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AUTOMATIC CONTROL ENGINEERING 

 

FEEDBACK CONTROL CONCEPT 

The sketch on the next page shows a typical feedback or error 

driven control system. What has to be controlled is generally 

referred to as the plant. What the plant is doing is known as its 

response. What it should be doing is known as the command. The 

plant receives a control signal from a drive and a disturbance 

signal from the surroundings. The goal is to pick a controller 

that can make the response follow closely command signals but 

reject disturbances. The controller acts on an error signal: this 

is command minus some measure of the response. This is why it is 

usually called error driven control. Two types of error driven 

control are PID and Switching. PID stands for proportional 

integral derivative. Proportional generates a signal which is 

proportional to error. Integral generates a signal which is 

proportional to the integral of the error. Derivative generates a 

signal which is proportional to the rate of change of error. 

Switching generally gives out signals with constant levels.  

 

AUTONOMOUS UNDERWATER VEHICLE DEPTH CONTROL 

To illustrate some error driven control strategies we will 

consider the task of controlling the submergence depth of a small 

autonomous underwater vehicle or auv. According to Newton's Second 

Law of Motion, the equation governing its up and down motion is: 

 

                  M d2R/dt2  =  B  +  D  -  W 
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where R is the depth of the auv, M is its overall mass, B is the 

control force from the propulsion system, D is a disturbance load 

caused for example by sudden weight changes and W is a drag load. 

Drag load has two components: wake drag and wall drag: 

 

                W  =  X dR/dt |dR/dt|  +  Y dR/dt    

 

where X and Y account mainly for the size and shape of the auv. 

 

A simple model of the propulsion system is: 

 

                     J dB/dt  +  I B  =  Q 

 

where Q is the control signal. There are two basic types of 

propulsion systems that could be used to move the auv up and down. 

One is an air/water ballast tank. In this case, the control signal 

Q would produce a change in buoyancy and J would account for the 

fact that this is caused by a flow: I would be zero. If J was very 

large, the control force B would build up very slowly. The other 

type of propulsion system uses motor driven propellors to generate 

B. Usually, for protection, these would be located inside a duct. 

In this case, I would account for the size and shape of the blades 

and duct, while J would account for things like rotor inertia. 

Again, if J was very large, the control force B would build up 

very slowly. One could determine J and I experimentally. 

 

The PID error driven strategy lets the control signal Q be: 
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             Q  =  KP E  +  KI Edτ  +  KD dE/dt     

 

where E = C - R is the depth error and KP KI KD are gains: C is the 

command depth. Usually, gains are constants. However, they can be 

made a function of the state of the system or its surroundings. In 

this case, control is said to be adaptive.  

 

Imagine the auv is at the water surface and it suddenly commanded 

to go to some constant command depth C. Assume that there is a 

disturbance with a constant level D acting downward. Also assume 

the auv is using motor driven propellors for propulsion.  

 

Proportional by itself would cause the propellors to spin in such 

a way that the auv would move towards the command depth. The 

amount of spin would be proportional to depth error. When the auv 

reaches the command depth, the proportional control signal would 

be zero. If the auv was held at the command depth, its propellors 

would stop spinning. The disturbance would cause the auv to stop 

below the command depth. This offset would be such that the 

propellors generate just enough upward force to balance the 

downward disturbance. The offset would be DI/KP. When D is known, 

something called feedforward compensation can be used to get rid 

of the offset. Basically, we measure D and subtract ID from Q in 

the drive equation. When motions settle down, the drive gives out 

an extra signal minus D which cancels D. But we must know D. 

Another way to get rid of the offset is to give the auv a false 
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command C*. If the false command C* was set at [C-DI/KP], the auv 

would end up at C. It would hang below C* by DI/KP and thus end up 

at C. If the gain KP was very large, offsets such as DI/KP would 

probably be tolerable. However, large gain would generate very 

large Q when the depth is well away from the command depth. Very 

large Q could burn out drives. To avoid this, a limit is usually 

put on the magnitude of Q. In this case, the control is referred 

to as proportional with saturation. If the disturbance was greater 

than the saturation limits, then control would be impossible. 

 

Integral by itself would cause the propellors to spin in such a 

way that the auv would move towards the command depth. The amount 

of spin would be proportional to the integral of depth error. As 

the auv moves towards the command depth, the propellors would spin 

faster and faster. Obviously, this would cause the auv to 

overshoot the command depth. Because of these overshoots, integral 

cannot be used alone. The good thing about integral is, if the 

system is stable, it gives zero offsets. If the auv was held with 

positive depth error, the integral control signal would get bigger 

and bigger. This is known as integral windup. If it was released 

after a long time, it would take a very large integrated negative 

error to cancel out the windup due to integrated positive error. A 

simple way to avoid integral windup is to activate integral only 

within a band surrounding the command depth. All we need is for 

the band to be wide enough for proportional to get the auv within 

the band so that integral can then home it into the command depth. 
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Derivative like integral cannot be used alone. Assume that the 

command C is a constant, and let the auv be stopped far away from 

the command depth. In this case, dE/dt would be zero. So, the 

controller would not generate a force to move the auv to the 

command depth. Derivative mimics drag load and helps motions 

settle down. It generates a control signal which opposes motion. 

Something called rate feedback could also be used to help make 

motions settle down. The controller would act on depth error E 

minus a constant times the depth rate dR/dt. Substitution into the 

governing equations shows that rate feedback mimics drag. Note 

that derivative could be used to make the auv move at a constant 

speed: dC/dt is made a constant. Drag and the dR/dt part of dE/dt 

would tend to limit speed.  

 

With all three components of PID acting together, as soon as the 

auv passes through the command depth, proportional would tend to 

counteract integral. Also, proportional would get the auv closer 

to the command depth faster, so it would limit integral windup. 

Derivative would help counteract overshoots. The auv would home in 

quickly on the command depth with minimal overshoots. So, we get 

the good characteristics of all three controllers. 

 

There are many types of switching control. They often have trouble 

with overshoots. Basic relay switching is the simplest. It would 

try to make the propellors rotate at a constant speed: the 

direction of rotation would depend on the sign of depth error. 

Relay with deadband would allow the auv to drift once it gets 
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inside a band surrounding the command depth. The propulsion device 

would be shut down and drag load would cause the auv to slow down. 

Relay with hysteresis would reverse the direction of control 

before the auv gets to the command depth. In this case, the 

propulsion device would act as a brake. A bias signal could be 

added to counteract disturbances.  

 

Propulsion system dynamics would cause the control force to lag 

the control signal. The amount of lag depends on how large J is 

relative to I. Consider the case where proportional control is 

acting alone and the error is initially positive. For a slowly 

reacting propulsion system, positive error would cause a positive 

control force to gradually build up. As it builds up, this force 

would move the auv towards the command depth. However, when the 

auv gets to the command depth, because of lag, the control force 

would still be positive, and this would cause overshoot. In some 

cases, these overshoots would settle down. In other cases, they 

would not settle down but would limit because of wake drag.    

 

Control signals for an auv would be generated within a computer 

control loop. The loop period must be much smaller than the basic 

period of auv motion: otherwise severe overshoots could develop. 

If the auv was controlled remotely by a computer onboard a ship, 

the time taken for the depth signal to travel from the auv to the 

ship and the time taken for the drive signal to travel back from 

the ship to the auv could cause overshoots, because the auv would 

be responding to past error not present error. 
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SUBSEA ROBOT SPRING/DASHPOT PID ANALOGY 

 

Equations governing subsea robot depth motion are: 
 
 
        M d2R/dt2 + X dR/dt|dR/dt| + Y dR/dt = B + D  

 

                     J dB/dt + I B = Q   

 
         Q = KP(C-R) + KI(C-R)dτ + KD(dC/dt-dR/dt) 
 
 
Let the drive be a propellor in a duct driven by a DC motor. For 

most of what follows, we will assume that the drive is fast acting, 

so that J is approximately zero. In this case, 

 
   B  =  KP/I (C-R)  +  KI/I (C-R)dτ  +  KD/I (dC/dt-dR/dt)  
 

     B  =  KP (C-R)  +   KI (C-R)dτ  +  KD (dC/dt-dR/dt) 
 
 
We will also assume that the robot is initially at one depth and it 

is suddenly commanded to go to another depth. When proportional 

control is acting alone, the control force B is a linear function 

of depth error. This pulls the robot towards the command depth. As 

the robot approaches the command depth, the propellor slows down. 

Note that a spring with its ends attached to the robot and the 

command depth would move the robot the same way. Because the drive 

is spring like, disturbances D cause the robot to settle down away 

from the command depth. When integral control is acting alone, the 

control force B gradually builds up and pulls the robot towards the 

command depth. As the robot approaches the command depth, the 

propellor goes faster and faster. This causes the robot to 
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overshoot the command depth. As soon as it overshoots, the control 

force starts to decrease: meaning the propellor starts to slow 

down. It takes time for the control force to go to zero. Beyond 

this point, the control force changes sign and acts initially like 

a brake and causes the robot to stop and then start back towards 

the command depth. Again, when it reaches the command depth, it 

overshoots it. These overshoots do not settle down. If they did, B 

would equal minus D and R would equal C. One could replace the 

integral drive with a spring with one end attached to the robot and 

the other end free to move. Initially the free end moves towards 

the command depth. This causes the spring to stretch and pull the 

robot towards the command depth. The spring stretching mimics the 

integration of error. The spring keeps stretching until the robot 

overshoots the command depth. Then, it gradually slackens. It takes 

time for the spring to totally slacken so it pulls the robot beyond 

the command depth. When the spring is totally slack, the free end 

starts back towards the command depth. In this case, the spring 

acts initially like a brake and causes the robot to stop and then 

start back towards the command depth. With proportional and 

integral acting together it is possible for the robot to settle at 

the command depth. Proportional suppresses the overshoots caused by 

integral and integral gets rid of offsets. Derivative control is 

not spring like. The equation for B shows that it instead mimics a 

dashpot. When the drive is slow acting, control actions are not 

instantaneous. This can cause severe overshoots. 
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CAR/DRIVER PID ANALOGY 

 

Imagine a car at position A on a straight road that is 

suddenly commanded to go to position B on the same road. A 

proportional driver would suddenly depress the gas peddle 

down to some level. This would cause the car to gradually 

pick up speed. As the car moves towards B, the driver would 

depress the gas peddle less and less. The amount of 

depression would be a linear function of position error or 

distance between B and the car position. When the car 

reaches B, peddle depression would be zero. Because of its 

momentum, the car would overshoot B. As soon as it does so, 

the driver would suddenly put the car into reverse and 

depress the gas peddle an amount again dependent on position 

error. This would cause the car to gradually come to a stop 

and reverse direction back towards B. If there was no wind 

and the road was horizontal, wake drag and drive friction 

would gradually make the car come to rest at B. Otherwise, 

it would come to rest away from B. An integral driver 

starting at A would gradually depress the gas peddle based 

on the integral of position error. This would move the car 

towards B but at a faster and faster speed. When the car 

reaches B, peddle depression would be maximum. Obviously, 

the car would overshoot B. As soon as it does so, the driver 

would gradually depress the gas peddle less and less. 

Basically, the position error would now be negative, and 
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integrated error would gradually decrease. When it reaches 

zero, the peddle depression would also be zero, and the 

driver would suddenly put the car into reverse and gradually 

depress the gas peddle again based on the integral of 

position error. This would cause the car to gradually come 

to a stop and reverse direction back towards B. When the car 

reaches B, it would again overshoot. The car would never 

settle at B but would oscillate back and forth at an 

amplitude dependent on wake drag and drive friction. The 

mean position error would be zero, even when there was wind 

or the road was not horizontal. A proportional plus integral 

driver could make the car settle at B, even when there was 

wind or the road was not horizontal. The proportional part 

would bring the car close to B before the integral part 

could build up too much signal. The integral part would then 

home the car into B. Whereas the proportional plus integral 

driver would work only the gas peddle, a proportional plus 

integral plus derivative driver would also use the brake. 

The derivative part would apply the brake an amount based on 

speed. This would help control overshoots if they are a 

problem. Driver reaction time could cause severe overshoots. 

Its control is based on past error not present error.
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ZIEGLER NICHOLS GAINS 

 

Ziegler and Nichols, through a series of experiments on simple 

systems, developed criteria for picking gains in a controller 

that would give good tracking performance. For a system that can 

be made unstable with proportional acting alone, the procedure 

they recommend is as follows. With proportional acting alone, 

increase its gain until the system becomes borderline stable. Let 

the borderline gain be KP: let its period be TP. According to 

Ziegler and Nichols, reasonable PID gains are: 

 

KP = 0.6*KP      KI = KP/TI      KD = KP*TD 

   

TI = 0.5*TP       TD = 0.125*TP 

 

When only proportional and integral are acting, they recommend 

the following PI gains:   

 

KP = 0.45*KP      KI = KP/TI 

                    

TI = 0.83*TP 

 

When only proportional is acting, they recommend: 

 

KP = 0.5*KP 
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AUTONOMOUS UNDERWATER VEHICLE 

 

ZIEGLER NICHOLS GAINS 

 

To illustrate a procedure for getting Ziegler Nichols gains, 

we will consider the task of controlling the submergence 

depth of a small autonomous underwater vehicle or auv. 

According to Newton's Second Law of Motion, the equation 

governing the up and down motion of the auv is: 

 

M d2R/dt2  =  B  +  D  -  W 

 

where R is the depth of the auv, M is its overall mass, B is 

the control force from the propulsion system, D is a 

disturbance load caused for example by sudden weight changes 

and W is a drag load consisting of wake drag and wall drag: 

 

W  =  X dR/dt |dR/dt|  +  Y dR/dt 

 

where X and Y account for the size and shape of the auv. Here 

we linearize the drag to get: 

 

W = N dR/dt 

 

A simple model of the propulsion system is: 

 

J dB/dt  +  I B  =  Q 

 

where Q is the control signal: J and I are drive constants.  
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The PID error driven strategy lets the control signal Q be: 

 

Q  =  KP E  +  KI Edτ  +  KD dE/dt 

 

where E = C - R is the depth error and KP KI KD are the 

controller gains: C is the command depth. 

 

To get Ziegler Nichols gains, we start by assuming only 

proportional is active. Manipulation of the governing 

equations gives:  

  

J [ M d3R/dt3  +  N d2R/dt2  -  dD/dt] 

 

+  I [ M d2R/dt2  +  N dR/dt  - D ]   =  KP C  -  KP R  

 

We then assume that C and D are both constants and that the 

auv is undergoing a limit cycle oscillation for which 

 

R = Ro + R Sin [t] 

 

Substitution into the modified drive equation gives 

 

- J  M  3 R Cos[t] - J  N  2 R Sin[t] 

 
- I  M  2 R Sin[t]  +  I  N    R Cos[t] 

 
- I  Do   =   KP  Co  -  KP  Ro  -  KP  R Sin[t]  

 

This equation is of the form:  
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i Sin[t]  +  j Cos[t]  +  k  =  0 

 

Mathematics requires that i=0 j=0 k=0: 

 

-  J N 2   - I M 2  +  KP  =  0 

 

- J M 3   +  I N    =  0 

 

              + I Do   +  KP Co   -  KP Ro   =  0 

 

Manipulation of these equations gives 

 

Ro  =   Co  + I Do / KP 

 

2  = [I N] / [J M] 

 

KP  =  [J N  + I M] 2 

= [J N  + I M] [I N] / [J M] 

 

             

For the illustration we let : M=50 N=50 J=0.5 I=0.1. The 

above equations give =0.447, KP=6 and TP=14. Substitution 

into the Ziegler Nichols gains equations gives: KP = 3.6; KI 

= 0.54; KD = 6.3. An m code for the auv is given below. This 

is followed by a Ziegler Nichols response generated by the 

code. A SIMULINK Block diagram follows the m code response. 

It gives basically the same response as the code.  
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PIPE FLOW SETUP 
 

ZIEGLER NICHOLS GAINS 
 
 

To illustrate a procedure for getting Ziegler Nichols gains, 

we will consider the task of controlling the temperature of 

the air flowing down the pipe in the lab pipe flow setup. 

Basically the setup consists of a fan which draws air from 

atmosphere and sends it down a pipe. A heater just downstream 

of the fan is used to heat the air. It receives a signal from 

a controller. The temperature of the air at the pipe exit is 

measured by a thermistor. The governing equations are:  

 

X dR/dt + Y R = H + D 
 
 

A dH/dt + B H = Z Q 
 
 

Q = KP E + KI Edτ + KD dE/dt 
 
 

 E = C - R 
 

where R is the temperature of the air at the heater, R is 

the temperature of the air at the sensor, C is the command 

temperature, E is the temperature error, Q is the control 

signal, H is the heat generated by the heater, D is a 

disturbance heat and KP KI KD are the controller gains. Note 

that R is what R was T seconds back in time: T is the time 

it takes for the air to travel down the pipe. 
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To get Ziegler Nichols gains, we start by assuming only 

proportional is active. Manipulation of the governing 

equations gives:  

  

A [ X d2R/dt2  +  Y dR/dt  -  dD/dt] 

 
+  B ( X dR/dt  +  Y R  - D)  =  Z KP C  -  Z KP R    

 

We then assume that C and D are both constants and that the 

setup is undergoing a limit cycle oscillation for which 

 

R = Ro + R Sin [t]      R = Ro + R Sin [(t-T)] 

 

Substitution into the modified drive equation gives 

 

 - A X 2 R Sin[t] + A Y  R Cos[t] 

 
+  B X  R Cos[t]  +  B Y Ro  +  B Y R Sin[t]     

 

- B Do   =  Z KP Co -  Z KP Ro  -  Z KP R Sin[(t-T)] 

 

A trigonometric identity gives 

 

Sin[(t-T)]  =  Sin[t] Cos[T] - Cos[t] Sin[T] 

 

Substitution into the modified drive equation gives an 

equation of the form 

 

i Sin[t]  +  j Cos[t]  +  k  =  0 
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Setting i=0 and j=0 and k=0 gives 
 
 

- A X 2  +  B Y  +  Z  KP Cos[T] =   0 

 

A Y    +  B X   -  Z KP Sin[T] =  0  

 

B Y Ro  -  B Do   -  Z KP Co   +   Z KP Ro  =  0 

 

Manipulation of the first two equations gives 

 

KP = [A X 2 - B Y] / [Z Cos[T]] 

 
KP = [A Y  + B X ] / [Z Sin[T]] 

 

Sin[T]/Cos[T] = Tan[T] 

= [A Y  + B X ] / [A X 2 - B Y] 

 

The last equation gives . Once  is known we can then solve 

for KP. For the illustration, we let: X=0.25 Y=1.0 A=0.1 

B=1.0 Z=1.0 T=0.5. The above equations give =3.97, KP=1.5 

and TP=1.58. Substitution into the Ziegler Nichols gains 

equations gives: KP=0.9; KI=1.2; KD=0.17. An m code for the 

setup is given below. This is followed by a Ziegler Nichols 

response. A SIMULINK Block diagram follows the response. It 

gives basically the same response as the code.  
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COMPUTER SIMULATION OF CONTROL SYSTEMS 

 

PREAMBLE 

Simulation allows one to study the behavior of a system 

before it is actually constructed. This can serve as an aid 

to system design. Simulations are inexpensive and easy to 

put together. They can handle all sorts of phenomena. These 

include transport lag and computer loop rate phenomena. 

Simulations can also handle multiple strong nonlinearities. 

They are often used as a check on more conventional 

analysis. However, simulations are like experiments. For 

complex systems, it is hard to make sense of responses. 

Before digital computers were developed, systems were 

simulated using analog electronics. When digital computers 

became common place, simulations made use of time stepping 

procedures. Basically, these follow local slopes or rates 

step by step in time. Special software packages based on 

these procedures have been developed. Probably, the popular 

package is SIMULINK under MATLAB.  
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AUTONOMOUS UNDERWATER VEHICLE 

TIME STEPPING SIMULATION 

 

To illustrate time stepping we will consider the task of 

controlling the submergence depth of a small autonomous 

underwater vehicle or auv. The governing equations are:  

 

M d2R/dt2  =  B  +  D  -  W 

 

W  =  X dR/dt |dR/dt|  +  Y dR/dt 

 

J dB/dt  +  I B  =  Q 

 

Q  =  KP E  +  KI Edτ  +  KD dE/dt 

 

E  =  C - R 

 

where R is the depth of the auv, M is its overall mass, B is 

the control force from the propulsion system, D is a 

disturbance load caused for example by sudden weight changes, 

W is a drag load consisting of wake drag and wall drag, E is 

the depth error, C is the command depth, M X Y J I are 

process constants and KP KI KD are the controller gains.  
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Manipulation of the governing equations gives 

 

dR/dt = U 

dU/dt  =  (B + D - W) / M 

W  =  X U |U|  +  Y U 

dB/dt  =  (Q - I B) / J 

Q  =  KP E  +  KI Edτ  +  KD dE/dt 

E = C - R 

 

Application of time stepping gives 

 

RNEW  =  ROLD  +  t * UOLD 

UNEW  =  UOLD  +  t * (BOLD + DOLD  - WOLD) /M   

WOLD  =  X UOLD  |UOLD|  +  Y UOLD 

BNEW  =  BOLD  +  t * (QOLD -  I BOLD) / J  

QOLD    =  KP EOLD    +  KI  EOLD  t  +  KD EOLD/t 

EOLD  = COLD  - ROLD   

 

An m code for the auv is given below. This is followed by a 

Ziegler Nichols response generated by the code. 
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PIPE FLOW SETUP 

TIME STEPPING SIMULATION 

 

To illustrate time stepping we will consider the task of 

controlling the temperature of air flowing down a pipe. The 

setup is shown on the next page. The governing equations are:  

 

X dR/dt + Y R = H + D 

 

A dH/dt + B H = Z Q 

 

Q = KP E + KI Edτ + KD dE/dt 

 

 E = C - R 

 

where R is the temperature of the air at the heater, R is 

the temperature of the air at the sensor, C is the command 

temperature, E is the temperature error, Q is the control 

signal, H is the heat generated by the heater, D is a 

disturbance heat (plus or minus), X Y A B Z are process 

constants and KP KI KD are the controller gains. Note that R 

is what R was T seconds back in time: T is the time it 

takes for the air to travel down the pipe. 
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Manipulation of the governing equations gives 

 

dR/dt  =  (H  + D - Y R) / X 

dH/dt  =  (Z Q - B H) / A 

Q  =  KP E  +  KI Edτ  +  KD dE/dt 

E = C - R 

 

Application of time stepping gives 

 

RNEW  =  ROLD  +  t * (HOLD + DOLD  - Y ROLD) / X 

HNEW  =  HOLD  +  t * (Z QOLD -  B HOLD) / A  

QOLD    =  KP EOLD    +  KI  EOLD  t  +  KD EOLD/t 

EOLD  = COLD  - ROLD   

 

 

An m code for the setup is given below. This is followed by 

a Ziegler Nichols response generated by the code. 
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SIMULINK CONTROL SYSTEM SIMULATION 

 

SIMULINK makes use of a block diagram representation of the 

system. One activates SIMULINK by typing SIMULINK and 

pressing enter in the main MATLAB window. Blocks are formed 

by picking blocks from groups of blocks in the main 

SIMULINK window. The group labeled SOURCES contains blocks 

that could be used for commands and disturbances. The group 

labeled SINKS contains blocks that could be used for 

display of responses. The group labeled CONTINUOUS contains 

many common transfer functions and state space blocks. The 

group labeled DISCRETE contains blocks that could be used 

to mimic loop rate phenomena. The group labeled MATH 

contains blocks for things like summation junctions and 

gains. The group labeled NONLINEAR contains various types 

of nonlinearities and switching controllers. Many of the 

switching controllers can be formed using LOOK UP TABLE 

under the group of blocks labeled FUNCTIONS & TABLES. The 

PID controller can be found under ADDITIONAL LINEAR under 

SIMULINK EXTRAS under BLOCK SETS & TOOL BOXES.  
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Block diagram construction makes extensive use of the click 

and drag functions of the left and right buttons of the 

mouse. To illustrate the construction, imagine you have an 

empty MINE window open on the screen. From the SIMULINK 

window, double left click on the SOURCES icon. Then, from 

its window, left click on the STEP block and drag it to the 

MINE window. All other blocks can be moved this way. You 

can also use COPY and PASTE. To move blocks around in the 

MINE window, just left click and drag them. You can also 

use CUT and PASTE. To join blocks with lines, you again use 

left click and drag. To create break lines, you use right 

click on the break point and drag. To change parameters, 

double left click on the block to activate a block menu.  

 

To run a simulation, first pick PARAMETERS under SIMULATION 

to set things like ODE integration scheme. Then, pick START 

under SIMULATION to run the simulation.  

 

SIMULINK block diagrams for AUV Depth Control and Pipe Flow 

Temperature Control are attached. Also attached are Ziegler 

Nichols responses of each system to a step in command.  
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EXPERIMENTAL METHODS 

 

MATLAB TUTORIAL 

 

The equations governing the attitude of the Apollo 

rocket relative to the vertical are: 

 
         J d2R/dt2  -  I R  =  B  -  G  +  D  

            G = M H        H = N dR/dt   

             B = P Q       Q = K (C-R) 

 
where R is the actual attitude of the rocket, C is 

the command or target attitude, B and G are control 

torques, D is a disturbance torque and J I M N P 

are plant and drive and controller constants. 

 

       J=5000  I=50     M=100  N=7     P=100  

 

Determine K for borderline stable operation of the 

rocket. Develop a simulation template for the 

rocket. Write an m code based on this template. Use 

this to confirm the borderline gain K. Develop a 

SIMULINK block diagram for the rocket. Use this to 

confirm the borderline gain K. Add statements to the 

code and blocks to the block diagram to get the 

horizontal versus vertical trajectory of the rocket. 

For this let the speed of the rocket be S=100. 
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MATLAB CONTROLS OVERVIEW 

 

 
One can get responses of control systems to various inputs by 

first forming the transfer function connecting input to output. 

Typically this is a ratio of two polynomials like: 

               

                          a S2 + b S + c 
      TF    =     ————————————————————————————  
                  n S4 + m S3 + p S2 + q S + r  

In matlab we represent these polynomials with arrays of 

coefficients in descending order:  

 
> num=[a b c]; 
> den=[n m p q r]; 
 
 
We then form the transfer function as follows: 
 
 
> sys=tf(num,den); 
 

We can also form the transfer functions for various parts of the 

system using the tf function and then use the series parallel and 

feedback functions to get the overall sys. Once the sys function 

is obtained we can get impulse and step responses as follows: 
 

> impulse(sys) 
> step(sys) 
 
 

 

56



 

We can get the frequency response magnitude ratio MR and phase 

shift Φ for a system using the bode function: 

> bode(sys) 

We can also get frequency response data using T(jω). For example 

if we set ω we can get data as follows: 
 

> S=complex(0.0,ω); 
> num=a*S^2+b*S+c; 
> den=n*S^4+m*S^3+p*S^2+q*S+r; 
> tf=num/den 
  

This gives a complex number: P+Qi. Manipulation gives:  
 

            MR = [P^2+Q^2]     Φ=tan-1 Q/P.  
 

To get responses using Partial Fraction Expansion PFE and Inverse 

Laplace Transformation ILT we can use the convolution function 

conv to form the numerator and the denominator of R(S). The 

residue function can then be used to do PFE. This gives the roots 

of R(S) together with its residues:  
 

> num=conv([a b],[n m]); 
> den=conv([x y z],[u v w]); 
> [r,p,k]=residue(num,den) 
 

One can then use ILT to get R(t).  

 

We can get the roots of a characteristics equation using the roots 

function. It could also be used to construct Root Locus Plots: 
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> z=[0.1:0.1:10.0]; 

> for k=1:length(z) 

 q=[x y a*z(k)+b u v w]; 

 p(:,k)=roots(q); 

> end 

> plot(real(p),imag(p)) 

> grid 

 

When a parameter such as a gain can be isolated from GH, one can 

get Root Locus Plots using the rlocus function as follows:  

 

> num=[a b]; 

> den=[x y z]; 

> gh=tf(num,den); 

> rlocus(gh) 

 

 

One can get GH Plots and Stability Margins as follows: 

> nyquist(gh) 

> bode(gh) 

> [mag,phase,w]=bode(gh); 

> [GM,PM,WG,WP]=margin(mag,phase,w) 

 

If a system has a time delay one can approximate it as a ratio of 

two polynomials using the Pade Approximant as follows: 

 

> [a,b]=pade(T,p); 

The time delay is T and the order of the approximant is p. The 

numerator of the approximant is a and its denominator is b. One 

can use tf(a,b) to get an approximate transfer function for the 

delay. An exact transfer function for a delay is: exp(-T*S). 
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REVIEW OF LAPLACE TRANSFORMATION 

 

Laplace Transformation converts ordinary differential equations or 

ODEs into algebraic equations or AEs. Manipulation of the AEs 

followed by Inverse Laplace Transformation gives responses back in 

time. Manipulation of the AEs also gives the system transfer 

functions or TFs. Most control theories are based on TFs. 

  

The Laplace Transform Integral is: 
 
 
                                            
               F(S) =  [f(t)] =   f(t) e-St dt     . 
                                  o 
 
 

Usually, mechanical engineers do not have to evaluate this 

integral. All of the important cases have already been worked out. 

 

Some Laplace Transform (LT) pairs used to reduce ODEs to AEs are: 
 
 
                                             
           [df/dt] = S F(S) - f(0)      fdτ = F(S) / S   

              [d2f/dt2] =  S2 F(S) - S f(0) - df(0)/dt  

     [d3f/dt3] =  S3 F(S) - S2 f(0) - S df(0)/dt - d2f(0)/dt2 

 

Usually, initial condition terms are set to zero for control 

because, in most cases, a system starts from some rest state.  

 

Manipulation of algebraic equations often gives factors of the 

form: Γ/(S-λ). Inverse Transformation gives back in time: Γe+λt. 
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Typical commands/disturbances into control systems include: a step 

with height A / a pulse with height A and short duration T / a 

sine or cosine wave with amplitude A and frequency ω / a linear 

ramp in time with slope A. Laplace Transform pairs for these are: 

 

           (Step with Height A) = A/S             

           (Short Duration Pulse) = AT 

           (Sine Wave) = Aω/(S2+ω2) 

           (Cosine Wave) = AS/(S2+ω2) 

           (Linear Ramp) = A/S2      . 

 

Control systems often have time delays or transport lags inherent 

in them. These can seriously degrade performance. When a signal is 

delayed in time by T seconds, Laplace Transformation gives:  

 

             (f[t-T]) = e-ST F(S) . 

 

The Final Value Theorem states that 

 

        Lim  f(t)   =   Lim  S F(S)     . 
        t             S0   

This can be used to get the final state of stable systems 

subjected to step commands or step disturbances. Ideally for a 

step command the final state should be equal to the command while 

for a step disturbance the final state should be zero. The Final 

Value Theorem gives unrealistic results when systems are unstable.  
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 COMPLEX NUMBERS AND COMPLEX PLANES 

 

There are two ways to represent complex numbers. These are shown 

schematically in Figure 1: 

 

 Cartesian  z = x + y j     Polar z = rθ = rejθ    .   

 

Manipulations give: 

 

    r e+jθ = r Cosθ + j r Sinθ     r e-jθ = r Cosθ - j r Sinθ  

     

     Sinθ = (e+jθ - e-jθ)/ 2j      Cosθ = (e+jθ + e-jθ)/ 2   . 

 

When adding or subtracting complex numbers, it is easier to use 

the Cartesian representation. Take two complex numbers z1 and z2: 

 

         z1 = x1 + y1 j        z2 = x2 + y2 j 

 

where x1 y1 x2 y2 are known. One gets: 

      

      z1 + z2  =  ( x1 + x2 )  + ( y1 + y2 ) j       

 

      z1 - z2  =  ( x1 - x2 )  + ( y1 - y2 ) j  .    

  

When multiplying or dividing complex numbers, it is best to use 

the Polar representation. Take two complex numbers z1 and z2: 
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           z1 = r1  θ1          z2 = r2  θ2  

 

where  r1 θ1 r2 θ2 are known. One gets: 

 

             z1 z2 = r1 r2   θ1 + θ2   = 

       ( x1 x2 - y1 y2 ) + ( x1 y2 + x2 y1 ) j 

 

              z1 / z2 = r1 / r2  θ1 - θ2   = 

  [ ( x1 x2 + y1 y2 ) + ( x2 y1 - x1 y2 ) j ] / [ x2 x2 + y2 y2 ] . 

     

The Nyquist Procedure for checking stability of feedback control 

systems maps a closed contour in one complex plane known as the S 

plane to another complex plane known as the GH plane. A function 

of S known as the system GH function is the mapping function. As 

an illustration consider a system with the GH function:  

 

             GH = 2 / [ S ( S2 + S + 1) ]   . 

 

The contour in the S plane that is mapped to the GH plane 

surrounds the entire right half of the S plane. It is shown in 

Figure 2. To illustrate the mapping, consider the point S = +j on 

the S plane contour. Substitution into the GH function gives: 

   

   GH = 2/[j(j2+j+1)] = 2/[j(-1+j+1)] = 2/[j(j)] = -2  . 

  

This point and the complete contour in the GH plane are shown in 

Figure 2. The GH plot shows that the system is unstable! 

67



68



 

69



 SYSTEM TRANSFER FUNCTIONS 

 

 

The response of a system to a unit impulse input at time t = 0 is 

usually denoted by h(t). Its Laplace Transform H(S) is known as a 

Unit Impulse Response Function. It turns out that: TF(S) = H(S) 

where TF(S) is a system transfer function. For a system with input 

x and output y, this is: TF(S) = Y(S)/X(S).  

 

Why is TF(S) = H(S)? In other words: What is so special about the 

unit impulse as an input? As shown in the sketch below, any input 

x(t) into a system can be broken down into a sequence or train of 

pulses. Superposition of the pulses generates a staircase like 

approximation to x(t). In the limit as the pulse duration tends to 

zero, this becomes exact. The pulse that comes on at time t = τ 

has strength x(τ) and duration Δτ: thus its area is x(τ)Δτ. In the 

limit as Δτ tends to zero, this pulse becomes basically a scaled 

version of the unit impulse. The scaling factor is infinitesimal 

and is the area x(τ)Δτ. The response of the system due to a unit 

impulse input at t = τ is h(t-τ). The response due to an impulse 

with area x(τ)Δτ at t = τ is  x(τ)Δτ h(t-τ). The response at some 

point in time due to all of the impulses up to that time is: 

 

                          N 
                  y(t) =   x(nΔτ)Δτ h(t-nΔτ) 
                         n=0 
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where N is the total number of impulses and n denotes a specific 

impulse. In the limit as Δτ tends to zero, N tends to infinity, 

and the summation becomes the Convolution Integral: 

 

                            t 
                  y(t) =      x(τ) h(t-τ) dτ   . 
                            o 

Laplace Transformation of this integral gives: 

 

                  Y(S) = X(S) H(S) = X(S) TF(S)  . 

 

Impulses do not exist in reality. In other words, there is no such 

thing as an infinite strength, infinitesimal duration, signal.  

But strong, short duration, pulses do exist, and they often mimic 

the unit impulse. Why consider the unit impulse as an input? An 

impulse jars a system to some state and the motion thereafter is 

pure transient. If transients grow, the system is unstable: if 

transients decay, the system is stable. Manipulation of H(S) 

gives:  H(S) = N(S)/D(S) where N(S) and D(S) are polynomials. PFE 

applied to N(S)/D(S) gives factors of the form: N(S)/D(S) =  

Γ/[S-λ]. ILT applied to these factors gives: h(t) =  Γ e+λt. Each λ 

is a value of S which satisfies the characteristic equation 

D(S)=0. For stable operation, each root λ must be a negative real 

number or a complex number with a negative real part.  
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To get the response of a system to an input, one starts with:  

 

Y(S) = TF(S) X(S) 

 

Partial Fraction Expansion or PFE gives 

 

Y(S) =  A/[S-a] 

 

Inverse Laplace Transformation or ILT gives 

 

y(t) =  A e+at 

 

Manipulation of this then gives the response in terms of 

exponential and trigonometric functions in time. 

 

The MATLAB residue function can be used to simplify PFE. The input 

into this would be the numerator and denominator of Y(S). The 

output would be the roots “a” and the residues “A”. 

 

  > num=[a b c]; 
  > den=[x y z u v w]; 
  > [r,p,k]=residue(num,den) 

 

Here r indicates residues and p indicates roots or poles.  
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AUTONOMOUS UNDERWATER VEHICLE 

 

DEPTH CONTROL RESPONSES 

 

To illustrate application of the Laplace Transformation 

procedure we will consider the task of controlling the 

submergence depth of a small autonomous underwater vehicle or 

auv. According to Newton's Second Law of Motion, the equation 

governing the up and down motion of the auv is: 

 

                  M d2R/dt2  =  B  +  D  -  W 

 

where R is the depth of the auv, M is its overall mass, B is 

the control force from the propulsion system, D is a 

disturbance load caused for example by sudden weight changes 

and W is a drag load consisting of wake drag and wall drag: 

 

                W  =  X dR/dt |dR/dt|  +  Y dR/dt    

 

where X and Y account for the size and shape of the auv.  

 

A simple model of the propulsion system is: 

 

                     J dB/dt  +  I B  =  Q 

 

where Q is the control signal: J and I are drive constants.  

 

The PID error driven strategy lets the control signal Q be: 

 

             Q  =  KP E  +  KI Edτ  +  KD dE/dt     
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where E = C - R is the depth error and KP KI KD are the 

controller gains: C is the command depth.  

 

Laplace Transformation of the governing equations gives 

 

               (M S2 + N S) R = B  + D 

 

                    (J S + I) B = Q 

 

              Q =  (KP  + KI/S  + KD S) E 

 

                      E = C - R 

 

Algebraic manipulation gives 

 

   
    R                    KD S2 + KP S + KI 
   ———    =     —————————————————————————————————————-   
    C         MJ S4 + (NJ+MI) S3 + (NI+KD) S2 + KP S + KI  

 

   
    R                      J S2 + I S      
   ———    =     —————————————————————————————————————-   
    D         MJ S4 + (NJ+MI) S3 + (NI+KD) S2 + KP S + KI  

 

To give a numerical example we will let the parameters be: 

     M = 50.0   N = 50.0.      J = 0.5   I = 0.1  

One can show that the Ziegler Nichols gains are:  

          KP = 3.6     KI = 0.54   KD = 6.3 
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Substitution gives 

 

    R                  6.3 S2 + 3.6 S + 0.54 
   ———    =     —————————————————————————————————————-   
    C         25.0 S4 + 30.0 S3 + 11.3 S2 + 3.6 S + 0.54 

   
    R                      0.5 S2 + 0.1 S      
   ———    =     —————————————————————————————————————-   
    D         25.0 S4 + 30.0 S3 + 11.3 S2 + 3.6 S + 0.54 

 

For the command case we will work through 4 cases: unit 

impulse; unit step; unit sine; unit ramp. For a unit 

impulse C(S)=1. In this case 

   
                     6.3 S2 + 3.6 S + 0.54 
     R   =     —————————————————————————————————————-   
               25.0 S4 + 30.0 S3 + 11.3 S2 + 3.6 S + 0.54 

   

Dividing through top and bottom by 25.0 gives 

 
                     0.252 S2 + 0.144 S + 0.0216 
     R   =     —————————————————————————————————————-   
              S4 + 1.2 S3 + 0.452 S2 + 0.144 S + 0.0216 

   

One can put this in the factored form 

 

 
                     0.252 S2 + 0.144 S + 0.0216 
     R   =     —————————————————————————————————————-   
                       (S-a) (S-b) (S-v) (S-w) 

         A            B            V            W 
    =  ——————    +   ——————    +  ——————   +   —————— 
       (S-a)         (S-b)        (S-v)        (S-w) 

 

Partial Fraction Expansion followed by Inverse Laplace 

Transformation gives 
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               A e +at   +   B e +bt 

        + (X+Yj) e +(x+yj)t  + (X-Yj) e +(x-yj)t 

 

where  

 

           v = x + yj     w = x - yj  

           V = X + Yj     W = X - Yj      

 

Manipulation gives 

 

               A e +at   +   B e +bt 

       + 2X e +xt  Cos[yt]  -  2Y e +xt  Sin[yt]   

 

The MATLAB residue function gives 

 

           a = -0.8253       b = -0.2375 

           x = -0.0686       y = +0.3248 

           A = -0.1867       B = +0.0205 

           X = +0.0831       Y = -0.1758 

 

For a step case C(S) = Co/S where Co is the height of the 

step. In this case one gets 

 
 
                     0.252 S2 + 0.144 S + 0.0216    Co 
      R   =    ——————————————————————————————————  ——   
                      (S-a) (S-b) (S-v) (S-w)       S 

    A            B            V            W            Z 
  ——————    +   ——————    +  ——————   +   ——————    +   ——— 
  (S-a)         (S-b)        (S-v)        (S-w)          S 
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Partial Fraction Expansion followed by Inverse Laplace 

Transformation gives 

 

               A e +at   +   B e +bt   +  Z 

       + 2X e +xt  Cos[yt]  -  2Y e +xt  Sin[yt]   

 

The MATLAB residue function gives when Co = 1.0 :  

 

              a = -0.8253   b = -0.2375  

              x = -0.0686   y = +0.3248 

                      Z = 1.0 

              A = +0.2262   B = -0.0863 

              X = -0.5700   Y = -0.1355  

 

For a sine case one gets 

 
 
                     0.252 S2 + 0.144 S + 0.0216    Co  
      R   =    ——————————————————————————————————  —————   
                      (S-a) (S-b) (S-v) (S-w)     (S2+2) 

    A          B         V         W        N         M 
  ——————  +   —————  +  —————  +  —————  +  ———    +  ———— 
  (S-a)       (S-b)     (S-v)     (S-w)    (S-j)   (S+j) 

    

where N=G+Hj and M=G-Hj. Partial Fraction Expansion 

followed by Inverse Laplace Transformation gives 

 

               A e +at   +   B e +bt    

       + 2X e +xt  Cos[yt]  -  2Y e +xt  Sin[yt]   

            + 2G Cos[t]  -  2H Sin[t] 
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The MATLAB residue function gives when Co = 1.0 and  = 0.3: 

 

              a = -0.8253   b = -0.2375  

              x = -0.0686   y = +0.3248 

              A = -0.0726   B = +0.0420 

              X = +0.9906   Y = +0.7993  

              G = -0.9753   H = -1.0085  

 

For a ramp case one gets 

 
                     0.252 S2 + 0.144 S + 0.0216    Co 
      R   =    ——————————————————————————————————  ——   
                      (S-a) (S-b) (S-v) (S-w)       S2 

    A          B         V        W        N       M 
  ——————  +   ————   +  ————  +  —————  +  ———  +  ——— 
  (S-a)       (S-b)    (S-v)     (S-w)      S       S2 

 

Partial Fraction Expansion followed by Inverse Laplace 

Transformation gives 

 

           A e +at   +   B e +bt   +  N + Mt 

       + 2X e +xt  Cos[yt]  -  2Y e +xt  Sin[yt]   

             

The MATLAB residue function gives when Co = 1.0: 

 

              a = -0.8253   b = -0.2375  

              x = -0.0686   y = +0.3248 

              A = -0.2740   B = +0.3631 

              X = -0.0445   Y = +1.7643  

              N = 0.0       M = +1.0 
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PIPE FLOW SETUP 
 

TEMPERATURE CONTROL RESPONSES 
 

 

To illustrate application of the Laplace Transformation 

procedure we will consider the task of controlling the 

temperature of air flowing down a pipe. The setup is shown on 

the next page. Basically it consists of a fan which draws air 

from atmosphere and sends it down a pipe. A heater just 

downstream of the fan is used to heat the air. It receives a 

signal from a controller. The temperature of the air is 

measured by a thermistor. The governing equations are:  

 
 

X dR/dt + Y R = H + D 
 
 

H = Z Q        Q = KP E  
 
 

E = C - R 
 

 

where R is the temperature of the air at the heater, R is 

the temperature of the air at the sensor, C is the command 

temperature, E is the temperature error, Q is the control 

signal, H is the heat generated by the heater, D is a 

disturbance heat and KP is the controller gain. R is what R 

was T seconds back in time, where T is the time it takes 

for the air to travel down the pipe. 
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Laplace Transformation of the governing equations gives 

 

(X S + Y) R  =  H  +  D 
 

H  =  Z Q       Q  =  KP  E 

 
E  =  C - R       R  =  e-TS R 

 

We approximate the time lag as follows: 

 

e-TS  =  (1 - T/2 S) / (1 + T/2 S) 

 

To give a numerical example we will let the parameters be: 

X = 0.25    Y = 1.0     Z = 1.0 

Substitution into the governing equations gives 

(0.25 S + 1.0) R  =  D  + 

 
KP [ C - (1 - T/2 S) / (1 + T/2 S) R ] 

 

Algebraic manipulation gives 

 

(0.25 S + 1.0) (1 + T/2 S) R  = 

 
(1 + T/2 S) D   +   KP (1 + T/2 S) C 

 
-  KP (1 - T/2 S) R 

 

More manipulation gives 

 

 

 

84



  

[ 0.25 T/2 S2  + (0.25 + T/2 - KP T/2) S  + (1.0 + KP) ] R 

 
=    (1 + T/2 S) D   +   KP (1 + T/2 S) C 

 

A typical time lag is 0.5 seconds. In this case we get 

 

[ 0.0625 S2  + (0.5 - 0.25 KP) S  +  (1.0 + KP) ] R 
 

=   (1.0 + 0.25 S) D  +  KP (1.0 + 0.25 S) C 

 

Setting C equal to zero gives 

 

        R                     1.0 + 0.25 S  
       ———    =     —————————————————————————————————————-   
        D         0.0625 S2 + (0.5 - 0.25 KP) S + (1.0 + KP) 

 

Setting D equal to zero gives  

 

        R                KP (1.0 + 0.25 S) 
       ———    =     —————————————————————————————————————-   
        C         0.0625 S2 + (0.5 - 0.25 KP) S + (1.0 + KP) 

  

The characteristic equation for the setup is: 

 

0.0625 S2 + (0.5 - 0.25 KP) S + (1.0 + KP)  =  0 

 

This has the form of a mass on a spring and a dashpot:  
     

m S2 +  c S + k  =  0 
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The mass m is 0.0625: the dashpot c is (0.5 - 0.25 KP): the 

spring k is (1.0 + KP). The equation shows that the damping 

is zero when KP is equal to 2. This is a borderline gain. 

The oscillation frequency is: 

 

 = √ [k/m] = √ [(1.0 + KP) / 0.0625]  = 6.92 

 

This gives a borderline period TP equal to 0.91.  

 

For the case where KP is equal to half KP  

 
        R                  1.0 + 0.25 S 
       ———    =        ————————————————————————   
        C              0.0625 S2  + 0.25 S + 2.0 

For a unit impulse command one gets 

                          1.0 + 0.25 S    
            R   =    ————————————————————————   
                    0.0625 S2  + 0.25 S + 2.0 

Partial Fraction Expansion gives 

                    A + Bj             A - Bj   
         R   =    ————————————   +    ——————————   
                  S - (a + bj)       S - (a - bj) 

Inverse Laplace Transformation gives 

         

(A+Bj) e +(a+bj)t  + (A-Bj) e +(a-bj)t 

 

Manipulation gives 

 

+ 2A e +at  Cos[bt]  -  2B e +at  Sin[bt] 
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The MATLAB residue function gives 

 

A = +2.0   B = -0.76 

a = -2.0   b = +5.3 

 

For a unit step command one gets  

 

                           1.0 + 0.25 S           1 
           R   =       ————————————————————————   —— 
                     0.0625 S2 + 0.25 S + 2.0     S 

 

Partial Fraction Expansion gives 

 

                     M + Nj            M - Nj            P 
          R   =    ————————————   +   ——————————     +   —— 
                   S - (m + nj)      S - (m - nj)        S 

 

Inverse Laplace Transformation gives 

                

+ 2M e +mt  Cos[nt]  -  2N e +mt  Sin[nt]  + P 

 

The MATLAB residue function gives 

 

M = -0.25   N = -0.28 

m = -2.0    n = +5.3 

P = 0.5 
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CONTROL SYSTEM STABILITY 

 

CHARACTERISTIC EQUATION: The overall transfer function for a 

feedback control system is:  TF = G / [1+GH] . The G and H 

functions can be put into the form: 

 

G(S) = A(S) / B(S)     H(S) = X(S) / Y(S) 

 

where A B X Y are polynomials. Substitution into the TF gives: 

 

TF = A/B / [1 + A/B X/Y]  = AY / [BY + AX]  . 

 

The transfer function can also be reduced to a ratio of two 

polynomials N(s) and D(s). In terms of these polynomials the 

characteristic equation is:  D(S) = 0. Thus the characteristic 

equation in terms of A B X Y is:  AX  +  BY  =  0  . 

 

The GH function is: GH = A/B X/Y = AX/BY = N/D. So the 

characteristic equation in terms of the GH function is: 

 

N  +  D  =  0 . 

 

Note that the characteristic equations for the subsytems are all 

contained in D(S)=0. Often D(S) is in factored form: so simple 

inspection tells if the subsystems are stable or unstable. This is 

not the case for the overall system because, even though both N(S) 

and D(S) may be in factored form, adding them destroys this. 
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ROOT LOCUS PLOTS : As some parameter of a system is varied, each 

root of its characteristic equation moves around in the S plane 

and traces out a path known as a Root Locus. The Root Locus Method 

is systematic set of sketching rules based on the GH function for 

finding approximate location of these paths. Numerical schemes for 

finding roots of polynomials can now be used to find Root Locus 

paths exactly. So the Root Locus Method is obsolete. However the 

paths themselves are very important because they show system 

parameter values corresponding to the onset of instability. Root 

Locus Plots for some simple systems are given in Figure 1. To 

generate each plot, the parameter K was varied from 0 to .    

 

 

ROUTH-HURWITZ CRITERIA : These criteria infer stability 

information directly from the coefficients in the characteristic 

equation. The method is based on the theorem of residues. It is 

rarely derived from first principles in controls text books. It 

shows that, when some of the coefficients of the characteristic 

equation are positive and some are negative, the system is 

unstable. It also shows that a zero coefficient implies that the 

best a system can be is borderline stable. As a bare minimum, for 

stable operation of a system, all of the coefficients must be 

nonzero and all must have the same sign. Consider the cubic 

characteristic equation: 
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A S3  +  B S2  +  C S  +  D  =  0 

 

where A is positive. For this case, Routh-Hurwitz shows that, for 

stable operation, all coefficients must be positive, and they must 

also produce a positive value when substituted into the test 

function  X=BC-AD. Consider the quartic characteristic equation:   

             

A S4  +  B S3  +  C S2  +  D S  +  E = 0 

 

where A is positive. For this case, Routh-Hurwitz shows that, for 

stable operation, all coefficients must be positive, and they must 

also produce positive values when substituted into the test 

functions  X=BC-AD  and  Y=DX-B2E. Consider the quintic equation: 

             

A S5  +   B S4  +  C S3  +  D S2  +  E S  +  F  = 0 

 

where A is positive. For this case, Routh-Hurwitz shows that, for 

stable operation, all coefficients must be positive, and they must 

also produce positive values when substituted into the test 

functions  X=BC-AD  Z=BE-AF and  Y=(DX-BZ)Z-X2F. 

 

 

NYQUIST : A Nyquist Plot is a closed contour in the GH plane (or 

the 1+GH plane). It is obtained by mapping a closed contour in the 

S plane to the GH plane (or the 1+GH plane) using GH (or 1+GH) as 

a mapping function. The closed contour in the S plane surrounds 

the entire right half or unstable half of the S plane. A typical 
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mapping is shown in Figure 2. Stability is inferred from the plot 

in the GH plane (or the 1+GH plane). Development of the Nyquist 

Concept is based on the 1+GH function: 

 
                            N          N + D 
           1 + GH  =   1 +  —       =  —————  .  
                            D            D 

The overall characteristic function is N+D: the subsystems 

characteristic function is D. The roots of N+D=0 are called the 

zeros of the 1+GH function while the roots of D=0 are called the 

poles of the 1+GH function. Zeros are roots of the overall 

characteristic equation while poles are roots of the subsystem 

characteristic equations. At a zero |1+GH|=0 while at a pole 

|1+GH|=. One can construct a 3D image of |1+GH| by taking the S 

plane as a horizontal plane and plotting |1+GH| vertically. At a 

zero the image would touch the S plane. At a pole its height above 

the S plane would be infinite. The plot could be used to determine 

the stability of the system and its subsystems.  

 

One could factor 1+GH to get its zeros Z and poles P: 

 
                      K (S-Z1) (S-Z2) ::::: (S-Zn) 
        1 + GH =      ———————————————————————————    . 
                       (S-P1) (S-P2) ::::: (S-Pm)  

In the S plane, each (S-Z) or (S-P) factor is basically a vector 

with radius r and angle θ: rθ. A typical vector is shown in 

Figure 3. What happens to these vectors as the tip of the S vector 

moves once in a clockwise sense around the contour which surrounds 

the entire right half of the S plane? As shown in Figure 4, 
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vectors inside rotate clockwise 360o while vectors outside only nod 

up and down. What are the implications of this for the 1+GH 

function? Consider the Polar Form of 1+GH: 

 

                 K [πrZ  θZ] / [πrP  θP]  = R  Θ   

 

where π indicates product and  indicates sum. Zeros inside cause 

clockwise rotations of 1+GH: poles inside cause counterclockwise 

rotations of 1+GH. Only zeros and poles inside cause such 

rotations: zeros and poles outside only cause 1+GH to nod up and 

down. If clockwise rotations are considered positive and 

counterclockwise rotations are considered negative, then the net 

clockwise rotations of 1+GH must be: N = NZ - NP where NZ is the 

number of zeros in the unstable half of the S plane while NP is the 

number of poles there. For stable operation, NZ must be zero. When 

NZ is positive, the system is unstable. Inspection of D gives NP. 

Inspection of the 1+GH plot gives N. Substitution into NZ = N + NP 

gives NZ. When a vector is drawn from the origin of the 1+GH plane 

to the 1+GH plot, N is the net number of times that this vector 

rotates clockwise when its tip moves along the plot. 

 

The minus one point on the real axis in the GH plane corresponds 

to the origin in the 1+GH plane. This implies that a rotation of 

the GH vector drawn from the minus one point in the GH plane is 

equivalent to a rotation of the 1+GH vector drawn from the origin 

in the 1+GH plane. So one can get N from inspection of the GH plot 

or the 1+GH plot. This is illustrated in Figure 5.  
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The basic Nyquist contour in the S plane consists of the imaginary 

axis and an infinite radius semicircle. This contour surrounds the 

entire right half or unstable half of the S plane. Sometimes there 

are poles of GH on the imaginary axis in the S plane. They are 

usually located at the origin. At a pole GH is infinite. To avoid 

this, the contour is indented locally with an infinitesimal radius 

counterclockwise semicircle centered on the pole.    

 

To construct a GH plot, each section of the Nyquist contour is 

mapped separately. The infinite radius semicircle usually maps to 

the origin in the GH plane. An infinitesimal radius semicircle 

always maps to an infinite radius semicircle in the GH plane. Each 

pole on the imaginary axis produces one semicircle in the GH 

plane. The imaginary axis in the S plane can be mapped point by 

point to the GH plane. The negative imaginary axis portion is a 

mirror image of the positive imaginary axis portion. The location 

of these portions relative to the minus one point is usually 

critical. One can get a rough sketch of these portions by first 

fixing the small and large ω end points. One then examines the GH 

function to see if it is possible to make it purely real or purely 

imaginary. Purely real means there is a real axis crossover while 

purely imaginary means there is an imaginary axis crossover. With 

known end points and crossovers, one can quickly sketch the plot. 
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AUTONOMOUS UNDERWATER VEHICLE 

 

NYQUIST APPLICATION 

 

To illustrate application of the Nyquist Procedure we will 

consider the task of controlling the submergence depth of a 

small autonomous underwater vehicle or auv. The equations 

governing the motion of the auv are: 

 
M d2R/dt2  +  N dR/dt  =  B  +  D   

 

J dB/dt  +  I B  =  Q 

 
Q  =  KP E       E = C - R 

 
 
Laplace Transformation of the governing equations gives 

 
(M S2 + N S) R = B  + D 

 
(J S + I) B = Q 

 
Q =  KP E      E = C - R 

 
The GH function for the auv is: 

 
KP / [ (M S2 + N S) (J S + I) ] 

 
To give a numerical example we will let the parameters be: 

M = 50.0   N = 50.0      J = 0.5   I = 0.1 

In this case the GH function reduces to 

GH = KP / [ (50.0 S2 + 50.0 S) (0.5 S + 0.1) ] 

=   KP / [25.0 S3 + 30.0 S2 + 5.0 S] 
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Letting S=j this can be written as: 

GH = KP / [-25.0 3j – 30.0 2 + 5.0 j] 

As  tends to 0 GH tends to -j while as  tends to  it 

tends to +0j. There is a real axis crossover when 

2=5/25=1/5.  With this 2 the term in square brackets 

reduces to -30/5 or -6. This implies that the borderline 

stable gain KP which makes the crossover GH=-1 is 6. The 

matlab GH plot for the borderline case is given below.    
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PIPE FLOW SETUP 

 

NYQUIST APPLICATION 
 

To illustrate application of the Nyquist Procedure we will 

consider the task of controlling the temperature of air 

flowing down a pipe. The governing equations are:  

 
X dR/dt + Y R = H + D 

 
H = Z Q        Q = KP E  

 
E = C - R 

 
Laplace Transformation of the governing equations gives 

 
(X S + Y) R  =  H  +  D 

 
H  =  Z Q       Q  =  KP  E 

 
E  =  C - R       R  =  e-TS R 

 

The GH function for the setup is:  

 

KP Z  e[-TS]  / (X S + Y) 

 

To give a numerical example we will let the parameters be: 

X = 0.25    Y = 1.0     Z = 1.0    T = 0.5 

In this case the GH function reduces to: 

GH = KP  e[-0.5S]  / (0.25 S + 1.0) 
 
Letting S=j this can be written as: 

 
      

108



GH = KP [Cos(0.5) – j Sin(0.5)] / (0.25 j + 1.0) 
 

= KP [P + Q j] / W 
 
where  
 

P = - 0.25  Sin(0.5) + Cos(0.5) 
 

Q = - 0.25  Cos(0.5) - Sin(0.5) 
 

W = (0.25)2 + 1.0 
 
As  tends to 0 GH tends to KP while as  tends to  it tends 

to 0. Real axis crossovers occur when Q is equal to 0. 

Iteration shows that the first crossover occurs when =4.58. 

This gives P/W=-0.66. This implies that the borderline stable 

gain KP which makes the crossover GH=-1 is 1.52. The matlab 

GH plot for the borderline case is given below. 
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NYQUIST PROCEDURE 

 

 

The Nyquist procedure is based on the 1+GH function:  

 

1 + GH  =   1 + N/D  =  (N+D)/D  . 

 

The overall characteristic function is N+D: the subsystems 

characteristic function is D. The roots of N+D=0 are called the 

zeros of the 1+GH function while the roots of D=0 are called the 

poles of the 1+GH function. Zeros Z are roots of the overall 

characteristic equation while poles P are roots of the subsystem 

characteristic equations. Manipulation of 1+GH gives:  

 

             K (S-Z1) (S-Z2) ::::: (S-Zn) 

1 + GH  =    ——————————————————————————— 

                           (S-P1) (S-P2) ::::: (S-Pm)   

=   K [ΠrZ  ΣθZ] / [ΠrP  ΣθP] 

= R  Θ  . 

So 1+GH is basically a vector with radius R and angle Θ. One can 

plot this in a 1+GH plane. Let us surround the entire unstable 

half of the S plane with a clockwise contour. When the tip of the 

S vector moves clockwise around this contour, zeros inside it 

cause clockwise rotations of 1+GH while poles inside it cause 

counterclockwise rotations. Only zeros and poles inside cause such 

rotations: zeros and poles outside only cause 1+GH to nod up and 

down. One can imagine the 1+GH function to be a clock like 
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mechanism: unstable zeros cause its hand to rotate clockwise while 

unstable poles cause its hand to rotate counterclockwise: stable 

zeros and poles only cause its hand to swing back and forth.  

As an illustration, consider the case, shown two pages over, where 

there two unstable zeros in the right half of the S plane and all 

other zeros and poles are far into the left half of the S plane. 

Now surround the unstable zeros by a clockwise contour as shown on 

the top of the page. When we map points on this contour to the 

1+GH plane, we get the contour shown on the bottom of the page. 

Note that no attempt has been made to get exact lengths in the 

1+GH sketch: the focus is on getting the angles approximately 

correct. When we draw a vector with radius R and angle  to the 

contour in the 1+GH plane and count the number of times it rotates 

clockwise as we move around the contour in the S plane, we get two 

clockwise rotations. These rotations are caused by the unstable 

zeros. Nyquist allows us to determine the number of unstable zeros 

without having to find their exact locations.       

In a GH plane, the vector with radius R and angle Θ is drawn from 

the minus one point on the negative real axis. If clockwise 

rotations are considered positive and counterclockwise rotations 

are considered negative, then the net clockwise rotations of GH 

must be: N=NZ-NP where NZ is the number of unstable zeros and NP is 

the number of unstable poles. For stable operation, NZ must be 

zero. When NZ is positive, the system is unstable. Inspection of D 

gives NP. Inspection of the GH plot gives N. Then substitution into 

NZ=N+NP gives NZ.  For a stable system, the nearness of a GH Plot 
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to the minus one point is a measure of the degree of stability of 

the system. There are two stability margins: gain margin and phase 

margin. These can be used for design. 

Consider the case where only proportional control is being used 

and the GH plot passes through the minus one point in the GH 

plane. If GH=-1 then 1+GH=0. This implies that at this point S=Z: 

it is a root of the overall characteristic equation. But along the 

GH plot S=±jω. So Z=±jω. So there is a complex conjugate pair of 

roots of the overall characteristic equation on the imaginary axis 

in the S plane. This means the system is borderline stable and the 

gain is K. The frequency of the borderline oscillation is ω. This 

means the borderline period is T=2Π/ω. These borderline gain and 

period allow us to calculate Ziegler Nichols gains.  

A GH plot is basically a polar open loop frequency response plot. 

When GH=-1, a command sine wave produces a response which has the 

same magnitude as the command but is 180o out of phase. If the 

command was suddenly removed and the loop was suddenly closed, the 

negative of the response would take the place of the command and 

keep the system oscillating. If the gain was bigger than K, the 

command would produce a response bigger than itself. When this 

takes over, it would produce growing or unstable oscillations. If 

the gain was smaller than K, the command would produce a response 

smaller than itself. When this takes over, it would produce 

decaying or stable oscillations.  
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ROOT LOCUS CONCEPT 
 

 
For a feedback control system 1+GH=0 when S is a root of the 

overall characteristic equation for the system.  This implies that 

when S is a root GH=-1. So at a root the magnitude of GH is 1 and 

its angle is plus or minus 180o. The Root Locus Concept is based on 

these magnitude and phase requirements on GH. Consider a system 

with the following GH function: 

 

            GH =  K X [ (S-v) (S-w) ] / [ (S-a) (S-b) (S-c) ] 

 

The Root Locus Concept can be used to find the paths traced out by 

the overall roots as some parameter is varied. It can also be used 

to find the K corresponding to borderline stable operation. The 

procedure has two stages. In stage I, an S point on the imaginary 

axis is picked and the angles to it from the zeros and poles of GH 

are measured. This is shown in the sketch on the next page. Those 

angles must total plus or minus 180o. Zero angles are added: pole 

angles are subtracted. The S point is moved by trial and error 

until the angle requirement is met. In stage II, the lengths of 

the vectors from the zeros and poles to the final S point are 

measured. The magnitude requirement gives: 

 

 K [X V W] / [A B C] = 1 

 

This gives 

 

K = [A B C] / [X V W] 
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ILLUSTRATION : AUV DEPTH CONTROL 

 

The governing equations are: 

 

M d2R/dt2  +  N dR/dt  =  B  +  D   

 
J dB/dt  +  I B  =  Q 

 
Q  =  KP E       E = C – R 

 

The GH Function is:  

 

GH  =  KP / [ (M S
2 + N S) (J S + I) ] 

 
= [KP/MJ] / [ S (S – [-N/M]) (S – [-I/J]) ] 

 

Letting M=50.0 N=50.0 J=0.5 I=0.1 gives: 

GH  =  [KP * 1/25] / [ S (S – [-1]) (S – [-0.2]) ] 

 
=  KP * X / [ (S-a) (S-b) S-c) ] 

 

The S plane sketch for this case, after the trial and error 

adjustment to get the angle requirement satisfied, is shown on the 

next page. The magnitude requirement gives: 

 

KP * X / [ A * B * C]  =  1 

 
KP  =  [ A * B * C] / X  =  6 
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=25     =65      =90 

 

A=1.09      B=0.49      C=0.45 
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AUTONOMOUS UNDERWATER VEHICLE 

 

ROOT LOCUS APPLICATION 

 

 

As an application of the root locus procedure, we will 

consider the task of controlling the submergence depth of a 

small autonomous underwater vehicle or auv. According to 

Newton's Second Law of Motion, the equation governing the up 

and down motion of the auv is: 

 

                  M d2R/dt2  =  B  +  D  -  W 

 

W  =  X dR/dt |dR/dt|  +  Y dR/dt   =  N dR/dt 

 

J dB/dt  +  I B  =  Q 

 

 Q  =  KP E  +  KI Edτ  +  KD dE/dt     

 

E = C - R  

 

where R is the depth of the auv, M is its overall mass, B is 

the control force from the propulsion system, D is a 

disturbance load caused for example by sudden weight changes, 

W is a drag load consisting of wake drag and wall drag, X and 

Y account for the size and shape of the auv, Q is the control 

signal, J and I are drive constants, E is the depth error, KP 

KI KD are the controller gains and C is the command depth.  
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Laplace Transformation of the governing equations gives 

 

               (M S2 + N S) R = B  + D 

 

                    (J S + I) B = Q 

 

              Q =  (KP  + KI/S  + KD S) E 

 

                      E = C - R 

 

Algebraic manipulation gives 

 

   
    R                    KD S2 + KP S + KI 
   ———    =     —————————————————————————————————————-   
    C         MJ S4 + (NJ+MI) S3 + (NI+KD) S2 + KP S + KI  

   
    R                      J S2 + I S      
   ———    =     —————————————————————————————————————-   
    D         MJ S4 + (NJ+MI) S3 + (NI+KD) S2 + KP S + KI  

 

The characteristic equation is 

 

 

MJ S4  +  (NJ + MI) S3  +  (NI + KD) S2  +  KP S  +  KI  =  0 

 

The code on the next page can be used to get the root locus 

plot for any parameter of the auv. It is presently set up 

to study the influence of KD. A series of root locus plots 

generated by the code follows the code.   
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PIPE FLOW SETUP 

 
ROOT LOCUS APPLICATION 

 
 

As an application of the root locus procedure, we will 

consider the task of controlling the temperature of air 

flowing down a pipe. The governing equations are:  

 

X dR/dt + Y R = H + D 
 
 

A dH/dt + B H = Z Q 
 
 

Q = KP E       E = C - R 
 

where R is the temperature of the air at the heater, R is 

the temperature of the air at the sensor, C is the command 

temperature, E is the temperature error, Q is the control 

signal, H is the heat generated by the heater, D is a 

disturbance heat and KP is the controller gain. R is what R 

was T seconds back in time, where T is the time it takes 

for the air to travel down the pipe. 

 

Laplace Transformation of the governing equations gives 

 

               (X S + Y) R  =  H  +  D 

 

                  (A S + B) H  =  Z Q 

 

              Q  =  KP E     E  =  C - R         

 

                       R  =  e-TS R 
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We approximate the time lag as follows: 

 

e-TS  =  (1 - T/2 S) / (1 + T/2 S) 

 

Algebraic manipulation gives 

 

  R                      KP Z (1 + T/2 S) 
 ———    =     ————————————————————————————————————————————    
  C       (A S + B) (X S + Y) (1 + T/2 S) + KP Z (1 - T/2 S) 
 

 R                    (A S + B) (1 + T/2 S) 
 ———    =     ————————————————————————————————————————————   
 D        (A S + B) (X S + Y) (1 + T/2 S) + KP Z (1 - T/2 S) 

 

The characteristic equation is 

 

 

T/2 AX S3  +  [T/2 (BX + AY) + AX] S2 

    

+  [T/2 BY + BX + AY - KP Z T/2] S  +  KP Z  +  BY  =  0 

 

 

The code on the next page can be used to get the root locus 

plot for any parameter of the pipe flow setup. It is 

presently set up to study the influence of KP. A root locus 

plot generated by the code follows the code.   
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 SYSTEM PERFORMANCE 

 

Often the dynamics of a control system is dominated by a pair of 

roots just to the left of the imaginary axis in the S plane. All 

other roots are much further to the left and have transients which 

die away very quickly. In such cases, the system behaves basically 

like a mass on a spring and a dashpot. The sketch on the next page 

shows such a system. Its governing equation is:  

 

m d2R/dt2  =   c (dC/dt - dR/dt)  +  k (C - R) 

 

Laplace Transformation gives the transfer function 

               

                  R                  c S + k 
                 ———   =   TF  =   ——————————————— 
                  C                m S2 + c S + k 

 

Manipulation gives 

 

                 R                  c/m S + k/m 
———   =   TF  =    ——————————————— 

                 C                S2 + c/m S + k/m 

Vibration theory allows one to rewrite this as 

 

                  R                   2n S + n n   
     ———  =    TF  =    —————————————————— 

                  C                 S2 + 2n S + n n  
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where n  is the system undamped natural frequency and  is its 

damping factor. These are by definition 

 

n  =  √[k/m]        = c/cc      Cc = 2 √[k*m] 

 

The roots of the system characteristic equation are 

 

x + yj       x - yj 

 
x = - n           y = d 

                        

where d is the damped natural frequency given by 

 

d  =  n  √[1 - 2] 

 

For an impulse input, the response has the form 

 

X e +xt  Cos[yt]  + Y e +xt  Sin[yt] 

 

while for a step input, it has the form 

 

X e +xt  Cos[yt]  + Y e +xt  Sin[yt]  + Z 

 

In a response, overshoots must be kept to a tolerable level. This 

is dependent mainly on the damping factor . The angle that a root 

vector makes with x axis is: 
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  = tan-1 [y/x]  =  tan-1 [d/[n]] 
 

              

= tan-1 [n√[1-2]/[n]] = tan-1 [√[1-2]/] 

 

This shows that radial lines drawn out from the origin are lines 

of constant . The vertical axis corresponds to  equal to zero 

or no damping, while the horizontal axis corresponds to  equal 

to unity or critical damping. Experience shows that  should be 

at least 0.5, which corresponds to an angle  of 60o. So roots 

should lie inside a wedge shaped region in the S plane.  

 

Speed of response is another important requirement of a system. 

This is dependent mainly on the natural frequency n. The radius r 

of a circle drawn from the origin in the S plane is: 

 

r2  =  x2  +  y2 

                     

= [ n  ]2  +  [ d ]2 

 

= [ n  ]2  +  [ n  √[1 - 2] ]2 

 

=   2 [n]2  +  [1 - 2] [n]2  =  [n]2   

 

This implies that r is equal to n. So, to get a desired speed of 

response, roots must be outside a semi circle with radius n.  
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Thus, to keep overshoots tolerable and the speed of response 

adequate, the roots must be in the composite wedge/circle region 

shown in the sketch on the next page.  

 

The characteristic equation for an autonomous underwater vehicle 

or auv with a proportional controller is 

 

S3 + [NJ+MI]/[MJ] S2 + [NI]/[MJ] S + [KP]/[MJ] =  0 

 

A general cubic characteristic equation follows from 

 

(S - 1)  (S - 2)  (S - 3)  =  0 

 

Expansion gives 

 
S3 + a S2 + b S + c =  0 

 

a  =  - [1  +  2  +  3]  =  [NJ+MI]/[MJ] 
 
 

b  =  + [1 2  +  1 3  +  2 3]  =  [NI]/[MJ]  
 
 

c  =  - [1 2 3]  =  [KP]/[MJ]  

 

To get good performance, we put the  roots in the composite 

region in the S plane. Then the last three equations can be solved 

for the corresponding system parameter values.    
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 NONLINEAR PHENOMENA 

 

Linear theory predicts that, when an unstable system is 

disturbed from a rest state, the transients which develop grow 

indefinitely. For example, when transients are oscillatory, the 

oscillation amplitude tends to  as time tends to . In reality, 

infinite amplitudes are never observed. Sometimes large 

amplitudes cause the system to break down. Often nonlinearities 

limit amplitudes to some finite level before breakdown can 

occur. These finite amplitude oscillations are known as limit 

cycles. Sometimes limit cycle amplitudes are very small: in this 

case, system is often considered to be practically stable. 

Nonlinearities can also cause systems which are stable in a 

linear sense to be practically unstable.  

 

When a system has strong multiple nonlinearities, simulation is 

the only option. When a system has only one strong nonlinearity, 

such as a switching controller, one can use its Describing 

Function DF. In some texts, the letter N is used to denote it 

instead of DF. The DF replaces the nonlinear controller. 

 

When a system with a nonlinear controller is undergoing a limit 

cycle, its behavior resembles a borderline stable linear system: 

no growth or decay. The controller seems to be able to adjust 
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its gain to make the system borderline stable. The describing 

function DF for a nonlinear controller approximates this 

adjustable gain. To get DF, the system is assumed to be 

undergoing a limit cycle and to be nonforced. Also the signal 

fedback to the controller is taken to be a pure sinusoid. This 

is usually a good assumption because the linear elements which 

follow the controller generally act as a low pass filter: they 

let only the fundamental component out of the controller get 

back to the controller. When the input into the nonlinear 

controller is: 

           
IN  =  Eo Sinωt 

                      
its output is generally of the form: 

 
ON  =  OB  +  OS Sinωt  +  OC Cosωt  +  Higher Harmonics  . 

 
With the same input: 

 
IDF  =  Eo Sinωt 

  
the describing function gives out:   

 
ODF  =  OB  +  OS Sinωt  +  OC Cosωt  . 

 
So a describing function analysis ignores higher harmonics. This 

is appropriate because they are filtered away anyhow. For most 

control situations, the bias term OB is zero.                        
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When a system is undergoing a limit cycle, its linear elements 

are forced sinusoidally by the limit cycle. In this case, each 

transfer function reduces to the form: 

                

O/I = TF = A + Bj 

where  

 

I = Sinωt         O = A Sinωt + B Cosωt . 

 

By analogy, the DF for a nonlinear controller is: 

 

ODF / IDF  =  DF  =  OS/Eo  +  OC/Eo j 

where 

 

IDF = Eo Sinωt      ODF  =  OS Sinωt  +  OC Cosωt  . 

 

DF is essentially an amplitude dependent gain. Each Eo gives a GH 

Plot. Application of Nyquist theory in each case shows if Eo 

grows or decays. A limit cycle exists when the minus one point 

is on the GH Plot. When DF can be isolated from GH it is 

customary to divide minus one and GH by DF. In this case a limit 

cycle exists when the minus 1/DF curve intersects the GH/DF or 

G*H Plot. Application of Nyquist theory shows if the limit cycle 

is stable or unstable. 
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As an illustration of the development of a describing function, 

consider the ideal relay controller. When it has a sinusoidal 

input, its output is a square wave. A Fourier Series analysis of 

a square wave gives the components:   

 

                         T               

OS = 2/T       Q(t) Sint dt   =  4Qo/ 

                         0 

                             

                          T 

OC = 2/T       Q(t) Cost dt   =  0 

                          0 

 

                              T 

OB = 2/T       Q(t) dt   =  0 
                              0 

 

 

So the fundamental output is:  

 

ODF =  [4Qo/] Sinωt 

 

The input is 

 

IDF = Eo Sinωt 

 

So the Describing Function is  

 

DF = [4Qo]/[Eo] 
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RELAY CONTROLLERS 

 

AUTONOMOUS UNDERWATER VEHICLE 

 

To illustrate nonlinear phenomena, we will consider the task 

of controlling the submergence depth of a small autonomous 

underwater vehicle or auv. The schematic of the system is 

shown on the next page. Relay controllers resemble the 

proportional controller. For the proportional controller 

case, the governing equations for the auv are:  

 

M d2R/dt2  =  B  +  D  -  W 

 

W  =  X dR/dt |dR/dt|  +  Y dR/dt 

 

J dB/dt  +  I B  =  Q 

 

Q  =  KP E        E  =  C - R 

 

where R is the depth of the auv, M is its overall mass, B is 

the control force from the propulsion system, D is a 

disturbance load caused for example by sudden weight changes, 

W is a drag load consisting of wake drag and wall drag, E is 

the depth error, C is the command depth, M X Y J I are 

process constants and KP is the controller gain.  
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Linearization allows us to write W as: 

 

W  =  N dR/dt 

 

To give a numerical example we will let the parameters be: 

M = 50.0   N = 50.0 

J = 0.5   I = 0.1 

Theory shows that the borderline proportional gain KP for the 

auv is 6 and the borderline period TP is 14.   

The describing function for an ideal relay controller is: 

DF  = [4 Qo] / [π Eo] 

 

At a limit cycle this is equal to the borderline 

proportional gain  KP. Setting DF equal to KP gives: 

 

Eo =  [4 Qo] / [π DF] = [4Qo] / [π KP] 

 

The saturation limit for the controller is 12. Substitution 

into the amplitude equation gives Eo equal to 2.5. 

 

An m code for the auv for the ideal relay controller case 

is given below. This is followed by a response generated by 

the code. As can be seen, it agrees with DF predictions. 
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PIPE FLOW SETUP 

 

To illustrate nonlinear phenomena, we will consider the task 

of controlling the temperature of air flowing down a pipe. 

The setup is shown on the next page. Relay controllers 

resemble the proportional controller. For the proportional 

controller case, the governing equations for the setup are:  

 

X dR/dt + Y R = H + D 

 

A dH/dt + B H = Z Q 

 

Q = KP E       E = C - R 

 

where R is the temperature of the air at the heater, R is 

the temperature of the air at the sensor, C is the command 

temperature, E is the temperature error, Q is the control 

signal, H is the heat generated by the heater, D is a 

disturbance heat (plus or minus), X Y A B Z are process 

constants and KP is the controller gain. Note that R is what 

R was T seconds back in time: T is the time it takes for 

the air to travel down the pipe. 
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To give a numerical example we will let the parameters be: 

X = 0.25  Y = 1.0 

A = 0.1  B = 1.0 

Z = 1.0    T = 0.5 

Theory shows that the borderline proportional gain KP for the 

setup is 1.5 and the borderline period TP is .   

The describing function for an ideal relay controller is: 

DF  = [4 Qo] / [π Eo] 

 

At a limit cycle this is equal to the borderline 

proportional gain  KP. Setting DF equal to KP gives: 

 

Eo =  [4 Qo] / [π DF] = [4Qo] / [π KP] 

 

The saturation limit for the controller is 5. Substitution 

into the amplitude equation gives Eo equal to 4.2. 

 

An m code for the setup for the ideal relay controller case 

is given below. This is followed by a response generated by 

the code. As can be seen, it agrees with DF predictions. 
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DIGITAL CONTROL 
 

 

In almost every control system today, a computer samples the 

state of the system and takes corrective action within a control 

loop. The rate at which it does this can cause performance to 

degrade. One can study the phenomena using new from old time 

stepping or one can study it using Z transforms. 

 

As an illustration of the Z transform method, we will consider 

the task of controlling the submergence depth of a small 

autonomous underwater vehicle or auv. Its governing equations are: 

  

M d2R/dt2  + N dR/dt  =  B  +  D  -  W 

 
J dB/dt  +  I B  =  Q 

 
Q  =  K E       E = C – R 

 

Laplace Transformation of the governing equations gives 

 

(M S2 + N S) R = B  + D 

 
(J S + I) B = Q 

 
Q =  K E      E = C - R 
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For the command case, the overall transfer function is 

 

               R                         K  

              ———    =     —————————————————————————————————   

               C             MJ S3 + (NJ+MI) S2 + NI S + K   

  

Let the parameters be: 

M = 50.0   N = 50.0. 

J = 0.5   I = 0.1       K = 3       

Substitution gives 

             R                         3 

            ———    =     ————————————————————————————  

             C              25 S3 + 30 S2 + 5 S + 3 

   

The forward path transfer function G(S) is 

 

                           K       

               ——————————————————————  

               MJ S3 + (NJ+MI) S2 + NI S  

 

                            3                                   

              =   ——————————————————————  

                   25 S3 + 30 S2 + 5 S  
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The matlab c2d function can be used to convert the continuous 

transfer function G(S) to the discrete transfer function G(Z). The 

system has unity feedback. Its transfer function H(Z) is 1/Z. The 

overall transfer function is: 

 

                        G(Z)                         

                 —————————————————————  

                  1 +   G(Z)  H(Z) 

                       

                            

To examine the influence of digital phenomena on the performance 

of the system, we consider its response to a step command with a 

height of 10. A simulation m code for the system is given on the 

next page. The response of the continuous system follows it. The 

response of the discrete system for the case where the loop period 

is 1 follows the continuous response. As can be seen, the system 

has become unstable. Some matlab script which makes use of Z 

transforms follows the simulation responses. Its response for the 

loop period equal to 1 case agrees with the simulation. A SIMULINK 

block diagram for the discrete system follows the script response. 

Its response agrees with the simulation and script responses.    
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 SAMPLING AND CONSTRUCTION OF SIGNALS 
 

 

Today, most systems are controlled by digital computers. Within a 

computer control loop, sampling of sensor signals is usually done 

first followed by calculation of control signals followed by 

control signal construction using ZOH. The time it takes to move 

once through the control loop is known as the loop period. This is 

usually much less than the basic system period. When the two 

periods are comparable, performance is usually very poor. 
 
 

One can use digital simulation or time stepping to study the 

performance of such a system. One can also use pulse transfer 

functions. For this, one must first focus in on the points in time 

where sensors are sampled because control signals are based solely 

on state of system at these instants. Mathematically sampling is 

done by multiplying each signal of interest by a train of unit 

impulses. The area of each impulse generated is a signal level at 

a sampling instant. For example, sampling the unit impulse 

response function h(t) gives: 
 

h*(t) =  Σ  h(nT) δ(t-nT)  . 
 

where T is the sampling period. Laplace Transformation of this 

followed by manipulation gives the pulse transfer function H(Z): 
 

H(Z) =  Σ  h(nT) Z-n     where  Z=eST  . 
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The response of a system to a unit impulse is of the form: 
 

h(t) = Σ Γ eλt     . 
 

Laplace Transformation of this gives: 
 

H(S) = Σ Γ / (S-λ)   . 
 

Z Transformation gives: 
 

H(Z) = Σ Γ / (1 - eλT Z-1 )  . 
 

This gives the roots Z = eλT . Substitution into this shows that 

stable region in S plane maps to the inside of a unit circle in Z 

plane. If roots fall outside unit circle, the system is unstable. 
 

 

Often manipulation gives H(Z) as a ratio of two polynomials: 

 

H(Z) = N(Z) / D(Z) 
 

where D(Z)=0 is the system characteristic equation. Long division 

of D(Z) into N(Z) can be used to reduce H(Z) to the basic form: 
 

H(Z) =  Σ  h(nT) Z-n    . 
 

Inspection of this tells if the system is stable or unstable. 
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STATE SPACE CONTROL 
 

 

State space control works with the ordinary differential 

equations and algebraic equations governing the state of the 

system. It puts these equations in matrix form. Manipulation of 

the matrix equations gives something called the State Transition 

Matrix. Setting the determinant of this matrix to zero gives the 

characteristic equation for the system. State space control tries 

to control all of the states of the system. For this, instead of 

just a single gain, it uses a gain matrix. To control all states, 

all states must be sensed. For some systems, this may be 

impossible. In these cases, the governing equations are used to 

estimate the states. State space control is computationally 

expensive and may be inappropriate for pic controlled systems. 

 

As an illustration of state space control, we will consider the 

task of controlling the submergence depth of a small autonomous 

underwater vehicle or auv. Its governing equations are: 

  

M d2R/dt2  + N dR/dt  =  B  +  D 

 
J dB/dt  +  I B  =  Q 

 
Q  =  K (C – R) 
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Manipulation of these equations gives: 

 

dR/dt  =  U 
 
 

dU/dt   =   B/M  +  D/M  -  N/M U 
 

 
dB/dt  =  K (C-R)/J  -  I/J B 

 

When C and D are zero, one gets the matrix equation: 

 

 

 

 

The response following an impulse will have the form: 

 

    R = Ro e
t         U = Uo et        B = Bo et  

 

Substitution into the matrix equation gives   
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Setting the matrix determinant to zero gives: 

 

 [+N/M] [+I/J]  +  [K/J] [1/M]  =  0 

 

Manipulation gives: 

 

MJ 3  +  [MI+NJ] 2  + NI   +  K  =  0 

 

This is the overall system characteristic equation. It is 

basically the same as that obtained from classical control:  

 

MJ S3  +  [MI+NJ] S2  + NI S  +  K  =  0 
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State space control uses matrix manipulation to get many other 

system properties. Details are beyond the scope of this note.  

 

Matlab has a function SS which converts classical control transfer 

functions to state space matrix form. The m code on the next page 

shows an application of this for auv depth control. The step 

response produced by the code follows it and is identical to that 

obtained by classical control. This is not surprising because they 

are both based on the same equations.  

 

Simulink has state space blocks. A state space block diagram for 

the auv depth control case is shown immediately after the SS code 

and its response.  The drive and plant state space menus are also 

shown. In them, x indicates the states, u indicates the inputs and 

y indicates the outputs. The step response produced by the state 

space block diagram is basically the same as that produced by the 

m code.  Again, this is not surprising. 
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