swing back and forth.

As an illustration, consider the case, shown two pages over, where

there two unstable zeros in the right half of the S plane and all

other zeros and poles are far into the left half of the S plane.

Now surround the unstable zeros by a clockwise contour as shown on

the top of the page. When we map points on this contour to the

1+GH plane, we get the contour shown on the bottom of the page.

Note that no attempt has been made to get exact lengths in the

1+GH sketch: the focus is on getting the angles approximately

correct. When we draw a vector with radius R and angle  to the

contour in the 1+GH plane and count the number of times it rotates

clockwise as we move around the contour in the S plane, we get two

clockwise rotations. These rotations are caused by the unstable

zeros. Nyquist allows us to determine the number of unstable zeros

without having to find their exact locations.

In a GH plane, the vector with radius R and angle Θ is drawn from

the minus one point on the negative real axis. If clockwise

rotations are considered positive and counterclockwise rotations

are considered negative, then the net clockwise rotations of GH

must be: N=NZ-NP where NZ is the number of unstable zeros and NP is

the number of unstable poles. For stable operation, NZ must be

zero. When NZ is positive, the system is unstable. Inspection of D

gives NP. Inspection of the GH plot gives N. Then substitution into

NZ=N+NP gives NZ. For a stable system, the nearness of a GH Plot

111

to the minus one point is a measure of the degree of stability of

the system. There are two stability margins: gain margin and phase

margin. These can be used for design.

Consider the case where only proportional control is being used

and the GH plot passes through the minus one point in the GH

plane. If GH=-1 then 1+GH=0. This implies that at this point S=Z:

it is a root of the overall characteristic equation. But along the

GH plot S=±jω. So Z=±jω. So there is a complex conjugate pair of

roots of the overall characteristic equation on the imaginary axis

in the S plane. This means the system is borderline stable and the

gain is K. The frequency of the borderline oscillation is ω. This

means the borderline period is T=2Π/ω. These borderline gain and

period allow us to calculate Ziegler Nichols gains.

A GH plot is basically a polar open loop frequency response plot.

When GH=-1, a command sine wave produces a response which has the

same magnitude as the command but is 180o out of phase. If the

command was suddenly removed and the loop was suddenly closed, the

negative of the response would take the place of the command and

keep the system oscillating. If the gain was bigger than K, the

command would produce a response bigger than itself. When this

takes over, it would produce growing or unstable oscillations. If

the gain was smaller than K, the command would produce a response

smaller than itself. When this takes over, it would produce

decaying or stable oscillations.

112

113

114

115

ROOT LOCUS CONCEPT

For a feedback control system 1+GH=0 when S is a root of the

overall characteristic equation for the system. This implies that

when S is a root GH=-1. So at a root the magnitude of GH is 1 and

its angle is plus or minus 180o. The Root Locus Concept is based on

these magnitude and phase requirements on GH. Consider a system

with the following GH function:

 GH = K X [(S-v) (S-w)] / [(S-a) (S-b) (S-c)]

The Root Locus Concept can be used to find the paths traced out by

the overall roots as some parameter is varied. It can also be used

to find the K corresponding to borderline stable operation. The

procedure has two stages. In stage I, an S point on the imaginary

axis is picked and the angles to it from the zeros and poles of GH

are measured. This is shown in the sketch on the next page. Those

angles must total plus or minus 180o. Zero angles are added: pole

angles are subtracted. The S point is moved by trial and error

until the angle requirement is met. In stage II, the lengths of

the vectors from the zeros and poles to the final S point are

measured. The magnitude requirement gives:

 K [X V W] / [A B C] = 1

This gives

K = [A B C] / [X V W]

116

117

ILLUSTRATION : AUV DEPTH CONTROL

The governing equations are:

M d2R/dt2 + N dR/dt = B + D

J dB/dt + I B = Q

Q = KP E E = C – R

The GH Function is:

GH = KP / [(M S
2 + N S) (J S + I)]

= [KP/MJ] / [S (S – [-N/M]) (S – [-I/J])]

Letting M=50.0 N=50.0 J=0.5 I=0.1 gives:

GH = [KP * 1/25] / [S (S – [-1]) (S – [-0.2])]

= KP * X / [(S-a) (S-b) S-c)]

The S plane sketch for this case, after the trial and error

adjustment to get the angle requirement satisfied, is shown on the

next page. The magnitude requirement gives:

KP * X / [A * B * C] = 1

KP = [A * B * C] / X = 6

118

mhinchey
Typewritten Text

mhinchey
Typewritten Text

mhinchey
Typewritten Text

=25 =65 =90

A=1.09 B=0.49 C=0.45

119

AUTONOMOUS UNDERWATER VEHICLE

ROOT LOCUS APPLICATION

As an application of the root locus procedure, we will

consider the task of controlling the submergence depth of a

small autonomous underwater vehicle or auv. According to

Newton's Second Law of Motion, the equation governing the up

and down motion of the auv is:

 M d2R/dt2 = B + D - W

W = X dR/dt |dR/dt| + Y dR/dt = N dR/dt

J dB/dt + I B = Q

 Q = KP E + KI Edτ + KD dE/dt

E = C - R

where R is the depth of the auv, M is its overall mass, B is

the control force from the propulsion system, D is a

disturbance load caused for example by sudden weight changes,

W is a drag load consisting of wake drag and wall drag, X and

Y account for the size and shape of the auv, Q is the control

signal, J and I are drive constants, E is the depth error, KP

KI KD are the controller gains and C is the command depth.

120

Laplace Transformation of the governing equations gives

 (M S2 + N S) R = B + D

 (J S + I) B = Q

 Q = (KP + KI/S + KD S) E

 E = C - R

Algebraic manipulation gives

 R KD S2 + KP S + KI
 ——— = —————————————————————————————————————-
 C MJ S4 + (NJ+MI) S3 + (NI+KD) S2 + KP S + KI

 R J S2 + I S
 ——— = —————————————————————————————————————-
 D MJ S4 + (NJ+MI) S3 + (NI+KD) S2 + KP S + KI

The characteristic equation is

MJ S4 + (NJ + MI) S3 + (NI + KD) S2 + KP S + KI = 0

The code on the next page can be used to get the root locus

plot for any parameter of the auv. It is presently set up

to study the influence of KD. A series of root locus plots

generated by the code follows the code.

121

122

123

124

125

PIPE FLOW SETUP

ROOT LOCUS APPLICATION

As an application of the root locus procedure, we will

consider the task of controlling the temperature of air

flowing down a pipe. The governing equations are:

X dR/dt + Y R = H + D

A dH/dt + B H = Z Q

Q = KP E E = C - R

where R is the temperature of the air at the heater, R is

the temperature of the air at the sensor, C is the command

temperature, E is the temperature error, Q is the control

signal, H is the heat generated by the heater, D is a

disturbance heat and KP is the controller gain. R is what R

was T seconds back in time, where T is the time it takes

for the air to travel down the pipe.

Laplace Transformation of the governing equations gives

 (X S + Y) R = H + D

 (A S + B) H = Z Q

 Q = KP E E = C - R

 R = e-TS R

126

We approximate the time lag as follows:

e-TS = (1 - T/2 S) / (1 + T/2 S)

Algebraic manipulation gives

 R KP Z (1 + T/2 S)
 ——— = ——
 C (A S + B) (X S + Y) (1 + T/2 S) + KP Z (1 - T/2 S)

 R (A S + B) (1 + T/2 S)
 ——— = ——
 D (A S + B) (X S + Y) (1 + T/2 S) + KP Z (1 - T/2 S)

The characteristic equation is

T/2 AX S3 + [T/2 (BX + AY) + AX] S2

+ [T/2 BY + BX + AY - KP Z T/2] S + KP Z + BY = 0

The code on the next page can be used to get the root locus

plot for any parameter of the pipe flow setup. It is

presently set up to study the influence of KP. A root locus

plot generated by the code follows the code.

127

128

129

 SYSTEM PERFORMANCE

Often the dynamics of a control system is dominated by a pair of

roots just to the left of the imaginary axis in the S plane. All

other roots are much further to the left and have transients which

die away very quickly. In such cases, the system behaves basically

like a mass on a spring and a dashpot. The sketch on the next page

shows such a system. Its governing equation is:

m d2R/dt2 = c (dC/dt - dR/dt) + k (C - R)

Laplace Transformation gives the transfer function

 R c S + k
 ——— = TF = ———————————————
 C m S2 + c S + k

Manipulation gives

 R c/m S + k/m
——— = TF = ———————————————

 C S2 + c/m S + k/m

Vibration theory allows one to rewrite this as

 R 2n S + n n
 ——— = TF = ——————————————————

 C S2 + 2n S + n n

130

131

where n is the system undamped natural frequency and  is its

damping factor. These are by definition

n = √[k/m]  = c/cc Cc = 2 √[k*m]

The roots of the system characteristic equation are

x + yj x - yj

x = - n y = d

where d is the damped natural frequency given by

d = n √[1 - 2]

For an impulse input, the response has the form

X e +xt Cos[yt] + Y e +xt Sin[yt]

while for a step input, it has the form

X e +xt Cos[yt] + Y e +xt Sin[yt] + Z

In a response, overshoots must be kept to a tolerable level. This

is dependent mainly on the damping factor . The angle that a root

vector makes with x axis is:

132

 = tan-1 [y/x] = tan-1 [d/[n]]

= tan-1 [n√[1-2]/[n]] = tan-1 [√[1-2]/]

This shows that radial lines drawn out from the origin are lines

of constant . The vertical axis corresponds to  equal to zero

or no damping, while the horizontal axis corresponds to  equal

to unity or critical damping. Experience shows that  should be

at least 0.5, which corresponds to an angle  of 60o. So roots

should lie inside a wedge shaped region in the S plane.

Speed of response is another important requirement of a system.

This is dependent mainly on the natural frequency n. The radius r

of a circle drawn from the origin in the S plane is:

r2 = x2 + y2

= [n]2 + [d]2

= [n]2 + [n √[1 - 2]]2

= 2 [n]2 + [1 - 2] [n]2 = [n]2

This implies that r is equal to n. So, to get a desired speed of

response, roots must be outside a semi circle with radius n.

133

Thus, to keep overshoots tolerable and the speed of response

adequate, the roots must be in the composite wedge/circle region

shown in the sketch on the next page.

The characteristic equation for an autonomous underwater vehicle

or auv with a proportional controller is

S3 + [NJ+MI]/[MJ] S2 + [NI]/[MJ] S + [KP]/[MJ] = 0

A general cubic characteristic equation follows from

(S - 1) (S - 2) (S - 3) = 0

Expansion gives

S3 + a S2 + b S + c = 0

a = - [1 + 2 + 3] = [NJ+MI]/[MJ]

b = + [1 2 + 1 3 + 2 3] = [NI]/[MJ]

c = - [1 2 3] = [KP]/[MJ]

To get good performance, we put the  roots in the composite

region in the S plane. Then the last three equations can be solved

for the corresponding system parameter values.

134

135

136

137

 NONLINEAR PHENOMENA

Linear theory predicts that, when an unstable system is

disturbed from a rest state, the transients which develop grow

indefinitely. For example, when transients are oscillatory, the

oscillation amplitude tends to  as time tends to . In reality,

infinite amplitudes are never observed. Sometimes large

amplitudes cause the system to break down. Often nonlinearities

limit amplitudes to some finite level before breakdown can

occur. These finite amplitude oscillations are known as limit

cycles. Sometimes limit cycle amplitudes are very small: in this

case, system is often considered to be practically stable.

Nonlinearities can also cause systems which are stable in a

linear sense to be practically unstable.

When a system has strong multiple nonlinearities, simulation is

the only option. When a system has only one strong nonlinearity,

such as a switching controller, one can use its Describing

Function DF. In some texts, the letter N is used to denote it

instead of DF. The DF replaces the nonlinear controller.

When a system with a nonlinear controller is undergoing a limit

cycle, its behavior resembles a borderline stable linear system:

no growth or decay. The controller seems to be able to adjust

138

its gain to make the system borderline stable. The describing

function DF for a nonlinear controller approximates this

adjustable gain. To get DF, the system is assumed to be

undergoing a limit cycle and to be nonforced. Also the signal

fedback to the controller is taken to be a pure sinusoid. This

is usually a good assumption because the linear elements which

follow the controller generally act as a low pass filter: they

let only the fundamental component out of the controller get

back to the controller. When the input into the nonlinear

controller is:

IN = Eo Sinωt

its output is generally of the form:

ON = OB + OS Sinωt + OC Cosωt + Higher Harmonics .

With the same input:

IDF = Eo Sinωt

the describing function gives out:

ODF = OB + OS Sinωt + OC Cosωt .

So a describing function analysis ignores higher harmonics. This

is appropriate because they are filtered away anyhow. For most

control situations, the bias term OB is zero.

139

When a system is undergoing a limit cycle, its linear elements

are forced sinusoidally by the limit cycle. In this case, each

transfer function reduces to the form:

O/I = TF = A + Bj

where

I = Sinωt O = A Sinωt + B Cosωt .

By analogy, the DF for a nonlinear controller is:

ODF / IDF = DF = OS/Eo + OC/Eo j

where

IDF = Eo Sinωt ODF = OS Sinωt + OC Cosωt .

DF is essentially an amplitude dependent gain. Each Eo gives a GH

Plot. Application of Nyquist theory in each case shows if Eo

grows or decays. A limit cycle exists when the minus one point

is on the GH Plot. When DF can be isolated from GH it is

customary to divide minus one and GH by DF. In this case a limit

cycle exists when the minus 1/DF curve intersects the GH/DF or

G*H Plot. Application of Nyquist theory shows if the limit cycle

is stable or unstable.

140

As an illustration of the development of a describing function,

consider the ideal relay controller. When it has a sinusoidal

input, its output is a square wave. A Fourier Series analysis of

a square wave gives the components:

 T

OS = 2/T  Q(t) Sint dt = 4Qo/

 0

 T

OC = 2/T  Q(t) Cost dt = 0

 0

 T

OB = 2/T  Q(t) dt = 0
 0

So the fundamental output is:

ODF = [4Qo/] Sinωt

The input is

IDF = Eo Sinωt

So the Describing Function is

DF = [4Qo]/[Eo]

141

142

143

RELAY CONTROLLERS

AUTONOMOUS UNDERWATER VEHICLE

To illustrate nonlinear phenomena, we will consider the task

of controlling the submergence depth of a small autonomous

underwater vehicle or auv. The schematic of the system is

shown on the next page. Relay controllers resemble the

proportional controller. For the proportional controller

case, the governing equations for the auv are:

M d2R/dt2 = B + D - W

W = X dR/dt |dR/dt| + Y dR/dt

J dB/dt + I B = Q

Q = KP E E = C - R

where R is the depth of the auv, M is its overall mass, B is

the control force from the propulsion system, D is a

disturbance load caused for example by sudden weight changes,

W is a drag load consisting of wake drag and wall drag, E is

the depth error, C is the command depth, M X Y J I are

process constants and KP is the controller gain.

144

145

Linearization allows us to write W as:

W = N dR/dt

To give a numerical example we will let the parameters be:

M = 50.0 N = 50.0

J = 0.5 I = 0.1

Theory shows that the borderline proportional gain KP for the

auv is 6 and the borderline period TP is 14.

The describing function for an ideal relay controller is:

DF = [4 Qo] / [π Eo]

At a limit cycle this is equal to the borderline

proportional gain KP. Setting DF equal to KP gives:

Eo = [4 Qo] / [π DF] = [4Qo] / [π KP]

The saturation limit for the controller is 12. Substitution

into the amplitude equation gives Eo equal to 2.5.

An m code for the auv for the ideal relay controller case

is given below. This is followed by a response generated by

the code. As can be seen, it agrees with DF predictions.

146

147

148

PIPE FLOW SETUP

To illustrate nonlinear phenomena, we will consider the task

of controlling the temperature of air flowing down a pipe.

The setup is shown on the next page. Relay controllers

resemble the proportional controller. For the proportional

controller case, the governing equations for the setup are:

X dR/dt + Y R = H + D

A dH/dt + B H = Z Q

Q = KP E E = C - R

where R is the temperature of the air at the heater, R is

the temperature of the air at the sensor, C is the command

temperature, E is the temperature error, Q is the control

signal, H is the heat generated by the heater, D is a

disturbance heat (plus or minus), X Y A B Z are process

constants and KP is the controller gain. Note that R is what

R was T seconds back in time: T is the time it takes for

the air to travel down the pipe.

149

150

To give a numerical example we will let the parameters be:

X = 0.25 Y = 1.0

A = 0.1 B = 1.0

Z = 1.0 T = 0.5

Theory shows that the borderline proportional gain KP for the

setup is 1.5 and the borderline period TP is .

The describing function for an ideal relay controller is:

DF = [4 Qo] / [π Eo]

At a limit cycle this is equal to the borderline

proportional gain KP. Setting DF equal to KP gives:

Eo = [4 Qo] / [π DF] = [4Qo] / [π KP]

The saturation limit for the controller is 5. Substitution

into the amplitude equation gives Eo equal to 4.2.

An m code for the setup for the ideal relay controller case

is given below. This is followed by a response generated by

the code. As can be seen, it agrees with DF predictions.

151

152

153

154

155

DIGITAL CONTROL

In almost every control system today, a computer samples the

state of the system and takes corrective action within a control

loop. The rate at which it does this can cause performance to

degrade. One can study the phenomena using new from old time

stepping or one can study it using Z transforms.

As an illustration of the Z transform method, we will consider

the task of controlling the submergence depth of a small

autonomous underwater vehicle or auv. Its governing equations are:

M d2R/dt2 + N dR/dt = B + D - W

J dB/dt + I B = Q

Q = K E E = C – R

Laplace Transformation of the governing equations gives

(M S2 + N S) R = B + D

(J S + I) B = Q

Q = K E E = C - R

156

For the command case, the overall transfer function is

 R K

 ——— = —————————————————————————————————

 C MJ S3 + (NJ+MI) S2 + NI S + K

Let the parameters be:

M = 50.0 N = 50.0.

J = 0.5 I = 0.1 K = 3

Substitution gives

 R 3

 ——— = ————————————————————————————

 C 25 S3 + 30 S2 + 5 S + 3

The forward path transfer function G(S) is

 K

 ——————————————————————

 MJ S3 + (NJ+MI) S2 + NI S

 3

 = ——————————————————————

 25 S3 + 30 S2 + 5 S

157

The matlab c2d function can be used to convert the continuous

transfer function G(S) to the discrete transfer function G(Z). The

system has unity feedback. Its transfer function H(Z) is 1/Z. The

overall transfer function is:

 G(Z)

 —————————————————————

 1 + G(Z) H(Z)

To examine the influence of digital phenomena on the performance

of the system, we consider its response to a step command with a

height of 10. A simulation m code for the system is given on the

next page. The response of the continuous system follows it. The

response of the discrete system for the case where the loop period

is 1 follows the continuous response. As can be seen, the system

has become unstable. Some matlab script which makes use of Z

transforms follows the simulation responses. Its response for the

loop period equal to 1 case agrees with the simulation. A SIMULINK

block diagram for the discrete system follows the script response.

Its response agrees with the simulation and script responses.

158

159

160

161

162

163

164

165

 SAMPLING AND CONSTRUCTION OF SIGNALS

Today, most systems are controlled by digital computers. Within a

computer control loop, sampling of sensor signals is usually done

first followed by calculation of control signals followed by

control signal construction using ZOH. The time it takes to move

once through the control loop is known as the loop period. This is

usually much less than the basic system period. When the two

periods are comparable, performance is usually very poor.

One can use digital simulation or time stepping to study the

performance of such a system. One can also use pulse transfer

functions. For this, one must first focus in on the points in time

where sensors are sampled because control signals are based solely

on state of system at these instants. Mathematically sampling is

done by multiplying each signal of interest by a train of unit

impulses. The area of each impulse generated is a signal level at

a sampling instant. For example, sampling the unit impulse

response function h(t) gives:

h*(t) = Σ h(nT) δ(t-nT) .

where T is the sampling period. Laplace Transformation of this

followed by manipulation gives the pulse transfer function H(Z):

H(Z) = Σ h(nT) Z-n where Z=eST .

166

The response of a system to a unit impulse is of the form:

h(t) = Σ Γ eλt .

Laplace Transformation of this gives:

H(S) = Σ Γ / (S-λ) .

Z Transformation gives:

H(Z) = Σ Γ / (1 - eλT Z-1) .

This gives the roots Z = eλT . Substitution into this shows that

stable region in S plane maps to the inside of a unit circle in Z

plane. If roots fall outside unit circle, the system is unstable.

Often manipulation gives H(Z) as a ratio of two polynomials:

H(Z) = N(Z) / D(Z)

where D(Z)=0 is the system characteristic equation. Long division

of D(Z) into N(Z) can be used to reduce H(Z) to the basic form:

H(Z) = Σ h(nT) Z-n .

Inspection of this tells if the system is stable or unstable.

167

168

169

170

171

STATE SPACE CONTROL

State space control works with the ordinary differential

equations and algebraic equations governing the state of the

system. It puts these equations in matrix form. Manipulation of

the matrix equations gives something called the State Transition

Matrix. Setting the determinant of this matrix to zero gives the

characteristic equation for the system. State space control tries

to control all of the states of the system. For this, instead of

just a single gain, it uses a gain matrix. To control all states,

all states must be sensed. For some systems, this may be

impossible. In these cases, the governing equations are used to

estimate the states. State space control is computationally

expensive and may be inappropriate for pic controlled systems.

As an illustration of state space control, we will consider the

task of controlling the submergence depth of a small autonomous

underwater vehicle or auv. Its governing equations are:

M d2R/dt2 + N dR/dt = B + D

J dB/dt + I B = Q

Q = K (C – R)

172

Manipulation of these equations gives:

dR/dt = U

dU/dt = B/M + D/M - N/M U

dB/dt = K (C-R)/J - I/J B

When C and D are zero, one gets the matrix equation:

The response following an impulse will have the form:

 R = Ro e
t U = Uo et B = Bo et

Substitution into the matrix equation gives

173

Setting the matrix determinant to zero gives:

 [+N/M] [+I/J] + [K/J] [1/M] = 0

Manipulation gives:

MJ 3 + [MI+NJ] 2 + NI  + K = 0

This is the overall system characteristic equation. It is

basically the same as that obtained from classical control:

MJ S3 + [MI+NJ] S2 + NI S + K = 0

174

State space control uses matrix manipulation to get many other

system properties. Details are beyond the scope of this note.

Matlab has a function SS which converts classical control transfer

functions to state space matrix form. The m code on the next page

shows an application of this for auv depth control. The step

response produced by the code follows it and is identical to that

obtained by classical control. This is not surprising because they

are both based on the same equations.

Simulink has state space blocks. A state space block diagram for

the auv depth control case is shown immediately after the SS code

and its response. The drive and plant state space menus are also

shown. In them, x indicates the states, u indicates the inputs and

y indicates the outputs. The step response produced by the state

space block diagram is basically the same as that produced by the

m code. Again, this is not surprising.

175

176

177

178

179

180

181

182

	ACE.pdf
	NOTES.pdf
	TITLE
	BASICS
	PID
	BLANK
	GAINS
	BLANK
	TRACES
	APOLLO
	BLANK
	MATLAB
	BLANK
	LAPLACE
	TFS
	CASES
	BLANK
	SHAKE
	BLANK
	NYQUIST
	PLANES
	BLANK
	LOCUS
	PATHS
	ROOTS
	BLANK
	CYCLES
	RELAY
	BLANK
	DIGITAL
	ZOH
	BLANK

	BLANK
	STATE
	BLANK

	EXAM
	SHEET
	TEST
	QUIZ1
	QUIZ2
	PAGES

