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AUTOMATIC CONTROL ENGINEERING

FEEDBACK CONTROL CONCEPT
The sketch on the next page shows a typical feedback or error
driven control system. What has to be controlled is generally
referred to as the plant. What the plant is doing is known as its
response. What it should be doing is known as the command. The
plant receives a control signal from a drive and a disturbance
signal from the surroundings. The goal is to pick a controller
that can make the response follow closely command signals but
reject disturbances. The controller acts on an error signal: this
is command minus some measure of the response. This is why it is
usually called error driven control. Two types of error driven
control are PID and Switching. PID stands for proportional
integral derivative. Proportional generates a signal which 1is
proportional to error. Integral generates a signal which is
proportional to the integral of the error. Derivative generates a
signal which is proportional to the rate of change of error.

Switching generally gives out signals with constant levels.

AUTONOMOUS UNDERWATER VEHICLE DEPTH CONTROL
To 1illustrate some error driven control strategies we will
consider the task of controlling the submergence depth of a small
autonomous underwater vehicle or auv. According to Newton's Second

Law of Motion, the equation governing its up and down motion is:

M d°R/dt’ = B + D - W
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where R is the depth of the auv, M is its overall mass, B is the
control force from the propulsion system, D is a disturbance load
caused for example by sudden weight changes and W is a drag load.

Drag load has two components: wake drag and wall drag:

W = X dr/dt |drR/dt| + Y dr/dt

where X and Y account mainly for the size and shape of the auv.

A simple model of the propulsion system is:

JdB/dt + I B = Q

where Q is the control signal. There are two basic types of
propulsion systems that could be used to move the auv up and down.
One is an air/water ballast tank. In this case, the control signal
Q would produce a change in buoyancy and J would account for the
fact that this is caused by a flow: I would be zero. If J was very
large, the control force B would build up very slowly. The other
type of propulsion system uses motor driven propellors to generate
B. Usually, for protection, these would be located inside a duct.
In this case, I would account for the size and shape of the blades
and duct, while J would account for things like rotor inertia.
Again, if J was very large, the control force B would build up

very slowly. One could determine J and I experimentally.

The PID error driven strategy lets the control signal Q be:



O = Ko E + K JEdt + K, dE/dt

where E = C - R is the depth error and Kp K; Kp are gains: C is the
command depth. Usually, gains are constants. However, they can be
made a function of the state of the system or its surroundings. In

this case, control is said to be adaptive.

Imagine the auv is at the water surface and it suddenly commanded
to go to some constant command depth C. Assume that there is a
disturbance with a constant level D acting downward. Also assume

the auv is using motor driven propellors for propulsion.

Proportional by itself would cause the propellors to spin in such
a way that the auv would move towards the command depth. The
amount of spin would be proportional to depth error. When the auv
reaches the command depth, the proportional control signal would
be zero. If the auv was held at the command depth, its propellors
would stop spinning. The disturbance would cause the auv to stop
below the command depth. This offset would be such that the
propellors generate Jjust enough upward force to Dbalance the
downward disturbance. The offset would be DI/Kp. When D is known,
something called feedforward compensation can be used to get rid
of the offset. Basically, we measure D and subtract ID from Q in
the drive equation. When motions settle down, the drive gives out
an extra signal minus D which cancels D. But we must know D.

Another way to get rid of the offset is to give the auv a false



command C°. If the false command C  was set at [C-DI/Kp], the auv
would end up at C. It would hang below C° by DI/Ks, and thus end up
at C. If the gain Ky, was very large, offsets such as DI/Kp; would
probably be tolerable. However, large gain would generate very
large Q when the depth is well away from the command depth. Very
large Q could burn out drives. To avoid this, a limit is usually
put on the magnitude of Q. In this case, the control is referred
to as proportional with saturation. If the disturbance was greater

than the saturation limits, then control would be impossible.

Integral by itself would cause the propellors to spin in such a
way that the auv would move towards the command depth. The amount
of spin would be proportional to the integral of depth error. As
the auv moves towards the command depth, the propellors would spin
faster and faster. Obviously, this would cause the auv to
overshoot the command depth. Because of these overshoots, integral
cannot be used alone. The good thing about integral is, if the
system is stable, it gives zero offsets. If the auv was held with
positive depth error, the integral control signal would get bigger
and bigger. This is known as integral windup. If it was released
after a long time, it would take a very large integrated negative
error to cancel out the windup due to integrated positive error. A
simple way to avoid integral windup is to activate integral only
within a band surrounding the command depth. All we need is for
the band to be wide enough for proportional to get the auv within

the band so that integral can then home it into the command depth.



Derivative 1like integral cannot be used alone. Assume that the
command C is a constant, and let the auv be stopped far away from
the command depth. In this case, dE/dt would be =zero. So, the
controller would not generate a force to move the auv to the
command depth. Derivative mimics drag load and helps motions
settle down. It generates a control signal which opposes motion.
Something called rate feedback could also be used to help make
motions settle down. The controller would act on depth error E
minus a constant times the depth rate dR/dt. Substitution into the
governing equations shows that rate feedback mimics drag. Note
that derivative could be used to make the auv move at a constant
speed: dC/dt is made a constant. Drag and the dR/dt part of dE/dt

would tend to limit speed.

With all three components of PID acting together, as soon as the
auv passes through the command depth, proportional would tend to
counteract integral. Also, proportional would get the auv closer
to the command depth faster, so it would limit integral windup.
Derivative would help counteract overshoots. The auv would home in
quickly on the command depth with minimal overshoots. So, we get

the good characteristics of all three controllers.

There are many types of switching control. They often have trouble
with overshoots. Basic relay switching is the simplest. It would
try to make the propellors rotate at a constant speed: the
direction of rotation would depend on the sign of depth error.

Relay with deadband would allow the auv to drift once it gets
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inside a band surrounding the command depth. The propulsion device
would be shut down and drag load would cause the auv to slow down.
Relay with hysteresis would reverse the direction of control
before the auv gets to the command depth. In this case, the
propulsion device would act as a brake. A bias signal could be

added to counteract disturbances.

Propulsion system dynamics would cause the control force to lag
the control signal. The amount of lag depends on how large J is
relative to I. Consider the case where proportional control is
acting alone and the error is initially positive. For a slowly
reacting propulsion system, positive error would cause a positive
control force to gradually build up. As it builds up, this force
would move the auv towards the command depth. However, when the
auv gets to the command depth, because of lag, the control force
would still be positive, and this would cause overshoot. In some
cases, these overshoots would settle down. In other cases, they

would not settle down but would limit because of wake drag.

Control signals for an auv would be generated within a computer
control loop. The loop period must be much smaller than the basic
period of auv motion: otherwise severe overshoots could develop.
If the auv was controlled remotely by a computer onboard a ship,
the time taken for the depth signal to travel from the auv to the
ship and the time taken for the drive signal to travel back from
the ship to the auv could cause overshoots, because the auv would

be responding to past error not present error.
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SUBSEA ROBOT SPRING/DASHPOT PID ANALOGY

Equations governing subsea robot depth motion are:

M d°R/dt? + X dR/dt|dR/dt| + Y dR/dt = B + D

J dB/dt + I B =0Q

O = K»(C-R) + K (C-R)dt + Kp(dC/dt-dR/dt)

Let the drive be a propellor in a duct driven by a DC motor. For
most of what follows, we will assume that the drive is fast acting,

so that J is approximately zero. In this case,

B = K/I (C-R) + K;/I J[(C-R)dt + Kp/I (dC/dt-dR/dt)

B = K, (C-R) + K; [(c-R)dt + Kp (dC/dt-dRr/dt)

We will also assume that the robot is initially at one depth and it
is suddenly commanded to go to another depth. When proportional
control is acting alone, the control force B is a linear function
of depth error. This pulls the robot towards the command depth. As
the robot approaches the command depth, the propellor slows down.
Note that a spring with its ends attached to the robot and the
command depth would move the robot the same way. Because the drive
is spring like, disturbances D cause the robot to settle down away
from the command depth. When integral control is acting alone, the
control force B gradually builds up and pulls the robot towards the
command depth. As the robot approaches the command depth, the

propellor goes faster and faster. This causes the robot to
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overshoot the command depth. As soon as it overshoots, the control
force starts to decrease: meaning the propellor starts to slow
down. It takes time for the control force to go to zero. Beyond
this point, the control force changes sign and acts initially like
a brake and causes the robot to stop and then start back towards
the command depth. Again, when it reaches the command depth, it
overshoots it. These overshoots do not settle down. If they did, B
would equal minus D and R would equal C. One could replace the
integral drive with a spring with one end attached to the robot and
the other end free to move. Initially the free end moves towards
the command depth. This causes the spring to stretch and pull the
robot towards the command depth. The spring stretching mimics the
integration of error. The spring keeps stretching until the robot
overshoots the command depth. Then, it gradually slackens. It takes
time for the spring to totally slacken so it pulls the robot beyond
the command depth. When the spring is totally slack, the free end
starts back towards the command depth. In this case, the spring
acts initially like a brake and causes the robot to stop and then
start back towards the command depth. With proportional and
integral acting together it is possible for the robot to settle at
the command depth. Proportional suppresses the overshoots caused by
integral and integral gets rid of offsets. Derivative control is
not spring like. The equation for B shows that it instead mimics a
dashpot. When the drive is slow acting, control actions are not

instantaneous. This can cause severe overshoots.
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CAR/DRIVER PID ANALOGY

Imagine a car at position A on a straight road that is
suddenly commanded to go to position B on the same road. A
proportional driver would suddenly depress the gas peddle
down to some level. This would cause the car to gradually
pick up speed. As the car moves towards B, the driver would
depress the gas peddle 1less and less. The amount of
depression would be a linear function of position error or
distance between B and the car position. When the car
reaches B, peddle depression would be zero. Because of its
momentum, the car would overshoot B. As soon as it does so,
the driver would suddenly put the car into reverse and
depress the gas peddle an amount again dependent on position
error. This would cause the car to gradually come to a stop
and reverse direction back towards B. If there was no wind
and the road was horizontal, wake drag and drive friction
would gradually make the car come to rest at B. Otherwise,
it would come to rest away from B. An integral driver
starting at A would gradually depress the gas peddle based
on the integral of position error. This would move the car
towards B but at a faster and faster speed. When the car
reaches B, peddle depression would be maximum. Obviously,
the car would overshoot B. As soon as it does so, the driver
would gradually depress the gas peddle less and less.

Basically, the position error would now be negative, and
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integrated error would gradually decrease. When it reaches
zero, the peddle depression would also be zero, and the
driver would suddenly put the car into reverse and gradually
depress the gas peddle again based on the integral of
position error. This would cause the car to gradually come
to a stop and reverse direction back towards B. When the car
reaches B, it would again overshoot. The car would never
settle at B but would oscillate back and forth at an
amplitude dependent on wake drag and drive friction. The
mean position error would be zero, even when there was wind
or the road was not horizontal. A proportional plus integral
driver could make the car settle at B, even when there was
wind or the road was not horizontal. The proportional part
would bring the car close to B before the integral part
could build up too much signal. The integral part would then
home the car into B. Whereas the proportional plus integral
driver would work only the gas peddle, a proportional plus
integral plus derivative driver would also use the brake.
The derivative part would apply the brake an amount based on
speed. This would help control overshoots if they are a
problem. Driver reaction time could cause severe overshoots.

Its control is based on past error not present error.

15
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ZIEGLER NICHOLS GAINS
Ziegler and Nichols, through a series of experiments on simple
systems, developed criteria for picking gains in a controller
that would give good tracking performance. For a system that can
be made unstable with proportional acting alone, the procedure
they recommend is as follows. With proportional acting alone,
increase its gain until the system becomes borderline stable. Let

the borderline gain be Kp: let its period be Tp. According to

Ziegler and Nichols, reasonable PID gains are:

KP = O.6*KP KI = KP/TI KD = KP*TD

T; = 0.5*Tp Tp = 0.125*Tp

When only proportional and integral are acting, they recommend

the following PI gains:

Kp = 0.45*Kp K: = Kp/T:

T: = 0.83*Tp

When only proportional is acting, they recommend:

Kp = O.S*KP
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AUTONOMOUS UNDERWATER VEHICLE
ZIEGLER NICHOLS GAINS
To illustrate a procedure for getting Ziegler Nichols gains,
we will consider the task of controlling the submergence
depth of a small autonomous underwater vehicle or auv.
According to Newton's Second Law of Motion, the equation
governing the up and down motion of the auv is:
M d°R/dt® = B + D - W

where R is the depth of the auv, M is its overall mass, B 1is
the control force from the propulsion system, D 1is a
disturbance load caused for example by sudden weight changes
and W is a drag load consisting of wake drag and wall drag:

W = X drR/dt |dR/dt|] + Y dR/dt

where X and Y account for the size and shape of the auv. Here

we linearize the drag to get:

W = N dr/dt

A simple model of the propulsion system is:

JdR/dt + I B = Q

where Q is the control signal: J and I are drive constants.

18



The PID error driven strategy lets the control signal Q be:

O = Ky E + K; JEdT + K, dE/dt

where E = C - R 1is the depth error and Ky K: Kp are the

controller gains: C is the command depth.
To get Ziegler Nichols gains, we start by assuming only
proportional is active. Manipulation of the governing
equations gives:

J [ M d’R/dt® + N d°R/dt® - dD/dt]

+ I [ M d?’R/dt? + N drR/dt - D ] = K C - KpR

We then assume that C and D are both constants and that the

auv i1s undergoing a limit cycle oscillation for which

R = R, + AR Sin [ot]

Substitution into the modified drive equation gives

- J M ® AR Cos[owt] - J N ®° AR Sin[ot]
- T M ® AR Sin[ot] + I N ® AR Cos[ot]

- I D = Kbk Co - Kp Ry - Kp AR Sin[mt]

This equation is of the form:

19



i Sin[fwt] + J Cosl[wt] + k = 0

Mathematics requires that i=0 j7=0 k=0:

- J N o - I Mo + Ko = 0
- JM® + INw®o = 0
+ I Do + Kp Co - Kp Ro = 0

Manipulation of these equations gives

R, = Co + I D, / Kp
o’ = [I N] / [J M]
K = [JN + I M &

= [JN + I M] [IN] / [J M]

For the illustration we let : M=50 N=50 J=0.5 I=0.1. The
above equations give ®=0.447, Kp=6 and Tp=14. Substitution
into the Ziegler Nichols gains equations gives: Kp = 3.6; K;
= 0.54; Kp = 6.3. An m code for the auv is given below. This
is followed by a Ziegler Nichols response generated by the
code. A SIMULINK Block diagram follows the m code response.

It gives basically the same response as the code.
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Pk

LI DEPTH CONTROL
rold=0.0;vold=0.0;kbhold=0.0;:
Cold=0.0;m=50.0; load=0.0;:
wake=0.0;wall=50.0;=wn=0.0:-:
Jd=0.5:;i=0.1:wrorng=0.0:
gp=6.0:gi=0.0;:gd=0.0;
gp=3.6;:gi=0.53:gd=6.3-
Adelt=0.01l:target=10.0;:
for k=1:10000
error=target—rold:
rate=(error—wrong) fdelt;
control=gp¥error
control=control-4ogi ¥=wumns
control=control4gd¥ rate
if(control=>=4+1=2.0) - - -
contcrol=4+1=2.0:end:
if(contcrol<-s—12.0) - - -
controal=-—12_0;=nd;
Swn==1un+de lt Ferror ;
drag=wake*uold*ab=(uold) -
AdArag=drag+wall*uold:
abe=hold+load—-—drac:
myE=control-—-lhold*3i
raoew=roaold+deltc*uold;:
unew=uold+delt Falke1;
hnewv=hold4+delt* xy=,"]:
tnew=k*delt:; wrong=srrokr:
rold=rnew;nold=urnenw;
bold=hnew:;tcold=trnetwr;:
rik)=rnew:;tc (k) =tnenwr;
=11l plot (-,
xlabel (' tCim=")
wlabel (' depthi!' )
Citle('=auaw!' )

21






TOYLNCD HL43D AN

H1434

i
"y
wng
3nHd SLIAM qld
pung -
I04 Il L0560 : :
s O 045005 i b A - —
_ L + i '
0l |
IT
THNGIS
- — ANV
prpory  UIED -
%
] ——m
-~ Qw0

o¥Hd

23



PIPE FLOW SETUP

ZIEGLER NICHOLS GAINS

To illustrate a procedure for getting Ziegler Nichols gains,
we will consider the task of controlling the temperature of
the air flowing down the pipe in the lab pipe flow setup.
Basically the setup consists of a fan which draws air from
atmosphere and sends it down a pipe. A heater just downstream
of the fan is used to heat the air. It receives a signal from
a controller. The temperature of the air at the pipe exit is

measured by a thermistor. The governing equations are:

X drR/dt + YR =H + D

A dH/dt + B H =12 Q

O =Kp E + K; JEdT + Kp dE/dt

where R 1is the temperature of the air at the heater, R is
the temperature of the air at the sensor, C is the command
temperature, E 1s the temperature error, Q 1is the control
signal, H 1is the heat generated by the heater, D is a
disturbance heat and Ky K;i Kp are the controller gains. Note
that R is what R was T seconds back in time: T is the time

it takes for the air to travel down the pipe.
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To get Ziegler Nichols gains, we start by assuming only

proportional is active. Manipulation of the governing

equations gives:

A [ X d®R/dt> + Y dR/dt - dD/dt]

+ B(XdR/dt + YR -D) = ZKC - ZKpR

We then assume that C and D are both constants and that the

setup 1s undergoing a limit cycle oscillation for which
R = Ro + AR Sin [ot] R = R, + AR Sin [o(t-T)]
Substitution into the modified drive equation gives

- A X ®® AR Sin[ot] + A Y o AR Cos[ot]

+ B X o AR Cos[et] + B YR, + B Y AR Sin[ot]
-BDo = ZKoCo- ZKoRo - ZKp AR Sin[o(t-T)]
A trigonometric identity gives
Sinfo(t-T)] = Sin[ot] Cos[wT] - Cos[ot] Sin[oT]

Substitution 1into the modified drive equation gives

equation of the form

i Sin[ot] + j Cos[ot] + k = 0

25
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Setting i=0 and j=0 and k=0 gives

-AX® 4+ BY + Z Kp Cos[oT] = 0
AY o + BXo® - Z Kp Sin[wT] = 0
BYR, - BD, - ZKeCo + ZKpR, = 0

Manipulation of the first two equations gives

Kb = [A X o> - B Y] / [Z Cos[wT]]

K = [AY® +BX o] / [Z Sin[wT]]

Sin[®wT]/Cos[®wT] = Tan[wT]

= [AY®+BXol /[AXo -BY]

The last equation gives ®. Once ® is known we can then solve
for Kp. For the illustration, we let: X=0.25 Y=1.0 A=0.1
B=1.0 Z=1.0 T=0.5. The above equations give w=3.97, Kp=1.5
and Tp=1.58. Substitution into the Ziegler Nichols gains
equations gives: Kp=0.9; K:=1.2; Kp=0.17. An m code for the
setup is given below. This is followed by a Ziegler Nichols
response. A SIMULINK Block diagram follows the response. It

gives basically the same response as the code.
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% PIPE FLOW TEMFPERLTURE CONTEROL
ROLD=0.0;HOLD=0.0; 3ENSOR=ROLD;
TARGET=5.0;LOaAD=0.0;DUMFP=10.0;
E=0.25:;¥=1.0;4=0,1;B=1.0:Z2=1.0;
WRONG=TARGET-3ENIOR; 3UM=0.0;
MNIT=10000:MIT=500;TIME=0.0;
GP=1.5;GI=0.0;GD=0.0;
GP=0.9::3T=1.2::Dh=0.17;
DELT=0.001;
for IT=1:NIT
TIME=TIME+DELT;
if(IT=MIT)

SENSOR=R(IT-MIT); end;
ERROR=TARGET-SENIOR;

RATE= (ERROR-WRCHG) f/DELT;
CONTROL=GP*ERLOR;
CONTROL=CONTROL+GI*3TUHM;
CONTROL=CONTROL4+GD*RALTE;
SUM=3THM+DELT*ERROR;

if (CONTROL=DUTMP)

CONTROL=DUMF; end;
if (CONTROL<=0.0)

CONTROL=0.0; end:
BRC=Z*CONTROL-B*HOLD:
EVZ=HOLD+LOAD-Y+*ROLD;
HNEW=HOLD+DELT*ABC/ L;
FNEW=ROLD+DELT*EYZ/X;
T(IT)=TIME:R(IT)=ENEW:
ROLD=FNEW; HOLD=HNET
WROMNG=ERROR;
end; plot(T,E]
xlabhel ('time')
vlabhel ('wvolts')

Litle('pipe setup')

27
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COMPUTER SIMULATION OF CONTROL SYSTEMS

PREAMBLE
Simulation allows one to study the behavior of a system
before it is actually constructed. This can serve as an aid
to system design. Simulations are inexpensive and easy to
put together. They can handle all sorts of phenomena. These
include transport lag and computer loop rate phenomena.
Simulations can also handle multiple strong nonlinearities.
They are often used as a check on more conventional
analysis. However, simulations are 1like experiments. For
complex systems, 1t 1s hard to make sense of responses.
Before digital computers were developed, systems were
simulated using analog electronics. When digital computers
became common place, simulations made use of time stepping
procedures. Basically, these follow local slopes or rates
step by step in time. Special software packages based on
these procedures have been developed. Probably, the popular

package is SIMULINK under MATLAB.
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AUTONOMOUS UNDERWATER VEHICLE

TIME STEPPING SIMULATION

To illustrate time stepping we will consider the task of
controlling the submergence depth of a small autonomous

underwater vehicle or auv. The governing equations are:

M d°R/dt’ = B + D - W
W = X drR/dt |drR/dt| + Y dr/dt
JdB/dt + I B = 0O
Q = KeE + K; [Edt + Kp dE/dt
E = C-R

where R is the depth of the auv, M is its overall mass, B is
the control force from the propulsion system, D 1is a
disturbance load caused for example by sudden weight changes,
W is a drag load consisting of wake drag and wall drag, E is
the depth error, C is the command depth, M X Y J I are

process constants and Ky K; Kp are the controller gains.
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Manipulation of the governing equations gives

drR/dt = U
du/dt = (B +D-W) /M
W = XU I|U + YU
dB/dt = (Q - IB) / J
Q0 = Kp E + K;JEdt + Kp dE/dt
E=C-R

Application of time stepping gives

Rygw = Rowp + At * Uomp
Uwew = Uowp + At * (Bowp + Dowp - Wowp) /M
Woro = X Uowp  |Uownl + Y Uowp
Byugw = Bowo + At * (Qowp — I Bow) / J
Qorp = Kp Eow + Ki X Eowp At +  Kp AEgp/At
Eorp = Cowp — Rowp

An m code for the auv is given below. This is followed by a

Ziegler Nichols response generated by the code.
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Pk

LI DEPTH CONTROL
rold=0.0;vold=0.0;kbhold=0.0;:
Cold=0.0;m=50.0; load=0.0;:
wake=0.0;wall=50.0;=wn=0.0:-:
Jd=0.5:;i=0.1:wrorng=0.0:
gp=6.0:gi=0.0;:gd=0.0;
gp=3.6;:gi=0.53:gd=6.3-
Adelt=0.01l:target=10.0;:
for k=1:10000
error=target—rold:
rate=(error—wrong) fdelt;
control=gp¥error
control=control-4ogi ¥=wumns
control=control4gd¥ rate
if(control=>=4+1=2.0) - - -
contcrol=4+1=2.0:end:
if(contcrol<-s—12.0) - - -
controal=-—12_0;=nd;
Swn==1un+de lt Ferror ;
drag=wake*uold*ab=(uold) -
AdArag=drag+wall*uold:
abe=hold+load—-—drac:
myE=control-—-lhold*3i
raoew=roaold+deltc*uold;:
unew=uold+delt Falke1;
hnewv=hold4+delt* xy=,"]:
tnew=k*delt:; wrong=srrokr:
rold=rnew;nold=urnenw;
bold=hnew:;tcold=trnetwr;:
rik)=rnew:;tc (k) =tnenwr;
=11l plot (-,
xlabel (' tCim=")
wlabel (' depthi!' )
Citle('=auaw!' )
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PIPE FLOW SETUP

TIME STEPPING SIMULATION

To illustrate time stepping we will consider the task of
controlling the temperature of air flowing down a pipe. The

setup is shown on the next page. The governing equations are:

X dR/dt + Y R =H + D

A dH/dt + B H=1220Q

O =Ky E + K; JEdT + Kp dE/dt

where R 1is the temperature of the air at the heater, R is
the temperature of the air at the sensor, C is the command
temperature, E 1s the temperature error, Q 1is the control
signal, H 1is the heat generated by the heater, D is a
disturbance heat (plus or minus), X Y A B Z are process
constants and Kp K; Kp are the controller gains. Note that R
is what R was T seconds back in time: T 1is the time it

takes for the air to travel down the pipe.
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Manipulation of the governing equations gives

dR/dt = (H + D - YR) /X
dH/dt = (Z Q - BH) /A
Q = Kp E + K;JEdt + Kp dE/dt
E=C-R

Application of time stepping gives

Ryew = Rown + At * (Howp + Do

- Y Row) / X
Hygw = Howo + At * (2 Qowp — B How) / A
Qorp = Kp Eow + Ki X Eowp At +  Kp AEgp/At
Eoro = Cowp = Romp

An m code for the setup is given below. This is followed by

a Ziegler Nichols response generated by the code.
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% PIPE FLOW TEMFPERLTURE CONTEROL
ROLD=0.0;HOLD=0.0; 3ENSOR=ROLD;
TARGET=5.0;LOaAD=0.0;DUMFP=10.0;
E=0.25:;¥=1.0;4=0,1;B=1.0:Z2=1.0;
WRONG=TARGET-3ENIOR; 3UM=0.0;
MNIT=10000:MIT=500;TIME=0.0;
GP=1.5;GI=0.0;GD=0.0;
GP=0.9::3T=1.2::Dh=0.17;
DELT=0.001;
for IT=1:NIT
TIME=TIME+DELT;
if(IT=MIT)

SENSOR=R(IT-MIT); end;
ERROR=TARGET-SENIOR;

RATE= (ERROR-WRCHG) f/DELT;
CONTROL=GP*ERLOR;
CONTROL=CONTROL+GI*3TUHM;
CONTROL=CONTROL4+GD*RALTE;
SUM=3THM+DELT*ERROR;

if (CONTROL=DUTMP)

CONTROL=DUMF; end;
if (CONTROL<=0.0)

CONTROL=0.0; end:
BRC=Z*CONTROL-B*HOLD:
EVZ=HOLD+LOAD-Y+*ROLD;
HNEW=HOLD+DELT*ABC/ L;
FNEW=ROLD+DELT*EYZ/X;
T(IT)=TIME:R(IT)=ENEW:
ROLD=FNEW; HOLD=HNET
WROMNG=ERROR;
end; plot(T,E]
xlabhel ('time')
vlabhel ('wvolts')

Litle('pipe setup')
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SIMULINK CONTROL SYSTEM SIMULATION

SIMULINK makes use of a block diagram representation of the
system. One activates SIMULINK by typing SIMULINK and
pressing enter in the main MATLAB window. Blocks are formed
by picking blocks from groups of Dblocks 1in the main
SIMULINK window. The group labeled SOURCES contains blocks
that could be used for commands and disturbances. The group
labeled SINKS contains Dblocks that could be wused for
display of responses. The group labeled CONTINUOUS contains
many common transfer functions and state space blocks. The
group labeled DISCRETE contains blocks that could be used
to mimic loop rate phenomena. The group labeled MATH
contains Dblocks for things 1like summation Jjunctions and
gains. The group labeled NONLINEAR contains various types
of nonlinearities and switching controllers. Many of the
switching controllers can be formed using LOOK UP TABLE
under the group of blocks labeled FUNCTIONS & TABLES. The
PID controller can be found under ADDITIONAL LINEAR under

SIMULINK EXTRAS under BLOCK SETS & TOOL BOXES.
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Block diagram construction makes extensive use of the click
and drag functions of the left and right buttons of the
mouse. To 1illustrate the construction, imagine you have an
empty MINE window open on the screen. From the SIMULINK
window, double left click on the SOURCES icon. Then, from
its window, left click on the STEP block and drag it to the
MINE window. All other blocks can be moved this way. You
can also use COPY and PASTE. To move blocks around in the
MINE window, Jjust 1left click and drag them. You can also
use CUT and PASTE. To join blocks with lines, you again use
left click and drag. To create break lines, you use right
click on the break point and drag. To change parameters,

double left click on the block to activate a block menu.

To run a simulation, first pick PARAMETERS under SIMULATION
to set things like ODE integration scheme. Then, pick START

under SIMULATION to run the simulation.

SIMULINK block diagrams for AUV Depth Control and Pipe Flow

Temperature Control are attached. Also attached are Ziegler

Nichols responses of each system to a step in command.
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EXPERIMENTAL METHODS

MATLAB TUTORIAL

The equations governing the attitude of the Apollo

rocket relative to the vertical are:

Jd’R/dE? - IR = B - G + D
G=MH H = N drR/dt
B=PQ Q = K (C-R)

where R 1s the actual attitude of the rocket, C 1i1s
the command or target attitude, B and G are control
torques, D Is a disturbance torque and J I M N P

are plant and drive and controller constants.

J=5000 1=50 M=100 N=7 P=100

Determine K for borderline stable operation of the
rocket. Develop a simulation template for the
rocket. Write an m code based on this template. Use
this to confirm the borderline gain K. Develop a
SIMULINK block diagram for the rocket. Use this to
confirm the borderline gain K. Add statements to the
code and blocks to the block diagram to get the
horizontal versus vertical trajectory of the rocket.
For this let the speed of the rocket be S=100.
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L APOLLO BROCHET

% Simulation data

clear all
J=5000.0;I=50.0;M=100.0;MN="7.0;
P=100.0; COMMAND=0.0; GAIN=5,.0;
ROLD=0.1;U02LD=0.0;LOAD=0.0;
HOLD=0.0;:¥OoLD=0.0;TIME=0.0;
DELT=0.01;3FPEED=100.0;
Zimulacion loop

for EKE=1:10000
TIME=TIME+LDELT:
PHNEW=ROLD+DELT*UOLD ;
STIGMAL=GATN* (COMMAMND-ROLD)
B=P*23TCGNALLH=MN*TOLDL:G=M*H;
FATE= (E—G+LOAD+I*ROLD) A J:;
THNEW=UTUOLD+DELT*RATE
XDOT=SPEED*=in (ENEW]) ;
YOOT=3FPEED*coz (ENEW]) ;
XNEW=ZXOLD+DELT*ZDOT:;
YNEW=FOLD+DELT*¥DOT;
ROLD=FEMNEW; TOLD=TIET
EOLD=EMNEW; YOLD=YIEW:
R(E)=FMNEW; T (K] =UNEW:
X(E)=ENEW; Y (K) =YNEW:
T(K)=TIHME:

e

e

e

responses
plot (T, R]
plot (X, ¥]
Litcle (' ARPOLLO")
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MATLAB CONTROLS OVERVIEW

One can get responses of control systems to various inputs by

first forming the transfer function connecting input to output.

Typically this is a ratio of two polynomials like:

asS+bsS+c
TF =

n s +ms’+ P S? + gS +r
In matlab we represent these polynomials
coefficients in descending order:

> num=[a b c];
> den=[nmp q rl;

We then form the transfer function as follows:

> sys=tf (num, den) ;

with arrays of

We can also form the transfer functions for wvarious parts of the

system using the tf function and then use the series parallel and

feedback functions to get the overall sys. Once the sys function

is obtained we can get impulse and step responses as follows:

> impulse (sys)
> step (sys)
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We can get the frequency response magnitude ratio MR and phase
shift ® for a system using the bode function:

> bode (sys)

We can also get frequency response data using T(jw). For example

if we set w we can get data as follows:

S=complex (0.0, w) ;
num=a*S*2+b*S+c;
den=n*S"4+m*S"3+p*S 2+q*S+r;
tf=num/den

V V.V V

This gives a complex number: P+Qi. Manipulation gives:

MR = V[P*2+Q"2] d=tan " Q/P.

To get responses using Partial Fraction Expansion PFE and Inverse
Laplace Transformation ILT we can use the convolution function
conv to form the numerator and the denominator of R(S). The
residue function can then be used to do PFE. This gives the roots

of R(S) together with its residues:

> num=conv ([a b], [n m]);
> den=conv([x y z],[u v w]);
> [r,p, k] =residue (num, den)

One can then use ILT to get R(t).

We can get the roots of a characteristics equation using the roots

function. It could also be used to construct Root Locus Plots:

57



> z=[0.1:0.1:10.0];

> for k=1:1length(z)
g=[x y a*z(k)+b u v w];
p(:,k)=roots(q);

> end
> plot (real (p), imag (p))
> grid

When a parameter such as a gain can be isolated from GH, one can

get Root Locus Plots using the rlocus function as follows:

num=[a b];
den=[x vy z];
gh=tf (num,den) ;
rlocus (gh)

vV V V V

One can get GH Plots and Stability Margins as follows:

nyquist (gh)

bode (gh)

[mag, phase, w]=bode (gh) ;

[GM, PM, WG, WP]=margin (mag, phase, w)

vV V V V

If a system has a time delay one can approximate it as a ratio of

two polynomials using the Pade Approximant as follows:

> [a,b]l=pade (T, p);

The time delay is T and the order of the approximant is p. The
numerator of the approximant is a and its denominator is b. One
can use tf(a,b) to get an approximate transfer function for the

delay. An exact transfer function for a delay is: exp(-T*S).
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/ Command Window ._ E|[g|
File Edit Debug Desktop ‘Window  Help N

e M
e

e

> onum = [6.3 3.6 0.54];

>» den= [25.0 30.0 11.3 3.6 0.54];
=» [r,p,K]=rezidue (num, den)

- 0.17581
+ 0.17531

+ 0.32451
- 0.32481
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B Editor - M:\6925\gh.m M=1E3
File Edit Text Gao Cell Tools Debug

b SUBSEL ROBOT

L NYQUIST FPLOT

clear all
w=50.0;n=50;1=0.5;1i=0.
a=mTish=m¥i+nFjro=nvi;
gp=3.6;gi=0.54d:gd=6.3;
gp=6.0;gi=0.0;gd=0.0;
w=0.5:;dw=0.01; lag=0.0;
for k=1:1000
s=complex (0.0, 1) ;!
delavy=exp(—lag¥*=z)] :
nur=gd*s 2 4+gpFs4ogi;
den=a*s"d+bh*s3"3+c* 3" 2!
nurm=num*de lay:
map=nut/ demn;
Fone=:2Z.0%=3+1.0:;
Ttwo=0.5*=3+1.0;
Tmap=map fone S Lo

*x k) =real (map) :

¥ (k) =imag (map) ;
w=w+dw;

end

PloC (X, ¥, X,—7)
title (' H FPLOT')
X¥lakbel (' RELL')
Tlakbhel (' IMLGE')

grid
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B Editor - M:19211\CODES\ines.m Al=E3
File Edit Text Go Cell Tools Debug

Sil=1 F R |

28| -0 |+

AT DEPTH CONTEROL

P

ROOT LOCTU3 PLOTS

o

clear all
w=50.0;n=50.0;3=0.5;1i=0.1;
a=3%m; b=n*j+m*i; c=n*i:
gp=[0.05:0.05:10.07 ;

for k=1:lengthigp)

g=[a b o gp(k)]:
pi:,k)=roots(q):;

1
2
3
4
5
B
T
a8
9

= = = =
N L T L i

end

—
(i |

plotirealip) ,imagip) . '=x')
title ('GP ROOT LOCTIS PLOT')
®¥label('real')

vilabhel(' imag')

= = ~
(¥ = R R

grid

[ I ]
= =

[
[

=F
=
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REVIEW OF LAPLACE TRANSFORMATION

Laplace Transformation converts ordinary differential equations or
ODEs into algebraic equations or AEs. Manipulation of the AEs
followed by Inverse Laplace Transformation gives responses back in
time. Manipulation of the AEs also gives the system transfer

functions or TFs. Most control theories are based on TFs.

The Laplace Transform Integral is:

Usually, mechanical engineers do not have to evaluate this

integral. All of the important cases have already been worked out.

Some Laplace Transform (LT) pairs used to reduce ODEs to AEs are:

3 [df/dt] = S F(S) - £(0) 3] fdt = F(s) / s
JI [d°f/dt’] = S° F(S) - S f£(0) - df(0)/dt
JI [d’f/dt’] = S8 F(S) - 8° £(0) - 8 df(0)/dt - &’f(0)/dt’

Usually, initial condition terms are set to zero for control

because, in most cases, a system starts from some rest state.

Manipulation of algebraic equations often gives factors of the

form: I'/(S-A). Inverse Transformation gives back in time: Te™".
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Typical commands/disturbances into control systems include: a step
with height A / a pulse with height A and short duration T / a

sine or cosine wave with amplitude A and frequency o / a linear

ramp in time with slope A. Laplace Transform pairs for these are:

]

(Step with Height A) = A/S
3 (Short Duration Pulse) = AT
I (Sine Wave) = Aw/ (S’+w")

3 (Cosine Wave) = AS/ (S’+w%)

3 (Linear Ramp) = A/S’

Control systems often have time delays or transport lags inherent
in them. These can seriously degrade performance. When a signal is

delayed in time by T seconds, Laplace Transformation gives:

The Final Value Theorem states that

Lim £f(t) = Lim S F(S)

t—o0 S—0
This can be used to get the final state of stable systems
subjected to step commands or step disturbances. Ideally for a
step command the final state should be equal to the command while
for a step disturbance the final state should be zero. The Final

Value Theorem gives unrealistic results when systems are unstable.
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COMPLEX NUMBERS AND COMPLEX PLANES

There are two ways to represent complex numbers. These are shown

schematically in Figure 1:
Cartesian z =x + Vy jJ Polar z = r/6 = re
Manipulations give:
+i6 EE

re” =1 Cosb + j r Sinb re” =1 Cos6 - j r Sinb

sine = (7 - 79/ 27 CosH = (e + &%)/ 2

M

When adding or subtracting complex numbers, it is easier to use

the Cartesian representation. Take two complex numbers z, and z,:

zZ, = X, +Y, J Z, = X, + Y, J

where x, y, X, y, are known. One gets:

N
+
N
I

) ) (x +%x ) + (y, +v,) ]

,_.N
I
MN
I
o
I
o]
S
+
<
I
S
u

When multiplying or dividing complex numbers, it is best to use

the Polar representation. Take two complex numbers z, and z,:
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where 1r, 6, r, 6, are known. One gets:

The Nyquist Procedure for checking stability of feedback control
systems maps a closed contour in one complex plane known as the S
plane to another complex plane known as the GH plane. A function
of S known as the system GH function is the mapping function. As

an illustration consider a system with the GH function:

GH=2/[18 (S +8+ 1)1

The contour in the S plane that is mapped to the GH plane
surrounds the entire right half of the S plane. It is shown in
Figure 2. To illustrate the mapping, consider the point S = +j on

the S plane contour. Substitution into the GH function gives:

GH = 2/[3(3+3+1)1 = 2/[3(-1+3+1)1 = 2/[3(3)] = -2

This point and the complete contour in the GH plane are shown in

Figure 2. The GH plot shows that the system is unstable!
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SYSTEM TRANSFER FUNCTIONS

The response of a system to a unit impulse input at time t = 0 is
usually denoted by h(t). Its Laplace Transform H(S) is known as a
Unit Impulse Response Function. It turns out that: TF(S) = H(S)

where TF(S) is a system transfer function. For a system with input

X and output y, this is: TF(S) = Y(S)/X(S).

Why is TF(S) = H(S)? In other words: What is so special about the
unit impulse as an input? As shown in the sketch below, any input
x(t) into a system can be broken down into a sequence or train of
pulses. Superposition of the pulses generates a staircase like
approximation to x(t). In the limit as the pulse duration tends to
zero, this becomes exact. The pulse that comes on at time t = 1
has strength x (1) and duration At: thus its area is x(1)At. In the
limit as At tends to zero, this pulse becomes basically a scaled
version of the unit impulse. The scaling factor is infinitesimal
and is the area x(1)A1. The response of the system due to a unit
impulse input at t = 1 is h(t-t1). The response due to an impulse
with area x(1)AT at t = 1 is x(1)AT h(t-1). The response at some

point in time due to all of the impulses up to that time is:

N
y(t) = X x(nAt)At h(t-nAt)
n=0

70



t=1 |

x(T) AT h(t-T)

f\\/\ Ao



where N is the total number of impulses and n denotes a specific
impulse. In the limit as AT tends to zero, N tends to infinity,

and the summation becomes the Convolution Integral:

yt) = | x(1) h(t-1) dt

Y(S) = X(S) H(S) = X(S) TF(S)

Impulses do not exist in reality. In other words, there is no such
thing as an infinite strength, infinitesimal duration, signal.
But strong, short duration, pulses do exist, and they often mimic
the unit impulse. Why consider the unit impulse as an input? An
impulse jars a system to some state and the motion thereafter is
pure transient. If transients grow, the system is unstable: if

transients decay, the system is stable. Manipulation of H(S)

gives: H(S) = N(S)/D(S) where N(S) and D(S) are polynomials. PFE
applied to N(S)/D(S) gives factors of the form: N(S)/D(S) = Z
I'/[S-A]l. ILT applied to these factors gives: h(t) = X T e?. Each A

is a wvalue of S which satisfies the characteristic equation

D(S)=0. For stable operation, each root A must be a negative real

number or a complex number with a negative real part.
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To get the response of a system to an input, one starts with:

Partial Fraction Expansion or PFE gives

Y(S) = £ A/[S-a]

Inverse Laplace Transformation or ILT gives

Manipulation of this then gives the response in

exponential and trigonometric functions in time.

The MATLAB residue function can be used to simplify PFE.
into this would be the numerator and denominator of

output would be the roots “a” and the residues “A”.

> num=[a b c];
> den=[xy z u Vv wj;
> [r,p, k] =residue (num, den)

Here r indicates residues and p indicates roots or poles.
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AUTONOMOUS UNDERWATER VEHICLE

DEPTH CONTROL RESPONSES
To illustrate application of the Laplace Transformation
procedure we will consider the task of controlling the
submergence depth of a small autonomous underwater vehicle or
auv. According to Newton's Second Law of Motion, the equation
governing the up and down motion of the auv is:

M d°R/dt® = B + D - W
where R is the depth of the auv, M is its overall mass, B 1is
the control force from the propulsion system, D 1is a
disturbance load caused for example by sudden weight changes
and W is a drag load consisting of wake drag and wall drag:

W = X dR/dt |dR/dt] + Y dr/dt
where X and Y account for the size and shape of the auv.
A simple model of the propulsion system is:
J dB/dt + I B = Q

where Q is the control signal: J and I are drive constants.

The PID error driven strategy lets the control signal Q Dbe:

O = Ke E + K; JEdT + Kp dE/dt
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where E = C - R 1is the depth error and Kp K: Kp are

controller gains: C is the command depth.

Laplace Transformation of the governing equations gives

(M S+ NS)y R=B + D

(J S+ I)B=20

Algebraic manipulation gives

R Kp S + Kp S + K;

C MJ S* + (NJ+MI) S°® + (NI+Kp) S% + Kp S + K;
R J S+ 1S

D MJ S* + (NJ+MI) S° + (NI+Kp) S% + Kp S + K;

To give a numerical example we will let the parameters be:

Il
(@)
=

M = 50.0 N = 50.0. J=20.5 I

One can show that the Ziegler Nichols gains are:

Kp = 3.6 KI = 0.54 KD = 6.3
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Substitution gives

R 6.3 S + 3.6 S + 0.54

C 25.0 s* + 30.0 S + 11.3 S + 3.6 S + 0.54
R 0.5 8> + 0.1 S

D 25.0 s* + 30.0 S + 11.3 S + 3.6 S + 0.54

For the command case we will work through 4 cases: unit
impulse; wunit step; wunit sine; wunit ramp. For a unit

impulse C(S)=1. In this case

6.3 S° + 3.6 S + 0.54

25.0 s* + 30.0 S® + 11.3 S + 3.6 S + 0.54

Dividing through top and bottom by 25.0 gives

0.252 S? + 0.144 S + 0.0216

S* + 1.2 S8 + 0.452 S? + 0.144 S + 0.0216

One can put this in the factored form

0.252 S? + 0.144 S + 0.0216

(S-a) (5-b) (5-v) (S-w)
A B \Y W

(5-a) (S-b) (5-v) (S-w)

Partial Fraction Expansion followed by Inverse Laplace

Transformation gives
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+at +bt

A e + B e
+o(X+Yy) e TEWDE L (xoyy) o TVDE
where
v =x+1v] W =X - V]
=X + Y]J W =X - Y3
Manipulation gives
A e +at + B e +bt
+ 2X e *F Cos[yt] - 2Y e e Sin[yt]
The MATLAB residue function gives
a = -0.8253 b = -0.2375
x = -0.0686 y = +0.3248
A = -0.1867 B = +0.0205
X = +0.0831 Y = -0.1758
For a step case C(S) = C,/S where C, is the height of

step. In this case one gets

0.252 S? + 0.144 S + 0.0216 C,
R = _
(S-a) (S-b) (S-v) (S-w) S
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Partial Fraction Expansion followed by Inverse

Transformation gives

+ +
Ae Y 4+ Be Y 4 g

+xt

=t cos[yt] - 2Y e Sin[yt]

+ 2X e

The MATLAB residue function gives when C, = 1.0

a = -0.8253 b = -0.2375

x = -0.0686 y = +0.3248
Z =1.0

= +0.2262 B =-0.0863

X = -0.5700 Y = -0.1355

For a sine case one gets

Laplace

0.252 S? + 0.144 S + 0.0216 Co ®

R =
(S-a) (S-b) (S-v) (S-w) (S?+w?)
A B \Y W N M
+ + + +  — +  —
(5-a) (S-b) (S-v) (S-w) (S-jo) (S+jm)
where  N=G+Hj and M=G-Hj. Partial Fraction Expansion

followed by Inverse Laplace Transformation gives

+
Ae+at + Bebt

+xt

=t Cos[yt] - 2Y e Sin[yt]

+ 2X e

+ 2G Cos[mt] - 2H Sin[mt]
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The MATLAB residue function gives when C, = 1.0 and ®

a = -0.8253 b =-0.2375
x = -0.0686 y = +0.3248
A = -0.0726 B = +0.0420
X = +0.9906 Y = +0.7993
G = -0.9753 H=-1.0085

For a ramp case one gets

0.252 S? + 0.144 S + 0.0216 C,

R = .

(S-a) (S-b) (S-v) (S-w) g2

A B Y W N M
+ @ — + — + + — 4+

(S-a) (S-Db) (S-v) (S-w) S s?

Partial Fraction Expansion followed Dby Inverse

Transformation gives

Ae Pt 4 Be ™ 4 N+ Mt

+xt txt

+ 2X e Cos|[yt] - 2Y e Sin[yt]

I
[EY
(@]

The MATLAB residue function gives when C,

a = -0.8253 b =-0.2375
x = -0.0686 y = +0.3248
A = -0.2740 B = +0.3631
X = -0.0445 Y = +1.7643
N = 0.0 M= +1.0
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PIPE FLOW SETUP

TEMPERATURE CONTROL RESPONSES

To illustrate application of the Laplace Transformation
procedure we will consider the task of controlling the
temperature of air flowing down a pipe. The setup is shown on
the next page. Basically it consists of a fan which draws air
from atmosphere and sends it down a pipe. A heater Jjust
downstream of the fan is used to heat the air. It receives a
signal from a controller. The temperature of the air 1is

measured by a thermistor. The governing equations are:

X drR/dt + Y R

I
o

+ D

where R 1s the temperature of the air at the heater, R is
the temperature of the air at the sensor, C is the command
temperature, E 1s the temperature error, Q 1is the control
signal, H 1is the heat generated by the heater, D is a
disturbance heat and Kp is the controller gain. R is what R
was T seconds back in time, where T 1is the time it takes

for the air to travel down the pipe.
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Laplace Transformation of the governing equations gives

(X S4+Y) R = H + D
H = 20 Q = Kp E
E = C-R R e T R

We approximate the time lag as follows:

-TS

e = (1 -T/28) / (1 +T/2 S)

To give a numerical example we will let the parameters be:

X = 0.25 Y =1.0 Z

Il
'_\
o

Substitution into the governing equations gives

(0.25 s +1.0) R = D +

Kp [ C - (1 -T/28) / (1L + T/2 S) R ]

Algebraic manipulation gives

(0.25 S + 1.0) (1 + T/2 S) R =
(1 + T/2 S) D + Ke (1 + T/2 S) C

- Kp (1 - T/2 S) R

More manipulation gives
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[ 0.25 T/2 S*> + (0.25 + T/2 — Ky T/2) S + (1.0 + Kp) ] R

= (1 + T/2 S) D + Ke (1 + T/2 S) C

A typical time lag is 0.5 seconds. In this case we get

[ 0.0625 S + (0.5 - 0.25 Kz) S + (1.0 + Kp) 1 R

= (1.0 + 0.25 S) D + Kp (1.0 + 0.25 8) C

Setting C equal to zero gives

R 1.0 + 0.25 S

D 0.0625 S? + (0.5 - 0.25 Kp) S + (1.0 + Kp)

Setting D equal to zero gives

R Kp (1.0 + 0.25 8)

C 0.0625 S? + (0.5 - 0.25 Kp) S + (1.0 + Kp)

The characteristic equation for the setup is:

0.0625 S2 + (0.5 — 0.25 Kp) S + (1.0 + Kp) = O

This has the form of a mass on a spring and a dashpot:

msS?+ cS+k = 0
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The mass m is 0.0625: the dashpot ¢ is (0.5 - 0.25 Kp): the
spring k is (1.0 + Kp). The equation shows that the damping
is zero when Kp is equal to 2. This is a borderline gain.

The oscillation frequency is:

o =7V [k/m] =V [(1.0 + Kp) / 0.0625] = 6.92

This gives a borderline period Tp equal to 0.91.

For the case where Kp is equal to half Kp

R 1.0 + 0.25 s

C 0.0625 S? + 0.25 S + 2.0

For a unit impulse command one gets

1.0 + 0.25 S

0.0625 S? + 0.25 S + 2.0

Partial Fraction Expansion gives

A + Bj A - Bj

S - (a + bj) S - (a - bj)

Inverse Laplace Transformation gives

+(atbj)t

(A+B7) e + (A-Bj) e @RI

Manipulation gives

+at +at

+ 24 e Cos [bt] - 2B e Sin[bt]
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The MATLAB residue function gives

For a unit step command one gets

1.0 + 0.25 S

0.0625 S? + 0.25 S + 2.0

Partial Fraction Expansion gives

M + Nj M - Nj

S - (m + nj) S - (m - nj)
Inverse Laplace Transformation gives

+mt tmt

+ 2M e Cos[nt] - 2N e Sin[nt]

The MATLAB residue function gives
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CONTROL SYSTEM STABILITY

CHARACTERISTIC EQUATION: The overall transfer function for a

feedback control system is: TF = G / [1+GH] . The G and H

functions can be put into the form:

where A B X Y are polynomials. Substitution into the TF gives:

TF = A/B / [1 + A/B X/Y] = AY / [BY + AX]

The transfer function can also be reduced to a ratio of two

polynomials N(s) and D(s). In terms of these polynomials the
characteristic equation is: D(S) = 0. Thus the characteristic
equation in terms of A B X Y is: AX + BY = O

The GH function is: GH = A/B X/Y = AX/BY = N/D. So the

characteristic equation in terms of the GH function is:

Note that the characteristic equations for the subsytems are all
contained in D(S)=0. Often D(S) 1is in factored form: so simple
inspection tells if the subsystems are stable or unstable. This 1is
not the case for the overall system because, even though both N(S)

and D(S) may be in factored form, adding them destroys this.
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ROOT LOCUS PLOTS : As some parameter of a system is varied, each
root of its characteristic equation moves around in the S plane
and traces out a path known as a Root Locus. The Root Locus Method
is systematic set of sketching rules based on the GH function for
finding approximate location of these paths. Numerical schemes for
finding roots of polynomials can now be used to find Root Locus
paths exactly. So the Root Locus Method is obsolete. However the
paths themselves are very important because they show system
parameter values corresponding to the onset of instability. Root
Locus Plots for some simple systems are given 1in Figure 1. To

generate each plot, the parameter K was varied from 0 to oo.

ROUTH-HURWITZ CRITERIA : These criteria infer stability
information directly from the coefficients in the characteristic
equation. The method is based on the theorem of residues. It is
rarely derived from first principles 1in controls text books. It
shows that, when some of the coefficients of the characteristic
equation are positive and some are negative, the system 1is
unstable. It also shows that a zero coefficient implies that the
best a system can be is borderline stable. As a bare minimum, for
stable operation of a system, all of the coefficients must be
nonzero and all must have the same sign. Consider the cubic

characteristic equation:
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where A is positive. For this case, Routh-Hurwitz shows that, for
stable operation, all coefficients must be positive, and they must
also produce a positive value when substituted into the test

function X=BC-AD. Consider the quartic characteristic equation:

where A is positive. For this case, Routh-Hurwitz shows that, for
stable operation, all coefficients must be positive, and they must
also produce positive wvalues when substituted into the test

functions X=BC-AD and Y=DX-B’E. Consider the quintic equation:

where A is positive. For this case, Routh-Hurwitz shows that, for
stable operation, all coefficients must be positive, and they must
also produce positive wvalues when substituted into the test

functions X=BC-AD Z=BE-AF and Y= (DX-BZ) Z-X°F.

NYQUIST : A Nyguist Plot is a closed contour in the GH plane (or
the 1+GH plane). It is obtained by mapping a closed contour in the
S plane to the GH plane (or the 1+GH plane) using GH (or 1+GH) as
a mapping function. The closed contour in the S plane surrounds

the entire right half or unstable half of the S plane. A typical
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mapping is shown in Figure 2. Stability is inferred from the plot
in the GH plane (or the 1+GH plane). Development of the Nyquist

Concept is based on the 1+GH function:

N N + D
1 +GH = 1+ -— =
D D
The overall characteristic function is N+D: the subsystems

characteristic function is D. The roots of N+D=0 are called the
zeros of the 1+GH function while the roots of D=0 are called the
poles of the 1+GH function. Zeros are roots of the overall
characteristic equation while poles are roots of the subsystem
characteristic equations. At a =zero |1+GH|=0 while at a pole
| 1+GH|=00. One can construct a 3D image of |1+GH| by taking the S
plane as a horizontal plane and plotting |1+GH| vertically. At a
zero the image would touch the S plane. At a pole its height above
the S plane would be infinite. The plot could be used to determine

the stability of the system and its subsystems.

One could factor 1+GH to get its zeros Z and poles P:

K (S-21) (S=2p) ::::: (S—=Zp)

1 + GH =

(S=P1) (S=-Py) ::::: (S=Pp)
In the S plane, each (S-Z) or (S-P) factor is basically a vector
with radius r and angle 6: rZ6. A typical vector is shown in
Figure 3. What happens to these vectors as the tip of the S vector
moves once in a clockwise sense around the contour which surrounds

the entire right half of the S plane? As shown in Figure 4,
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vectors inside rotate clockwise 360° while vectors outside only nod
up and down. What are the implications of this for the 1+GH

function? Consider the Polar Form of 1+GH:

K [[ry, £ 26,] / [HOrp £ 26:] =R £ ©

where II indicates product and X indicates sum. Zeros inside cause
clockwise rotations of 1+GH: poles inside cause counterclockwise
rotations of 1+GH. Only zeros and poles inside cause such
rotations: zeros and poles outside only cause 1+GH to nod up and
down. If clockwise rotations are <considered ©positive and
counterclockwise rotations are considered negative, then the net
clockwise rotations of 1+GH must be: N = N; - Np where N; is the
number of zeros in the unstable half of the S plane while Np is the
number of poles there. For stable operation, N; must be zero. When
Ny is positive, the system is unstable. Inspection of D gives Np.
Inspection of the 1+GH plot gives N. Substitution into Ny = N + Np
gives Nz. When a vector is drawn from the origin of the 1+GH plane
to the 1+GH plot, N is the net number of times that this vector

rotates clockwise when its tip moves along the plot.

The minus one point on the real axis in the GH plane corresponds
to the origin in the 1+GH plane. This implies that a rotation of
the GH vector drawn from the minus one point in the GH plane is
equivalent to a rotation of the 1+GH vector drawn from the origin
in the 1+4GH plane. So one can get N from inspection of the GH plot

or the 1+GH plot. This is illustrated in Figure 5.
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The basic Nyquist contour in the S plane consists of the imaginary
axis and an infinite radius semicircle. This contour surrounds the
entire right half or unstable half of the S plane. Sometimes there
are poles of GH on the imaginary axis in the S plane. They are
usually located at the origin. At a pole GH is infinite. To avoid
this, the contour is indented locally with an infinitesimal radius

counterclockwise semicircle centered on the pole.

To construct a GH plot, each section of the Nyquist contour is
mapped separately. The infinite radius semicircle usually maps to
the origin in the GH plane. An infinitesimal radius semicircle
always maps to an infinite radius semicircle in the GH plane. Each
pole on the imaginary axis produces one semicircle 1in the GH
plane. The imaginary axis in the S plane can be mapped point by
point to the GH plane. The negative imaginary axis portion is a
mirror image of the positive imaginary axis portion. The location
of these portions relative to the minus one point is usually
critical. One can get a rough sketch of these portions by first
fixing the small and large w end points. One then examines the GH
function to see if it is possible to make it purely real or purely
imaginary. Purely real means there is a real axis crossover while
purely imaginary means there is an imaginary axis crossover. With

known end points and crossovers, one can quickly sketch the plot.
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AUTONOMOUS UNDERWATER VEHICLE
NYQUIST APPLICATION

To illustrate application of the Nyquist Procedure we will
consider the task of controlling the submergence depth of a
small autonomous underwater vehicle or auv. The equations

governing the motion of the auv are:

M d°R/dt> + N dR/dt = B + D
JdB/dt + 1B = Q
Q = Kp E E=C-R

Laplace Transformation of the governing equations gives
(MS2+NS)YR=B +D
@A@S+1)B=0Q
Q= Ko E E=C-R
The GH function for the auv is:
Ke / L (MS2+NS) @S+11]
To give a numerical example we will let the parameters be:
M = 50.0 N = 50.0 J =0.5 1 =0.1
In this case the GH function reduces to

GH =Ke 7/ [ (50.0 S? + 50.0 S) (0.5 S + 0.1) ]
= Kp / [25.0 S® + 30.0 S + 5.0 S]
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Letting S=jo this can be written as:
GH = Kp / [-25.0 ©°j — 30.0 ©®> + 5.0 0j]

As o tends to O GH tends to -«j while as ® tends to « it
tends to +0j. There 1is a real axis crossover when
0?=5/25=1/5. With this ®®? the term in square brackets
reduces to -30/5 or -6. This implies that the borderline
stable gain Kp which makes the crossover GH=-1 is 6. The

matlab GH plot for the borderline case is given below.

GH PLOT

1.5

| F A

145 l l l l l
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PIPE FLOW SETUP
NYQUIST APPLICATION

To illustrate application of the Nyquist Procedure we will
consider the task of controlling the temperature of air

flowing down a pipe. The governing equations are:

X drR/dt + Y R

H + D
H=20Q Q =Kp E
E=C-R

Laplace Transformation of the governing equations gives

XS+Y)R = H + D
H = ZQ Q = Ko E
E = C-R R = e™R

The GH function for the setup is:

Ke Z el'™1 /7 (XS +Y)

To give a numerical example we will let the parameters be:
X =0.25 Y =1.0 Z =10 T=0.5
In this case the GH function reduces to:

GH = Kp el0-%81 s/ (0.25 S + 1.0)

Letting S=jo this can be written as:
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GH = Kp [Cos(0.50w) — J Sin(0.50)] 7 (0.25 jo + 1.0)
=Ke [P+QJl /7 W
where

P=-0.25 o Sin(0.50) + Cos(0.5w)

O
I

- 0.25 o Cos(0.50) - Sin(0.5w)
W = (0.250)% + 1.0

As o tends to O GH tends to Kp while as o tends to « it tends
to 0. Real axis crossovers occur when Q is equal to O.
Iteration shows that the first crossover occurs when ®=4.58.
This gives P/W=-0.66. This implies that the borderline stable
gain Kp which makes the crossover GH=-1 is 1.52. The matlab

GH plot for the borderline case is given below.

GH PLOT

[MAG
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NYQUIST PROCEDURE

The Nygquist procedure is based on the 1+GH function:

1 + GH = 1 +N/D = (N+D)/D

The overall characteristic function is N+D: the subsystems
characteristic function is D. The roots of N+D=0 are called the
zeros of the 1+GH function while the roots of D=0 are called the
poles of the 1+GH function. Zeros Z are roots of the overall
characteristic equation while poles P are roots of the subsystem

characteristic equations. Manipulation of 1+GH gives:

K (S-21) (S-=72p) ::::: (S—=Zpn)

(S=P1) (S=-Py) ::::: (S=Ppn)

= K [Hrz Z Zez] / [HIP Z Z@P]

=R Z ©

So 1+GH is basically a vector with radius R and angle ©. One can
plot this in a 1+GH plane. Let us surround the entire unstable
half of the S plane with a clockwise contour. When the tip of the
S vector moves clockwise around this contour, zeros inside it
cause clockwise rotations of 1+GH while poles 1inside it cause
counterclockwise rotations. Only zeros and poles inside cause such
rotations: zeros and poles outside only cause 1+GH to nod up and

down. One can imagine the 1+GH function to be a clock 1like
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mechanism: unstable zeros cause its hand to rotate clockwise while
unstable poles cause 1its hand to rotate counterclockwise: stable

zeros and poles only cause its hand to swing back and forth.

As an illustration, consider the case, shown two pages over, where
there two unstable zeros in the right half of the S plane and all
other zeros and poles are far into the left half of the S plane.
Now surround the unstable zeros by a clockwise contour as shown on
the top of the page. When we map points on this contour to the
1+GH plane, we get the contour shown on the bottom of the page.
Note that no attempt has been made to get exact lengths in the

1+GH sketch: the focus 1is on getting the angles approximately
correct. When we draw a vector with radius R and angle ©® to the

contour in the 1+GH plane and count the number of times it rotates
clockwise as we move around the contour in the S plane, we get two
clockwise rotations. These rotations are caused by the unstable
zeros. Nyquist allows us to determine the number of unstable zeros

without having to find their exact locations.

In a GH plane, the vector with radius R and angle ©® is drawn from
the minus one point on the negative real axis. If clockwise
rotations are considered positive and counterclockwise rotations
are considered negative, then the net clockwise rotations of GH
must be: N=N;-Np where N; is the number of unstable zeros and Np is
the number of unstable poles. For stable operation, N; must be
zero. When Nz is positive, the system is unstable. Inspection of D
gives Np. Inspection of the GH plot gives N. Then substitution into

Nz=N+Np gives Nj. For a stable system, the nearness of a GH Plot

111



to the minus one point is a measure of the degree of stability of
the system. There are two stability margins: gain margin and phase

margin. These can be used for design.

Consider the case where only proportional control is being used
and the GH plot passes through the minus one point in the GH
plane. If GH=-1 then 1+GH=0. This implies that at this point S=7Z:
it is a root of the overall characteristic equation. But along the
GH plot S=*jw. So Z=*xjw. So there is a complex conjugate pair of
roots of the overall characteristic equation on the imaginary axis
in the S plane. This means the system is borderline stable and the
gain is K. The frequency of the borderline oscillation is . This
means the borderline period is T=2II/w. These borderline gain and

period allow us to calculate Ziegler Nichols gains.

A GH plot is basically a polar open loop frequency response plot.
When GH=-1, a command sine wave produces a response which has the
same magnitude as the command but is 180° out of phase. If the
command was suddenly removed and the loop was suddenly closed, the
negative of the response would take the place of the command and
keep the system oscillating. If the gain was bigger than K, the
command would produce a response bigger than itself. When this
takes over, it would produce growing or unstable oscillations. If
the gain was smaller than K, the command would produce a response
smaller than itself. When this takes over, it would produce

decaying or stable oscillations.
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1+GH PLANE
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ROOT LOCUS CONCEPT

For a feedback control system 1+GH=0 when S is a root of the
overall characteristic equation for the system. This implies that
when S Is a root GH=-1. So at a root the magnitude of GH is 1 and
its angle is plus or minus 180°. The Root Locus Concept is based on
these magnitude and phase requirements on GH. Consider a system

with the following GH function:

GH= KXT[ (S-Vv) (5-w) 17 [ (5-a) (S-b) (5-¢) 1

The Root Locus Concept can be used to find the paths traced out by
the overall roots as some parameter is varied. It can also be used
to find the K corresponding to borderline stable operation. The
procedure has two stages. In stage I, an S point on the imaginary
axis i1s picked and the angles to it from the zeros and poles of GH
are measured. This is shown in the sketch on the next page. Those
angles must total plus or minus 180°. Zero angles are added: pole
angles are subtracted. The S point is moved by trial and error
until the angle requirement is met. In stage 11, the lengths of
the vectors from the zeros and poles to the final S point are

measured. The magnitude requirement gives:

KIXVW]l/[ABC] =1

This gives

K=[ABC]/ [XVW]
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ILLUSTRATION : AUV DEPTH CONTROL

The governing equations are:

M dR/dt® + N drR/dt = B + D
JdB/dt + I B = Q
Q = K E E=C-R

The GH Function is:

GH = K / [ MS +NS) (IS + 1I)]

= [K/M3] / [ S (s - [-N/M]) (S - [-I/J]) 1

Letting M=50.0 N=50.0 J=0.5 I=0.1 gives:

GH = |[K, * 1/25] / [ s (s - [-1]1) (S - [-0.2]) ]

= K *X / [ (S-a) (S-b) S-c) 1

P

The S plane sketch for this case, after the trial and error
adjustment to get the angle requirement satisfied, is shown on the

next page. The magnitude requirement gives:

K *X / [A*B*C] = 1

P

K = [A*B=*cC]l /X = 6

P

118


mhinchey
Typewritten Text

mhinchey
Typewritten Text

mhinchey
Typewritten Text


a=25 =65 =90

A=1.09 B=0.49 C=0.45
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AUTONOMOUS UNDERWATER VEHICLE

ROOT LOCUS APPLICATION

As an application of the root locus procedure, we will
consider the task of controlling the submergence depth of a
small autonomous underwater vehicle or auv. According to
Newton's Second Law of Motion, the equation governing the up

and down motion of the auv is:

M d°R/dt* = B + D - W
W = X drR/dt |dR/dt| + Y dR/dt = N dr/dt
JdB/dt + I B = 0Q
Q0 = K E + K; [Edt + Kp dE/dt
E=C-R

where R is the depth of the auv, M is its overall mass, B is
the control force from the propulsion system, D 1is a
disturbance load caused for example by sudden weight changes,
W is a drag load consisting of wake drag and wall drag, X and
Y account for the size and shape of the auv, Q is the control
signal, J and I are drive constants, E is the depth error, Kp

K: Kp are the controller gains and C is the command depth.
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Laplace Transformation of the governing equations gives

Q = (Kp + KI/S + KD S) BE

Algebraic manipulation gives

R Kp S° + Kp S + K;

C MJ S* + (NJ+MI) S° + (NI+Kp) S% + Kp S + K:
R J S+ 1S

D MJ S* + (NJ+MI) S° + (NI+Kp) S% + Kp S + K;

The characteristic equation is

MJ S* + (NJ + MI) S° + (NI +Kp) S2 + K S + K = 0

The code on the next page can be used to get the root locus
plot for any parameter of the auv. It is presently set up
to study the influence of Kp. A series of root locus plots

generated by the code follows the code.
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2 BUEBEIEL ROEBOT

£ ROOT LOCTUZ PLOTS

clear all

w=50.0;n=50.0;
J=0.5:1i=0.1;

a=1]1%m; bh=n*j+m¥*i:

gp=3d.6) gi=0.549;
gd=[0.01:0.01:10.0] ;

for k=1:length(gd)
c=n¥i+gd (k)

g=[a b o gp gi]:
pl:,kl=root=s(dq)

end

plot(realip) ,imagip) , '=x')
title (' GD ROOT LOCTUS PLOT!')
xlakbel(l'real')
wlakbel (' imag')

gric
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PIPE FLOW SETUP

ROOT LOCUS APPLICATION

As an application of the root locus procedure, we will
consider the task of controlling the temperature of air

flowing down a pipe. The governing equations are:
X dR/dt + YR =H + D
A dH/dt + B H =720

Q = Kp E E=C-R

where R is the temperature of the air at the heater, R is
the temperature of the air at the sensor, C is the command
temperature, E 1is the temperature error, Q 1is the control
signal, H 1is the heat generated by the heater, D is a
disturbance heat and Kp is the controller gain. R is what R
was T seconds back in time, where T 1s the time it takes

for the air to travel down the pipe.

Laplace Transformation of the governing equations gives

(X s +Y) R = H + D
(A S +B)H = z229Q
Q0 = Kp E E = C-R
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We approximate the time lag as follows:

e ™ = (1 -T/28) / (1 +T/2 S)

Algebraic manipulation gives

R Kp Z (1L + T/2 9)

C (A S+ B) (XS +7Y) (L +T/25S8) +KpZ (1 -T/2 9)
R (A S + B) (1 + T/2 9)

D (A S +B) (XS +7Y) (1L +T/28S8) +Kp2Z (1L - T/2 8)

The characteristic equation is

T/2 AX S + [T/2 (BX + AY) + AX] &?

+ [T/2 BY + BX + AY - Kp 2 T/2] S + Kp Z2 + BY = 0

The code on the next page can be used to get the root locus

plot for any parameter of the pipe flow setup. It 1is

presently set up to study the influence of Kp. A root locus

plot generated by the code follows the code.
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% PIPE FLOW IETUP

z ROOT LOCTUS PLOTA

clear all

b=0.1:; B=1.0;

X=0.25; ¥=1.0;

£=1.0; T=0.5;

U=T/2* (A% :

V=T/2* (B¥H+L*V) +0*3;
W=T/Z2*B*Y+B*E+AL*7T;

G=E+T/2: H=B*¥;
CP=[0.1:0.1:10.0] ;

Tor k=1l:length(GP)

g=[0 WV W-GP(k) *> GP (k)] *2+H] :
pl:,kKl=root=(dq):

et

plotirealip) ,imag(p) ., '=x")
title ('GP ROOT LOCTUZ PLOT!')
label(['real')

vilakbhel(' imag')

grid
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GF ROOT LOCUS PLOT

Een

real
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SYSTEM PERFORMANCE

Often the dynamics of a control system is dominated by a pair of
roots just to the left of the imaginary axis in the S plane. All
other roots are much further to the left and have transients which
die away very quickly. In such cases, the system behaves basically
like a mass on a spring and a dashpot. The sketch on the next page

shows such a system. Its governing equation is:

m d?R/dt? = c (dCc/dt - dr/dt) + k (C - R)

Laplace Transformation gives the transfer function

R c S + k

C mS2 + ¢ S + k

Manipulation gives

R c/m S + k/m

C S2 + ¢/m S + k/m

Vibration theory allows one to rewrite this as

R 2Con S + On O

C S?2 + 2C0n S + O On
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where ®, 1s the system undamped natural frequency and ( is

damping factor. These are by definition

o, = V[k/m] ¢ = c/ce Ce = 2 V[k*m]

The roots of the system characteristic equation are

X + v] X - V]

X:_Cwn y:(l)d

where g is the damped natural frequency given by

o, VI[1 - ]

e
a
I

For an impulse input, the response has the form

X e T Cos|[yt] + Yy e ™ Sin[yt]

while for a step input, it has the form

+xt

X e ™ cCos[yt] +Ye Sin[yt] + Z

In a response, overshoots must be kept to a tolerable level.

its

This

is dependent mainly on the damping factor (. The angle that a root

vector makes with x axis is:
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® = tan?! [y/x] = tan?! [®a/[lon]]

= tan! [0.V[1-§?]1/[Cwn]] = tan! [V[1-82]/C]

This shows that radial lines drawn out from the origin are lines

of constant . The vertical axis corresponds to { equal to zero

or no damping, while the horizontal axis corresponds to { equal

to unity or critical damping. Experience shows that { should be

at least 0.5, which corresponds to an angle ® of 60°. So roots

should lie inside a wedge shaped region in the S plane.

Speed of response is another important requirement

This is dependent mainly on the natural frequency n.

of a circle drawn from the origin in the S plane is:

= [ C(Dn ]2 + [ On \/[1 - €2] ]2

= QZ [On]%  + [1 - C2] [0n]? = [On]?

of a system.

The radius r

This implies that r is equal to on. So, to get a desired speed of

response, roots must be outside a semi circle with radius n.
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Thus, to keep overshoots tolerable and the speed of response
adequate, the roots must be in the composite wedge/circle region

shown in the sketch on the next page.

The characteristic equation for an autonomous underwater vehicle

or auv with a proportional controller is

S* + [NJ+MI]/[MJ] S? + [NI]/[MJ] S + [Kpl/[MJ] = O

A general cubic characteristic equation follows from

(S = M) (S = A\2) (S -2%) = 0
Expansion gives
s+as’?+bsS+c= 0
a = - [M + Ay 4+ A3] = [NJ+MI]/[MJ]
b = + [7\,1 }\.2 + 7\41 }Lg + 7\.2 }\.3] = [NI]/[MJ]
c = - [M A A3] = [Kpl/[MJ]

To get good performance, we put the A roots in the composite

region in the S plane. Then the last three equations can be solved

for the corresponding system parameter values.
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NONLINEAR PHENOMENA

Linear theory predicts that, when an unstable system 1is
disturbed from a rest state, the transients which develop grow
indefinitely. For example, when transients are oscillatory, the
oscillation amplitude tends to «© as time tends to . In reality,
infinite amplitudes are never observed. Sometimes large
amplitudes cause the system to break down. Often nonlinearities
limit amplitudes to some finite level Dbefore breakdown can
occur. These finite amplitude oscillations are known as limit
cycles. Sometimes limit cycle amplitudes are very small: in this
case, system is often considered to be practically stable.
Nonlinearities can also cause systems which are stable in a

linear sense to be practically unstable.

When a system has strong multiple nonlinearities, simulation is
the only option. When a system has only one strong nonlinearity,
such as a switching controller, one can use 1its Describing
Function DF. In some texts, the letter N 1is used to denote it

instead of DF. The DF replaces the nonlinear controller.

When a system with a nonlinear controller is undergoing a limit
cycle, its behavior resembles a borderline stable linear system:

no growth or decay. The controller seems to be able to adjust
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its gain to make the system borderline stable. The describing
function DF for a nonlinear controller approximates this
adjustable gain. To get DF, the system 1s assumed to Dbe
undergoing a limit cycle and to be nonforced. Also the signal
fedback to the controller is taken to be a pure sinusoid. This
is usually a good assumption because the linear elements which
follow the controller generally act as a low pass filter: they
let only the fundamental component out of the controller get
back to the <controller. When the input into the nonlinear

controller is:

Iy = E, Sinwt

its output is generally of the form:

Oy = Og + Os Sinot + Oc¢ Coswt + Higher Harmonics

With the same input:

Ipr = EO Sinwt

the describing function gives out:

Opp = 0O + O0Og Sinwt + O¢ Coswt

So a describing function analysis ignores higher harmonics. This
is appropriate because they are filtered away anyhow. For most

control situations, the bias term Oy is zero.
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When a system is undergoing a limit cycle, its linear elements
are forced sinusoidally by the 1limit cycle. In this case, each

transfer function reduces to the form:

0/1I

TF

A + Bj

where

I = Sinwnt O = A Sinot + B Cosot

By analogy, the DF for a nonlinear controller is:

Opr / Iprp = DF = 0s/E; + Oc/Eq 7

where

Ipr = E; Sinot Opr = Og Sinwt + O¢ Coswt

DF is essentially an amplitude dependent gain. Each E, gives a GH
Plot. Application of Nyquist theory 1in each case shows if E;
grows or decays. A limit cycle exists when the minus one point
is on the GH Plot. When DF can be isolated from GH it is
customary to divide minus one and GH by DF. In this case a limit
cycle exists when the minus 1/DF curve intersects the GH/DF or
G'H Plot. Application of Nyquist theory shows if the limit cycle

is stable or unstable.
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As an illustration of the development of a describing function,

consider the ideal relay controller. When it has a sinusoidal

input, its output is a square wave. A Fourier Series analysis of

a square wave gives the components:

T
Os = 2/T [ Q(t) Sinewt dt = 4Q./n
0
T
Oc =2/T |  Q(t) Coset dt = 0
0
T
Op = 2/T [ o(t) at = o0
0
So the fundamental output is:
Opr = [4Qo/m] Sinowt

The input is

Ipr = Eo Sinwt

So the Describing Function is

DF

[4Q0]1/ [TEG]
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RELAY CONTROLLERS

AUTONOMOUS UNDERWATER VEHICLE

To 1llustrate nonlinear phenomena, we will consider the task
of controlling the submergence depth of a small autonomous
underwater vehicle or auv. The schematic of the system is
shown on the next page. Relay controllers resemble the
proportional controller. For the proportional controller

case, the governing equations for the auv are:

MdR/At2 = B + D - W
W = X dR/dt |dR/dt] + Y dR/dt
JdB/dt + I B = 0Q
Q = Ko E E = C-R

where R is the depth of the auv, M is its overall mass, B is
the control force from the propulsion system, D 1s a
disturbance load caused for example by sudden weight changes,
W is a drag load consisting of wake drag and wall drag, E 1is
the depth error, C i1s the command depth, M X Y J 1 are

process constants and Kp is the controller gain.
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Linearization allows us to write W as:

W = N dR/dt

To give a numerical example we will let the parameters be:

M =50.0 N =50.0

J =0.5 1 0.1

Theory shows that the borderline proportional gain Kp for the

auv is 6 and the borderline period Tp is 14.

The describing function for an ideal relay controller is:

DF = 1[4 Qo] 7/ [=Ed]

At a Ilimit cycle this 1s equal to the borderline

proportional gain Kp. Setting DF equal to Kp gives:

Eo = [4 Qo] /7 [xDF] = [4Qo] 7 [nKe]

The saturation limit for the controller is 12. Substitution

into the amplitude equation gives E, equal to 2.5.

An m code for the auv for the ideal relay controller case

is given below. This is followed by a response generated by

the code. As can be seen, it agrees with DF predictions.
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L AUTONOMOUS UNDERWALATER WEHICLE

% BRELAY DEFPTH CONTROLLERS
clear all
rold=0.0;uold=0.0:kbold=0.0;
told=0.0:w=50.0; load=0.0;
walke=0.0;:wall=50.0;
Jump=1Z .0:hand=0.0;
J=0.5:i=0.1;
delt=0.01;
target=10.0;
for k=1:10000
control=0.0;
error=target—-rold;
ifierror>+bhand) ...
control=+jump:end:
ifierror<-hand) ...
control=—jump:rend:
drag=wake*uold*abs (uold) »
drag=drag4+wall*uold:
abe=hold+load-dracg:;
xyE=control-bhold*i;
ronew=rold+delt *uaold:;
unew=uold+delt *abe m;
bhnew=hold+deltc*xy=zsJ:
tnew=k*delt
rold=rnew;uold=unen;
bold=kbnew; told=tnew;
rik)=rnew:t (k) =tnew;
end:; ploti(t,r]
xlabel('tCime"']
vilabel (' depth'])
title|('auvw relay control'])
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PIPE FLOW SETUP

To 1llustrate nonlinear phenomena, we will consider the task
of controlling the temperature of air flowing down a pipe.
The setup 1s shown on the next page. Relay controllers
resemble the proportional controller. For the proportional

controller case, the governing equations for the setup are:

X dR/dt + Y R =H + D

A dH/dt + BH =2 0Q

where R is the temperature of the air at the heater, R is
the temperature of the air at the sensor, C is the command
temperature, E is the temperature error, Q is the control
signal, H 1s the heat generated by the heater, D 1s a
disturbance heat (plus or minus), X Y A B Z are process
constants and Kp is the controller gain. Note that R iIs what
R was T seconds back in time: T is the time it takes for

the air to travel down the pipe.
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To give a numerical example we will let the parameters be:

X

0.25 Y =1.0

A

0.1 B=1.0
Z=1.0 T=0.5

Theory shows that the borderline proportional gain Kp for the

setup is 1.5 and the borderline period Tp is .

The describing function for an ideal relay controller is:

DF = 1[4 Qo] 7/ [=Ed]

At a limit cycle this 1is equal to the borderline

proportional gain Kp. Setting DF equal to Kp gives:

Eo = [4 Qo] /7 [xDF] = [4Qo] 7 [nKe]

The saturation limit for the controller is 5. Substitution

into the amplitude equation gives E, equal to 4.2.

An m code for the setup for the ideal relay controller case

is given below. This is followed by a response generated by

the code. As can be seen, 1t agrees with DF predictions.
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% PIPE FLOW SETUP

% RELAY CHNTROLLERS
FOLD=0.0;HOLD=0.0; 3ENSOR=ROLD;
TARGET=5.0;LOAD=0.0;DUMP=10.0;
X=0.25;¥=1.0;4=0.1;:B=1.0;2=1.0;
MNIT=1000;MIT=100;TINME=0.0;
BEIASZ=5.0;JUMP=5.0;EBAND=0.0;
DELT=0.005;
for IT=1:NIT
TIME=TIME+DELT;
if(IT-HMIT)

SENIZOR=R(IT-MIT): end:
ERROR=TARGET-3EN3OR;
CONTROL=EILS;
if (ERROR>+EBAND)

CONTROL=EIAZ+JIUME: end:;
if (ERROR<-EBEAND)
CONTROL=EIAZ-JUMFE:end:
ABC=Z+%CONTROL-E+*HOLD:
XV Z=HOLD4+LOAD-T*ROLD:;
HNEW=HCOLD+DELT*ABC/ 4;
RNEW=ROLD+DELT*EYZ/X;
T(IT)=TIME:E(IT)=FEMNET:
ROLD=FNEW;: HOLD=HINEW:
end; plot(T,R]
*xlakbel ('time')
vlakbel ('wvolts')
title('pipe relay control')
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DIGITAL CONTROL

In almost every control system today, a computer samples the
state of the system and takes corrective action within a control
loop. The rate at which It does this can cause performance to
degrade. One can study the phenomena using new from old time

stepping or one can study i1t using Z transforms.

As an i1llustration of the Z transform method, we will consider
the task of controlling the submergence depth of a small

autonomous underwater vehicle or auv. Its governing equations are:

M d°R/dt?> + NdrR/dt = B + D - W
JdBzdt + I B = Q
Q = KE E=C-R

Laplace Transformation of the governing equations gives

MS>+NS)yR=B +D

I
O

@S+1)B
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For the command case, the overall transfer function is

C MJ S + (NJ+MI) S? + NI S + K

Let the parameters be:

M =50.0 N = 50.0.

Substitution gives

C 25S®*+30S?+5S + 3

The forward path transfer function G(S) is

MJ S + (NJ+MI) S? + NI S

253 +30S*+5S
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The matlab c2d function can be used to convert the continuous
transfer function G(S) to the discrete transfer function G(Z). The
system has unity feedback. Its transfer function H(Z) is 1/Z. The

overall transfer function is:

G(2)

1+ G622 H®

To examine the influence of digital phenomena on the performance
of the system, we consider i1ts response to a step command with a
height of 10. A simulation m code for the system iIs given on the
next page. The response of the continuous system follows it. The
response of the discrete system for the case where the loop period
is 1 follows the continuous response. As can be seen, the system
has become unstable. Some matlab script which makes use of Z
transforms follows the simulation responses. Its response for the
loop period equal to 1 case agrees with the simulation. A SIMULINK
block diagram for the discrete system follows the script response.

Its response agrees with the simulation and script responses.
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-

»» % auv depth control
Fr

»ro2=tf('z',1); dh=1/z;
-

5
Fr

»» dyg=cidig,1,'zoh');
-

»» gyz=feedback (dy, dh)

o

g=tf([3],[25 30 5 0]}

Transfer function:
0.01506 =3 4+ 0.04541 =22 + 0.008277 =z

"4 - 2.187 2*3 + 1,303 g*2 - 0.2338 = + 0.008277

Sampling time: 1
-

»r step(10%sys, 100)
,a
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SAMPLING AND CONSTRUCTION OF SIGNALS

Today, most systems are controlled by digital computers. Within a
computer control loop, sampling of sensor signals is usually done
first followed by calculation of control signals followed by
control signal construction using ZOH. The time it takes to move
once through the control loop is known as the loop period. This is
usually much 1less than the basic system period. When the two

periods are comparable, performance is usually very poor.

One can use digital simulation or time stepping to study the
performance of such a system. One can also use pulse transfer
functions. For this, one must first focus in on the points in time
where sensors are sampled because control signals are based solely
on state of system at these instants. Mathematically sampling is
done by multiplying each signal of interest by a train of unit
impulses. The area of each impulse generated is a signal level at
a sampling instant. For example, sampling the wunit impulse

response function h(t) gives:

h(t) = & h(nT) d(t-nT)

where T is the sampling period. Laplace Transformation of this

followed by manipulation gives the pulse transfer function H(Z) :

H(Z) = £ h(nT) 2Z7 where Z=e
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The response of a system to a unit impulse is of the form:

h(t) = » T &

Laplace Transformation of this gives:

H(S) =35 T / (S-X)
Z Transformation gives:
H(z) =T / (1 -e¥z")
This gives the roots Z = e . Substitution into this shows that

stable region in S plane maps to the inside of a unit circle in Z

plane. If roots fall outside unit circle, the system is unstable.

Often manipulation gives H(Z) as a ratio of two polynomials:

H(Z) = N(Z) / D(Z)

where D(Z)=0 i1s the system characteristic equation. Long division

of D(Z) into N(Z) can be used to reduce H(Z) to the basic form:

n

H(Z) = ¥ h(nT) Z

Inspection of this tells if the system is stable or unstable.
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STATE SPACE CONTROL

State space control works with the ordinary differential
equations and algebraic equations governing the state of the
system. It puts these equations in matrix form. Manipulation of
the matrix equations gives something called the State Transition
Matrix. Setting the determinant of this matrix to zero gives the
characteristic equation for the system. State space control tries
to control all of the states of the system. For this, instead of
just a single gain, it uses a gain matrix. To control all states,
all states must be sensed. For some systems, this may be
impossible. In these cases, the governing equations are used to
estimate the states. State space control is computationally

expensive and may be inappropriate for pic controlled systems.

As an illustration of state space control, we will consider the
task of controlling the submergence depth of a small autonomous

underwater vehicle or auv. Its governing equations are:

M d°R/dt? + N drR/dt = B + D

JdB/dt + 1B = Q

Q = K (C-R)
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Manipulation of these equations gives:

drR/7dt = U
du/dt = B/M + D/M - N/MU
dB/dt = K (C-R)/J - 1/ B

When C and D are zero, one gets the matrix equation:

dE./dt 0 1 0

du/dt = 0 -N/M +1/M

dB/dt -E/J 0 -1/3

The response following an impulse will have the form:

Substitution Into the matrix equation gives
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0 AN M -1/M Un = 0

Setting the matrix determinant to zero gives:

A [MAHNZM] [A+173] + [K/ZJ] [/M] = O
Manipulation gives:
MI A2 + [MI+NJ] 2> + NIl A + K = 0

This 1i1s the overall system characteristic equation.

basically the same as that obtained from classical control:

MJ S® + [MI+NJ] S* +NI'S + K = 0
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State space control uses matrix manipulation to get many other

system properties. Details are beyond the scope of this note.

Matlab has a function SS which converts classical control transfer
functions to state space matrix form. The m code on the next page
shows an application of this for auv depth control. The step
response produced by the code follows it and is identical to that
obtained by classical control. This is not surprising because they

are both based on the same equations.

Simulink has state space blocks. A state space block diagram for
the auv depth control case is shown immediately after the SS code
and i1ts response. The drive and plant state space menus are also
shown. In them, x iIndicates the states, u indicates the inputs and
y indicates the outputs. The step response produced by the state
space block diagram is basically the same as that produced by the

m code. Again, this is not surprising.
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AT DEFPTH CORTROL

% STATE SFPACE MODEL

clear all

Z gain

E=3.0;
 driwve
nun=[ 1] -
den=[0.5 0.1]
A=t f (num, den)
=sd===(d) :

Z plant

T

T

nwun=[ 1] -

den=[50.0 S0.0 0O]:
p=tf (nuwun, den)
sp=ss3(p);

Z forward path
sg=K¥zerie=si(=d,=sp]
L G [1+GH]
sy=s=feedbacki(=dg, 1)
Z =tep response
step(l0¥=vw=, 100)
title('aus')
viabhel('depth!' )
labhel('tCim="')

ogr ic

T

Rl ]
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State Space

State-space model:
dxfdt = A + Bu
y=10x+0u

Patameters

f:

[-0.2]

B

[2.0]

i

[1.0]

C:

[0.0]

Initial conditions:

0

fbsolute kalerance:

auko

Skate Mame: (e.q., 'position’)

|_ QK J| Cancel || Help | Apply
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State Space

State-space model:
difedt = & + Bu
y=Cx+0u

Parameters

i

[-1.00.0; +1.0 0.0]

B!

(0.02; 0.0]

i

(0.0 1.0]

o

[0.0]

Initial condiions:

I

Absalute tolerance:

auka

Stake Name: (2.q., ‘position’)

k. | Cancel || Help

Apply
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