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Give a statement in words for each of the three conservation 

laws for fluid flow. [6] 

 

 

 

Conservation of Mass: The time rate of change of the mass of an 

arbitrary specific group of fluid particles in a flow is zero.  

 

 

Conservation of Momentum: The time rate of change of the 

momentum of an arbitrary specific group of fluid particles in a 

flow is equal to the net force acting on the group. The forces 

acting on the group can be of two types: body forces and surface 

forces. Body forces are generally due to gravity. Surface forces 

are due to pressure and viscous traction. 

 

 

 

Conservation of Energy: The time rate of change of the energy of 

an arbitrary specific group of fluid particles in a flow is 

equal to the net work done on the group by the surroundings plus 

the net heat flux into the group from the surroundings.  



 

 

The integral form of the conservation laws is given below. 

Identify each law. [3] The PDE form of each law is on the next 

page. Identify each PDE.  [3] 

 

 

CONSERVATION OF MASS 
  
                     D/Dt    ρ dV   =   0   
                            V(t)               
          
                   [ ρ/t + .(ρv) ] dV  =  0   
                  V(t) 
 
 
 

    CONSERVATION OF MOMENTUM 
 
          D/Dt   ρv dV   =     σ dS    +     ρb dV 
                V(t)           S(t)          V(t) 
                                                 
    [(ρv)/t + .(ρvv)] dV   =     σ dS    +     ρb dV              
   V(t)                             S(t)          V(t) 
 
 
                                                 

CONSERVATION OF ENERGY 
 
           D/Dt   ρe dV   =   -    q.n dS   +     v.σ dS    
                 V(t)              S(t)           S(t)      
 
 
                      e  =  u  + v.v/2  +  gz  
 
 
  
    [(ρe)/t + .(ρev)] dV   =   -   q.n dS  +     v.σ dS                
    V(t)                             S(t)           S(t)       
 
 



 

 

 

 

CONSERVATION OF MASS 
 
               U/x  +  V/y  +  W/z  =  0  

 

 

 
CONSERVATION OF MOMENTUM 

 
       ρU/t + ρ (UU/x + VU/y + WU/z) = - P/x  
 
             +  μ (2U/x2 + 2U/y2 + 2U/z2)   
 
 
       ρV/t + ρ (UV/x + VV/y + WV/z) = - P/y  
 
             +  μ (2V/x2 + 2V/y2 + 2V/z2)   
 
 
     ρW/t + ρ (UW/x + VW/y + WW/z) = - P/z - ρg   
 
             +  μ (2W/x2 + 2W/y2 + 2W/z2)   
 

 

 

CONSERVATION OF ENERGY 
 

        ρC T/t  +  ρC (UT/x + VT/y + WT/z)  =  μ Φ  

        +  /x(kT/x)  +  /y(kT/y)  +  /z(kT/z) 

 



 

 

The PDEs and AEs for Turbulent Wake Flows are given on the next 

few pages. Identify each PDE and AE. [6] Explain briefly how CFD 

can be used to get flows step by step in time. [3] 

 
 

CONSERVATION OF MOMENTUM 
 

ρ ( U/t + UU/x + VU/y + WU/z ) + A = - P/x 
 

+  [ /x (μ U/x) + /y (μ U/y) + /z (μ U/z) ] 
 

ρ ( V/t + UV/x + VV/y + WV/z ) + B = - P/y 
 

+  [ /x (μ V/x) + /y (μ V/y) + /z (μ V/z) ] 
 

ρ ( W/t + UW/x + VW/y + WW/z ) + C = - P/z - ρg 
 

+  [ /x (μ W/x) + /y (μ W/y) + /z (μ W/z) ] 
 
 
 

CONSERVATION OF MASS 
 

P/t + ρ c2 ( U/x + V/y + W/z ) = 0 
 
 

WATER SURFACE TRACKER 
 

F/t +  UF/x + VF/y + WF/z = 0 
 
 
 

TURBULENCE KINETIC ENERGY 
 

k/t + Uk/x + Vk/y + Wk/z = TP - TD 

+  [ /x (μ/a k/x) + /y (μ/a k/y) + /z (μ/a k/z) ] 
 
 

TURBULENCE DISSIPATION RATE 
 

ε/t + Uε/x + Vε/y + Wε/z = DP – DD 

+  [ /x (μ/b ε/x) + /y (μ/b ε/y) + /z (μ/b ε/z) ] 
 



 

 

 
PRODUCTION AND DISSIPATION 

 
TP = G μt / ρ    DP = TP C1 ε / k 

 
 

TD = CD ε       DD = C2 ε2 / k 
 
 

VISCOSITIES 
 

μt = C3 k2 / ε      μ = μt + μl 
 


CFD TEMPLATE 


M/t = N      MNEW = MOLD + t NOLD 

 
 

The region of interest is divided by a CFD grid. CFD cells 

surround each point where grid lines cross. Each PDE is put into 

the form: M/t = N. The template MNEW = MOLD + t NOLD is applied 

to each PDE at each point in the grid to get flows step by step 

in time. Finite differences are used to approximate the various 

derivatives in N. Central differences are used to approximate 

the diffusion terms. Upwind differences are used to approximate 

the convective terms. The eddy viscosity concept is used to 

model turbulence. The volume of fluid concept is used to track 

the water surface. The function F is 1 inside water and 0 

outside it: cells with F between 1 and 0 contain the water 

surface. The Semi Implicit Method for Pressure Linked Equations 

or SIMPLE procedure is used to update pressure and correct 

velocities so that they satisfy mass and momentum. 

 



 

 

Consider a pipe with a large pressurized tank at its upstream 

end and a large pressurized tank at its downstream end. Midway 

along its length is a valve. Using wave reflection concepts, 

briefly explain what happens inside the pipe downstream of the 

valve when there is a sudden valve closure. [5] 

 

 

 

 



 

 

 

 

 

When the valve is suddenly closed, it creates a flow imbalance. A 

low pressure or suction wave is created which propagates down the 

pipe. As it does so, it brings the fluid to rest. The pipe has low 

pressure all along its length.  

 

When the suction wave reaches the tank, it creates a pressure 

imbalance. A backflow wave is created. This propagates up the pipe 

restoring pressure everywhere to its original level.  

 

When the backflow wave reaches the valve, it creates a flow 

imbalance. This causes a high pressure or surge wave to propagate 

down the pipe. As it does so, it brings the fluid to rest. The 

pipe has high pressure all along its length.  

 

When the surge wave reaches the tank, it creates a pressure 

imbalance. An outflow wave is created. This travels up the pipe 

restoring pressure to its original level. Conditions in the pipe 

become what they were just before the valve was closed.  

 

 

 

 



 

 

Consider a pipe with a large pressurized tank at its upstream 

end and a large pressurized tank at its downstream end. Midway 

along its length is a valve. Assume Po=2  Uo=1  ρa=1.  Using the 

method of characteristics OR algebraic waterhammer analysis, 

calculate the pressure and flow velocity at the ends of the 

downstream pipe following a sudden valve closure. Do 4 transits 

of pipe. [8] Sketch the PU plot for the downstream pipe. [4]   

 

 

 

 



 

 

 

ALBRBRAIC WATERMAMMER ANALYSIS 

 

Move along an F wave from T to V. For an F wave: 



ΔP = + ρa ΔU 
 

[PV – PT] = + ρa [UV – UT] 

 
 

In this equation, UV=0; PT=PO; UT=Uo. It gives PV. 

 

Move along an f wave from V to T. For an f wave: 

 

ΔP = - ρa ΔU 
 

[PT – PV] = - ρa [UT – UV] 

 
 

In this equation, UV=0; PT=Po; PV known. It gives UT. 

 

 

 

METHOD OF CHARACTERISTICS ANALYSIS 

 

At the tank, the C+ characteristic gives 

 

UK – UB + (PK-PB)/[ρa] = 0 

 
PK = + [ρa] UB +  PB 

 

 

 



 

 

 

At the valve, the C- characteristic gives 

 

UI – UB - (PI-PB)/[ρa] = 0 

 
UI = UB + (PI-PB)/[ρa] 

 

At the middle, the C+ and C- characteristics give 

 

UJ = 0.5 [ UA + UC + [PA-PC]/[ρa] ] 

PJ = 0.5 [PA + PB + [ρa][UA-UC] ] 

 

Here there is no middle point and the method of characteristics 

equations reduce to the algebraic waterhammer equations.  

 

 

STEP#1   [PV – PT] = + ρa [UV – UT]     PV = +1 

 

STEP#2   [PT – PV] = - ρa [UT – UV]     UT = -1 

 

STEP#3   [PV – PT] = + ρa [UV – UT]     PV = +3 

 

STEP#4   [PT – PV] = - ρa [UT – UV]     UT = +1 



 

 

A certain low RE flow passageway has a 2 by 2 Cartesian geometry 

and a gap h=1 throughout. Its sides are blocked. The pressure P 

at its front entrance is 3 and at its back exit is 1. The speed 

of its moving surface is S=1. Its oil has viscosity µ=1. What is 

the pressure at the midpoint of the passageway?  [8] 

 

 

 

This is a 1D problem. The governing equation is: 

 

d/dx (h3 dP/dx)  =  6μ S dh/dx   =  H dh/dx 

 

For a constant gap, this reduces to: 

 

dP/dx = A 

 

Integration gives: 

 

P = A x + B 

 
= [PI – PO] [x/d] + PO  

 

= [3-1] [d/2]/d + 1 = 2



 

 

A certain Joukowsky foil is obtained by mapping a circle with 

radius R=0.5 and offsets m=0 and n=0 to a foil plane. It has an 

angle of attack Θ=0. It is moving through a fluid with ρ=1 at a 

speed S=1. What is the theoretical lift on the foil? [3] Map 4 

points on the circle to the foil plane. [4] Calculate the 

pressure midway between consecutive points on the foil. [4] 

Calculate the lift from the calculated pressures.  [4] 

 

The theoretical lift is: ρSΓ. The circulation is: 

 
Γ = 4πSR Sinκ   

 
κ = Θ + ε     ε = tan-1 [m/(n+a)] 

 
 

Here Θ and ε are both zero. So Γ is zero and lift is zero. 

 

Geometry gives:  

 
α = x + xa2/(x2+y2)     β = y - ya2/(x2+y2) 

x = X – n      y = Y + m 

X = - R Cos      Y = + R Sin 

 
Substitution into this gives a flat plate foil: 

 
#1  α=-1  β=0    #2  α=0  β=0 

#3  α=+1  β=0    #4  α=0  β=0 

 
An application of the Bernoulli equation from a point far 

upstream of the foil to a point on the foil gives: 

 



 

 

 

P =  ρ/2 [ S2 – (φ/c)2 ]   

 
 =  ρ/2 [ S2 - (Δφ/Δc)2 ] 

 
Potential flow theory gives: 

 
Δφ = 2S ΔX +  Γ/[2π] Δσ 

 
Geometry gives:  

 
Δc = [Δα2+Δβ2]   

      
X = X CosΘ + Y SinΘ 

 

Substitution into this shows that  Δφ/Δc is equal to S at each 

point on the foil: so P is zero at each point. 

 
The incremental lift on the foil is: 

 
ΔL = PΔc Sin(θ-Θ) = 0 

  
The foil normal θ is:    

  
θ = tan-1[-Δ/+Δ]                 

 
The total lift L is: 

 
L = ΣΔL = 0 

 

 

 

 



 

 

Explain how you would calculate the supersonic drift speed 

behind the shock wave generated by an explosion [7] and the 

pressure and temperature at the stagnation point of a blunt 

object in the flow. [7] Identify the important equations. 

 

 

Assume that the pressure ratio across the shock wave generated 

by the explosion is known. In the shock frame, air upstream 

moves towards the shock at supersonic speed and air downstream 

moves away from it at subsonic speed. The pressure ratio 

equation gives MU:  

 

PD/PU = 1 + [2k/(k+1)] (MUMU - 1) 

 

The wave speed equation gives aU: 

 

aU = [kRTU] 

 

The Mach Number equation gives UU: 

 

MU = UU/aU        

 

The Mach Number connection gives MD: 

 

MDMD  = [(k-1) MUMU + 2]  / [2k MUMU - (k-1)] 

 

The temperature ratio equation gives TD: 

 

TD/TU = [ (1 + [(k-1)/2] MUMU) / (1 + [(k-1)/2] MDMD) ] 

 



 

 

The wave speed equation gives aD: 

 

aD = [kRTD] 

 

The Mach Number equation gives UD: 

 

MD = UD/aD     

  

The drift speed is UU minus UD. 

 

 
 

 



 

 

 

A bow shock wave forms directly in front of a blunt object in a 

supersonic flow. Let A be just upstream of the shock and B be 

just downstream. At the stagnation point on the object, MS is 

zero. Conditions at A are known. 

 

 

The temperature ratio equation based on energy gives the 

stagnation point temperature TS:  

 

 TS/TA = [ (1 + [(k-1)/2] MAMA) / (1 + [(k-1)/2] MSMS) ] 
 

 

The pressure ratio equation gives the pressure downstream of the 

bow shock wave PB:  

 

PB/PA = 1 + [2k/(k+1)] (MAMA - 1) 
 

 

The Mach Number connection gives MB:  
  

 
MBMB  = [(k-1) MAMA + 2]  / [2k MAMA - (k-1)]  

 

 
The isentropic pressure ratio equation gives PS: 

 

PS/PB = [ (1 + [(k-1)/2] MBMB) / (1 + [(k-1)/2] MSMS) ]x         

 

 

 

 

 



 

 

 

 

 

 



 

 

PROCESS: Explain how you would calculate the pressure and flow 

velocity changes which occur when a high speed flow moves down a 

pipe. Identify the important equations. [8]  

 

 

Gas dynamics theory gives 

 

M2/M2 = kM2[1+[(k-1)/2]M2] /[1-M2] fx/D 
 

P/P = -kM2[1+(k-1) M2]/[2(1-M2)] fx/D 
 
                T/T = -k(k-1)M4/[2(1-M2)] fx/D  
 
 

These can be put into the form: 
 

M2 = A x 

 
P = B x 

 
T = C x 

 

For moving a step down a pipe, these equations give: 

  

[M2]NEW = [M2]OLD + AOLD x 

 
PNEW = POLD + BOLD x 

 
TNEW = TOLD + COLD x 

 

Note that A B C is each a function of M2 so they must be updated 

after each step down the pipe. 



 

 

MECHANICAL: Explain how you would calculate the lift on a 

supersonic diamond foil. Identify the important equations. [8]  

 

The supersonic foil has waves as shown in the sketch.  

 

With known upstream Mach Number MU and local attack angle ε, the 

oblique shock plot gives the shock angle β. Substitution into the 

normal Mach Number equation gives NU: 

 

NU = MU Sinβ       ND = MS Sin κ  
 

 
Substitution into the pressure ratio equation gives PB: 
 

 
PD/PU = 1 + [2k/(k+1)] (NUNU - 1) 

 

NDND  = [(k-1) NUNU + 2]  / [2k NUNU - (k-1)] 
 
 

With known upstream Mach Number MU and local attack angle ε, the 

expansion wave plot gives MD for each expansion. The isentropic 

pressure ratio equation then gives PD.  

 

TD/TU = [ (1 + [(k-1)/2] MUMU) / (1 + [(k-1)/2] MDMD) ] 

 
PD/PU = [TD/TU]x        x = k/(k-1) 

 

The lift is: 

 

Σ PB C Cos θ  - Σ  PT C Cos θ  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

LAB QUESTIONS [9] 

 

DO ANY 3 OUT OF 4 QUESTIONS 

 

 

In the shock tube lab you used two high speed or ballistic 

pressure sensors to measure pressure at two points along the 

tube spaced a known distance apart. Explain how you would 

determine the Mach Number of the shock wave from just one 

pressure sensor oscilloscope trace and theory. [3] Speculate on 

what would happen to the shock wave pressure traces on the 

oscilloscope if the exit from the tube was blocked. [3] 

 

 

In the foil lab, you measured pressure at points on the foil. 

You also measured the static pressure and the flow speed far 

upstream of the foil. Explain how you would determine the speed 

of the flow at points on the foil from these measurements. [3]  

 

 

In the waterhammer lab, you used a pressure sensor to measure 

the pressure generated by a sudden valve closure. How could the 

pressure trace be used to calibrate the sensor? Assume that the 

pressure transient causes the water to vaporize. [3]  

 





 

 





Shock Tube Lab: Explain how you would determine the Mach Number 

of the shock wave from just one pressure sensor oscilloscope 

trace and theory. Substitute the pressure ratio measured by the 

sensor into the pressure ratio equation for a normal shock wave 

that contains only the upstream Mach Number. 

 

 

Shock Tube Lab: Speculate on what would happen to the shock wave 

pressure traces on the oscilloscope if the exit from the tube 

was blocked. The pressure traces would remain the same. The 

initial shock wave that goes down the tube is not affected by 

the boundary condition at the exit until it hits it.   

 

 

Joukowsky Foil Lab: Explain how you would determine the speed of 

the flow at points on the foil from lab measurements. 

Application of Bernoulli from a point far upstream to any point 

on the foil gives an equation for the speed there. 

 

  

Waterhammer Lab: How could the pressure trace be used to 

calibrate the sensor? The pressure on the sensor when there is 

no flow is known. The pressure when there is vaporization is 

also known. By recording the voltages at these states, the 

sensor can be calibrated: CF = P/V. 



 

 



IDENTIFY AND OUTLINE THE FOLLOWING DERIVATION [4] 
 




REYNOLDS EQUATION FOR PRESSURE 
 
 
 
Conservation of Mass is: 
 
 
U/x + V/y + W/z = 0 
 
 
Simplified Conservation of Momentum is:  
 
 
P/x = μ2U/z2 


P/y = μ2V/z2    


 = μ2W/z2 
  
 
Integration of mass gives: 
             
 
   [U/x + V/y + W/z] dz = 0 
 
 
Manipulation gives: 
 
 
                  I/x + J/y + K = 0 
 
 
I =  Udz    J =  Vdz    K =  W/z dz 
       

 



 

 

 
 
Double integration of momentum gives: 

 
 
             P/x (z2-zh)/2μ + (UT-UB)z/h + UB  
 
 
             P/y (z2-zh)/2μ + (VT-VB)z/h + VB  

 
                  (WT-WB)z/h + WB  
 
 
Substitution into the I J K equations gives: 

 
 

 
             P/x (-h3/12μ) + (UT-UB)h/2 + UBh 
 
 
             P/y (-h3/12μ) + (VT-VB)h/2 + VBh 

 
                         WT-WB  
 

Substitution into integrated mass gives: 

 

           /x (h3/12μ P/x)  +  /y (h3/12μ P/y) 
  
       =  [h(UT+UB)/2]/x  +  [h(VT+VB)/2]/y  +  (WT-WB)     
 
 
 
This is Reynolds Equation for Pressure.



 

 

 
 

IDENTIFY AND OUTLINE THE FOLLOWING DERIVATION [4] 
 
 
 
 

ALGRBRAIC WATERHAMMER 

 

Conservation of Momentum is: 

 

ρ U/t + ρU U/x + P/x - ρ C = 0 

C  =  f/D U|U|/2 - g Sinα 

 

Conservation of Mass is: 

 

P/t + U P/x + ρa2 U/x = 0 

 

Simplification gives: 

 

ρ U/t + P/x = 0 

P/t + ρa2 U/x = 0 

 

Manipulation gives the wave equations:  

 

2P/t2 = a2 2P/x2 

2U/t2 = a2 2U/x2 

 

 

 



 

 

 
The General Solutions are: 

 

P - Po  =  f(N) + F(M) 

 
U - Uo  =  [ f(N) - F(M)] / ρa 

 

where N and M are wave fixed frames 

 

M = t + x/a      N = t - x/a 

 

Multiplication of the U equation by ρa followed by 

subtraction from the P equation gives:  

 

P - Po  - ρa [U - Uo] = 2 F(M) 

 
ΔP = + ρa ΔU 

 

This equation connects the downstream end of the pipe now to 

the upstream end one transit time back in time.  

 

Multiplication of the U equation by ρa followed by addition 

to the P equation gives:  

 

P - Po  + ρa [U - Uo] = 2 f(N) 

 
ΔP = - ρa ΔU 

 

This equation connects the upstream end of the pipe now to 

the downstream end one transit time back in time. 



 

 

 

NAME: 

___________________________________________________________ 

 

 

 
 

TD/TU = [ (1 + [(k-1)/2] MUMU) / (1 + [(k-1)/2] MDMD) ] 
 

 
 

PD/PU = [TD/TU]x        x = k/(k-1) 
 
 
 

 
 

PD/PU = [ 1 + k MUMU ] / [ 1 + k MDMD ] 
 
 

PD/PU = 1 + [2k/(k+1)] (MUMU - 1) 
 

 
MDMD  = [(k-1) MUMU + 2]  / [2k MUMU - (k-1)] 

 
 
 
 

 
 

NDND  = [(k-1) NUNU + 2]  / [2k NUNU - (k-1)] 
 

 
 

PD/PU = 1 + [2k/(k+1)] (NUNU - 1) 
 

 
 
 
 
 
 



 

 

 
 

 
NU = MU Sinβ      ND = MD Sinκ 

 
 
 

κ = β - Θ         D = U + Θ 
 

 
 
 

tan(β)/tan(κ) = [(k+1) NU NU ] / [ (k-1) NU NU + 2 ] 
 

 
 

 = (k+1)/(k-1)] tan-1[[(k-1)/(k+1)](M2-1)] - tan-1[M2-1] 
 

 

 

M
.
 = ρAU      M = U/C     C = kRT 

 

ρ  = P/[RT]            M
.
U + ΔP A 

 
 

 
 

dρ/ρ  +  dA/A + dU/U = 0      
 
 

UdU + c2dρ/ρ = 0 
 
 
 

dU = UdA / [A(M2-1)] 
 
 
 
 
 

 



 

 

 
 

M2/M2 = kM2[1+[(k-1)/2]M2] /[1-M2] fx/D 
 
 
 
 

P/P = -kM2[1+(k-1) M2]/[2(1-M2)] fx/D 
 

 
 

T/T = -k(k-1)M4/[2(1-M2)] fx/D 
  
 
 

ρ/ρ = -kM2/[2(1-M2)] fx/D 
 

 
 

   fL*/D = (1-M2)/(kM2) + [(k+1)/(2k)] ln[(k+1)M2/(2+(k-1)M2)] 
 

 
 

   fL*/D = (1-kM2)/(kM2) + ln[kM2] 
 
 
 

 

Sη = A/ω5 e-B/ω4      A=346H2/T4      B=691/T4 

 
SR = RAO2 Sη          Mn = 1/2    SR(ω) ωn dω 

 

HR = 4 M0      TS = 2π M0/M1 

P(Ro>R) = e
-X        X = RR/[2M0] 

CF = [1-εε]      ε = [M0M4-M2M2]/[M0M4] 
 
 

 



 

 

 

 

/x (h3/12μ P/x)  +  /y (h3/12μ P/y) 
 

=  [h(UT+UB)/2]/x  +  [h(VT+VB)/2]/y  +  (WT-WB) 
 
 

A = [(hE+hP)/2]3  / x2] 
 

B = [(hW+hP)/2]3  x2] 
 

C = [(hN+hP)/2]3  y2] 
 

D = [(hS+hP)/2]3  y2] 
 

H = - 6μ S (hE-hW)/[2x] 
 
 
 

/r (rh3/12μ P/r)  +  r /c (h3/12μ P/c) 
 

=  [rh(UT+UB)/2]/r  +  [h(VT+VB)/2]/   +  r(WT-WB) 
 
 

A = [(hE+hP)/2]3  rP c2] 
 

B = [(hW+hP)/2]3  rP c2] 
 

C = [(hN+hP)/2]3   [(rN+rP)/2] / r2] 
 

D = [(hS+hP)/2]3  [(rS+rP)/2]r2] 
 

H = - 6μ rP (hE-hW)/[2] 
 
 

                      (A PE + B PW + C PN + D PS + H) 
PP   =   —————————————————————————————— 

                            (A + B + C + D)   
 
 
 



 

 

 
 

 
d/dx (h3 dP/dx)  =  6μ S dh/dx   =  H dh/dx 

 
 
 

h3 dP/dx  = H h + A          dP/dx = H/h2 + A/h3 

 

dP/dx = H/(sx+b)2 + A/(sx+b)3     s=[a-b]/d 

 

P = -H/[s(sx+b)] - A/[2s(sx+b)2] + B 

 

A = [PI-PO][2sa2b2]/[b2-a2] - 2Hba/[b+a] 

 

B = [PIb2-POa2]/[b2-a2] + H/[s(b+a)] 





[h3 dP/dx] = Hh 

 

a3 [PO-P]/v - b3 [P-PI]/w = H [a-b] 

 

P = [ a3/v PO + b3/w PI + H [b-a] ] / [ a3/v + b3/w ] 

 

 

d/dy (h3 dP/dy)  =  6μ S dh/dx   =  H dh/dx 
 
 

d/dy (dP/dy) = H/h3 dh/dx = G 

 

P = G/2 y2 + Ay + B 

  

 



 

 

 

φ = S [ X + XR2/(X2+Y2) ]  +  Γ/[2π] σ 

 

φ = 2 S X  +  Γ/[2π] σ 

 

ρ/2 [ S2 - (φ/c)2 ]      ρ/2 [ S2 - (Δφ/Δc)2 ] 

 

α = x + xa2/(x2+y2)     β = y - ya2/(x2+y2)      

 

Γ = 4πSR Sinκ       Δc = [Δα2+Δβ2]                ρSΓ 

 

X = X CosΘ + Y SinΘ     Y = Y CosΘ - X SinΘ 

 

X = x + n     Y = y - m               κ = Θ + ε      

                   

X = - R Cos σ      Y = + R Sin σ 

 

ε = tan-1 [m/(n+a)]     m2 + (a+n)2 = R2 

 

PΔc Sin(θ-Θ)    PΔc Cos(θ-Θ)     

 

θ = tan-1[-Δ/+Δ]                L=ΣΔL     D=ΣΔD

 
 



 

 

 
 

 
δ* =  (1-U/U)dy    =  U/U(1-U/U)dy    D=bdc=bc 

 
 

 = C ρU2/(Uδ/)1/k      = ρ d[U2]/dc + ρδ* UdU/dc 
 
 

dδ/dc = H    δNEW = δOLD + c HOLD     U/U = (y/δ)1/n 
             
 

P = [D+W]U    δ = A x REX-1/a       δ* = Iδ     = Jδ 
         
 

D = M bx REX-1/m ρU2      D = N bx REX-1/2 ρU2 

 
 

D = K bx ρU2       W = C B ρU2/2 
 
 
 
 
 
 

ρ U/t + ρU U/x + P/x - ρg Sinα + f/D ρU|U|/2 = 0 

 

P/t + U P/x + ρa2 U/x = 0 

 

ρ U/t + ρU U/x + P/x + ρC  
 

+  λ  (P/t + U P/x + ρa2 U/x) = 0 

 

 

C =  f/D U|U|/2 - g Sinα 

 



 

 

 
 

ρ (U/t + [U+λa2] U/x) 

 
+ λ (P/t + [1/λ+U] P/x) + ρC  = 0 

 

dx/dt = U + λa2 = 1/λ + U      λ = ± 1/a 

 

dU/dt + λ/ρ dP/dt + C = 0 

 
 

dU/dt + 1/ρa dP/dt + C = 0      dx/dt = U + a 

dU/dt - 1/ρa dP/dt + C = 0      dx/dt = U - a 

 

UP - UL + (PP-PL)/[ρa] + CL(tP-tL) = 0    xP-xL = (UL+a)(tP-tL) 

UP - UR - (PP-PR)/[ρa] + CR(tP-tR) = 0    xP-xR = (UR-a)(tP-tR) 

 

UP = 0.5 (UL + UR + [PL-PR]/[ρa] - Δt(CL+CR)) 

PP = 0.5 (PL + PR + [ρa][UL-UR] - Δt[ρa](CL-CR)) 

 

 

ΔP = + ρa ΔU 
 

ΔP = - ρa ΔU 
 

 
 
 



 

 

 
 

U = Uo M/Mo ζ a 
 

Uo = D/T      Mo = ρD2 
 
 

 
U = β/T [Mδ/ρ] 

 
U = βUo [δM/Mo] 

 
 

 
U = D/[ST] 

 
T = T 

 
 

 
 

 
U2 = [ EI/[ρA] π2/L2 + T/[ρA] - P/ρ ] 

 
 
 

 
U = [4 + 14 Mo/M] Uo 

 
Uo = [EI]/[MoL2]       Mo = ρA 

 
 
 
 

Tn = [2L/n] [m/T] 

 
Tn = [L/n]2 [2/π] [m/EI] 

 
Tn = 2πL2/Kn  [m/EI] 

 

 



 

 

 

CP = (g/k Tanh[kh]) 
 

ω = (gk Tanh[kh]) 
 
 

U =  + H/2 2π/T Cosh[k(z+h)]/Sinh[kh] Sin(kX) 
 

W =  - H/2 2π/T Sinh[k(z+h)]/Sinh[kh] Cos(kX) 

 

 

        dU/dt = - H/2 (2π/T)2 Cosh[k(z+h)]/Sinh[kh] Cos(kX) 
 

        dW/dt = - H/2 (2π/T)2 Sinh[k(z+h)]/Sinh[kh] Sin(kX) 

 

 

xp  =  xo  + H/2 Cosh[k(z+h)]/Sinh[kh] Cos(kX) 
 

Zp  =  zo  + H/2 Sinh[k(z+h)]/Sinh[kh] Sin(kX) 

 
 

η = ηO Sin(kX)     ΔP  =  ρg η Cosh[k(z+h)]/Cosh[kh] 

 

CG  =  dω/dk  =  CP (1/2 + [kh]/Sinh[2kh]) 

 

E = 1/8 ρg H2      P =  CG  E 
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A GBS type of rig with a moon pool is sketched below. 

Derive an equation for its metacentric radius. [20]   

 

 

 

Note that the K and V of a basic GBS rig are: 

 

K =  G4 / 4        

V =  G2 h 

 

GBS with Moon Pool 

 

R = [KO – KI) / (VO – VI) 

 

= (G4/4 - H4/4) / (G2h - H2h)  



 

The equation governing the hydrostatic stability of 

floating bodies is given below. Explain it. [10] Use 

sketches to illustrate your answer.  

 

 

                            +G             
S g V =    x g x w dx 

                           -G 

 

 

 

Slice volume is: dV = x w dx 
 
 

Slice Weight is: dW = g dV 
 
 

Slice Moment is: x dW 
 
 

Integration gives: g K  
 
 

Manipulation gives: S = K/V  = R  
 
 

Metacentric Radius: R 
 

 



 

 

 

 

 



 

A Dentist Drill consists of a number of buckets attached to 

the rim of a small wheel or rotor. A sketch of one bucket 

for an optimum power flow configuration is shown below. In 

the sketch, B is the velocity of the bucket, R is the 

velocity of the fluid relative to the bucket and A is the 

absolute velocity of the fluid. Derive an equation for the 

power output of the drill. State all assumptions. [15]  

 

 

 

 

Power  P  =  ρQ 2B B 



 

The equations governing the power of a turbomachine are 

given below. Explain them. [15] 

 

 

F  =  ρQ VT         S = R ω 
 
 
 

P  =  F S  =  F R     =  T  
   

 
 

P  =   Δ [ ρQ VT R ω ] 
 
         
 
 

Momentum Force: F = ρQ VT 

 

Force Speed: S = R ω 

 

Power:  P = F S = T  

 

 

P  =   Δ [ ρQ VT R ω ] 



 

 

 

 

PDEs for Turbulent Flows are given below. Write brief notes 

on each PDE. [10] Write brief notes on Turbulence. [10]  

 
 

Conservation of X Momentum 
 
 ρ ( U/t + UU/x + VU/y + WU/z ) + A = - P/x  
 
 +  [ /x (μ U/x) + /y (μ U/y) + /z (μ U/z) ] 
 
 
 

Conservation of Y Momentum 
 
 ρ ( V/t + UV/x + VV/y + WV/z ) + B = - P/y  
 
 +  [ /x (μ V/x) + /y (μ V/y) + /z (μ V/z) ] 
 
 
 

Conservation of Z Momentum 
 
 ρ ( W/t + UW/x + VW/y + WW/z ) + C = - P/z - ρg  
 
 +  [ /x (μ W/x) + /y (μ W/y) + /z (μ W/z) ] 
 
 
 

Conservation of Mass 
 
 P/t + ρ c2 ( U/x + V/y + W/z ) = 0  
 
 
 

Water Surface Tracker 
 
 F/t +  UF/x + VF/y + WF/z = 0  
 
 
 
 
 
 



 
 
 
 

Kinetic Energy of Turbulence 
 
 
 k/t + Uk/x + Vk/y + Wk/z = TP - TD  
 
+  [ /x (μ/a k/x) + /y (μ/a k/y) + /z (μ/a k/z) ] 
 
 
 

Dissipation Rate of Turbulence 
 
 ε/t + Uε/x + Vε/y + Wε/z = DP - DD  
 
+  [ /x (μ/b ε/x) + /y (μ/b ε/y) + /z (μ/b ε/z) ] 
 
 
 
 
 

Time Stepping Template 
 
             M/t = N      MNEW = MOLD + t NOLD  
 
 
 

Turbulence Functions 
 
             TP = G μt / ρ    DP = TP C1 ε / k   
 
 
              TD = CD ε       DD = C2 ε2 / k 
 
 
 

Viscosities 
 
             μt = C3 k2 / ε      μ = μt + μl   
 
 

 



 

 

Write brief notes on CFD for Turbulent Flows. [10]  

 

The region of interest is divided by a CFD grid. CFD cells 

surround each point where grid lines cross. Each PDE is put 

into the form:  



M/t = N 

 

Application of simple time stepping gives: 

 

MNEW = MOLD + t NOLD 

 

This template is applied to each PDE at each point in the 

grid. Finite differences are used to approximate the 

various derivatives in N. Central differences are used to 

approximate the diffusion terms. Upwind differences are 

used to approximate the convective terms. The eddy 

viscosity concept is used to model turbulence. The volume 

of fluid concept is used to track the water surface. The 

function F is 1 inside water and 0 outside it: cells with F 

between 1 and 0 contain the water surface. The Semi 

Implicit Method for Pressure Linked Equations or SIMPLE 

procedure is used to update pressure and correct velocities 

so that they satisfy mass and momentum. 



 

 

Give an illustration of upwind differencing. [5]  

 

 

W  W/z 

 

Flow North to South 

 

(WN + WP)/2  (WN - WP)/z 

 

 

 

 

 

Give an illustration of the water surface tracker. [5]  

 

 

Water Surface Tracker 

 F/t +  U F/x + V F/y + W F/z = 0  
 
 
 

Flow South to North 

F/t + FW]/z = 0 

 

F = t ([FW]OUT – [FW]IN) / z 

 

 



 

BONUS [5] 

 

 

The integral form of the conservation laws is given below. 

Identify each law. The PDE form of each law is on the next 

page. Identify each PDE.  

 
Conservation of Mass 

  
                     D/Dt    ρ dV   =   0   
                            V(t)               
          
                   [ ρ/t + .(ρv) ] dV  =  0   
                  V(t) 
 
 

Conservation of Momentum 
                  
          D/Dt   ρv dV   =     σ dS    +     ρb dV 
                V(t)           S(t)          V(t) 
                                                 
    [(ρv)/t + .(ρvv)] dV   =     σ dS    +     ρb dV              
   V(t)                             S(t)          V(t) 
 
 
                                                

Conservation of Energy 
 
           D/Dt   ρe dV   =   -    q.n dS   +     v.σ dS    
                 V(t)              S(t)           S(t)      
 
 
                      e  =  u  + v.v/2  +  gz  
 
 
  
    [(ρe)/t + .(ρev)] dV   =   -   q.n dS  +     v.σ dS              
    V(t)                             S(t)           S(t)       
 
 



 

 
Conservation of Mass 

 
 
               U/x  +  V/y  +  W/z  =  0  

 

 
 

Conservation of Momentum 
 

 
       ρU/t + ρ (UU/x + VU/y + WU/z) = - P/x  
 
             +  μ (2U/x2 + 2U/y2 + 2U/z2)   
 
 
       ρV/t + ρ (UV/x + VV/y + WV/z) = - P/y  
 
             +  μ (2V/x2 + 2V/y2 + 2V/z2)   
 
 
     ρW/t + ρ (UW/x + VW/y + WW/z) = - P/z - ρg   
 
             +  μ (2W/x2 + 2W/y2 + 2W/z2)   
 

 

 
Conservation of Energy 

 
 

        ρC T/t  +  ρC (UT/x + VT/y + WT/z)  =  μ Φ  

        +  /x(kT/x)  +  /y(kT/y)  +  /z(kT/z) 

 

 

 



 

 

FORMULA SHEET 

 

 

 

                            +G             
S g V =    x g x w dx 

                           -G 

 

 
                      +G 

K =     x2 w dx      V = A h 
                      -G 

 

 

S = K/V   =  R  

 

 

 

T  =  Δ[ ρQ VT R ] 
 
 

 
P  =  T ω  =  Δ[ ρQ VT R ω ] 

 
         
 

P Q        VB = R  
 
 

P =  [VJ]2 / 2         Q = VJ A 
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A rectangular barge is sketched below. Derive an equation 

for its roll metacentric radius. [20] By analogy write down 

an equation for its pitch metacentric radius. [10] 

 

 

 

 

The buoyancy of a floating body is 

 

 g V 

 

The shift in the center of buoyancy caused by rotation is 

S. The moment of the buoyancy force is:   

 

S  g V 

 

This moment must be equal to the sum of the moments of all 

of the slices that make up the wedge shaped volumes created 

by rotation. For roll of the barge this moment is 

 



 

                 +G             
  x g x w dx  =  g K  

                 -G 

 

where 

 
                             +G 

K =     x2 w dx 
                            -G 

 
=  2 * 2L * G3/3 

 

The volume of the barge is  

 

V = 2L * 2G * h 

 

Manipulation gives  

 

S = K/V   =  R  

 

= G2/[3h]  

 

So the roll metacentric radius is 

 

R  =  G2/[3h] 

 

By analogy the pitch metacentric radius is 

     

R  =  L2/[3h] 

 



 

 

 

 

 

 



 

A sketch of one bucket of a Pelton Wheel Turbine is shown 

below. Derive an equation for the power output of this 

turbine in terms of its bucket speed VB and its jet speed 

VJ. [15] Determine the peak power of the turbine. [10] Write 

down the CP and CS scaling laws for the turbine. [5]  

 

 



 

The force at the inlet or outlet of a turbine associated 

with the tangential momentum there is: 

 

ρQ VT 

 

The speed of this force is  

 

R ω 

 

Power is force times speed  

 

ρQ VT   R ω 

 

The power of the turbine is  

 
 

P  =  Δ[ ρQ VT   R ω ] 

 

For a Pelton Wheel, Q and Rω are the same at the inlet and 

the outlet. So the power becomes 

 
 

P  =   ρQ Rω Δ[VT] 
 

=   ρQ VB Δ[VT] 
 

The absolute tangential velocities are 

 

VIN = VJ 

 
VOUT = (VJ – VB) Cos + VB 



 

 

With this power becomes 

   

P  =   ρQ VB (VJ – VB) (1 - Cos) 

 

Differentiation with respect to VB shows that the power peaks 

when the bucket speed VB is half the jet speed VJ. 

Substitution into power gives  

 

P  =   ρQ [VJ]2/4 (1 - Cos) 

 

The scaling laws for the turbine are: 

 

 

Power Coefficient    CP  

 

CP = P / PQ 

 
=   P / (  [VJ]2 / 2   VJ A ) 

 

 

Speed Coefficient    CS  

 

CS =  VB / VJ 

 
= R / VJ



 

 

 

Give a statement in words for each of the three 

conservation laws for fluid flow. [10] 

 

 

Conservation of Mass: The time rate of change of the mass 

of an arbitrary specific group of fluid particles in a flow 

is zero.  

 

 

Conservation of Momentum: The time rate of change of the 

momentum of an arbitrary specific group of fluid particles 

in a flow is equal to the force acting on the group. The 

force can be of two types: body forces and surface forces. 

Body forces are generally due to gravity. Surface forces 

are due to pressure and viscous traction. 

 

 

 

Conservation of Mass: The time rate of change of the energy 

of an arbitrary specific group of fluid particles in a flow 

is equal to the net work done on the group by the 

surroundings plus the net heat flux into the group from the 

surroundings.  

 

 



 

The integral form of the conservation laws is given below. 

Identify each law. [5] The PDE form of each law is on the 

next page. Identify each PDE.  [5] 

 

 

Conservation of Mass 
 
  
                     D/Dt    ρ dV   =   0   
                            V(t)               
          
                   [ ρ/t + .(ρv) ] dV  =  0   
                  V(t) 
 
 
     

Conservation of Momentum 
 
                  
          D/Dt   ρv dV   =     σ dS    +     ρb dV 
                V(t)           S(t)          V(t) 
                                                 
    [(ρv)/t + .(ρvv)] dV   =     σ dS    +     ρb dV              
   V(t)                             S(t)          V(t) 
 
 
                                                 

Conservation of Energy 
 
 
           D/Dt   ρe dV   =   -    q.n dS   +     v.σ dS    
                 V(t)              S(t)           S(t)      
 
 
                      e  =  u  + v.v/2  +  gz  
 
 
  
    [(ρe)/t + .(ρev)] dV   =   -   q.n dS  +     v.σ dS              
    V(t)                             S(t)           S(t)       
 
 



 

 
Conservation of Mass 

 
 
               U/x  +  V/y  +  W/z  =  0  

 

 
Conservation of Momentum 

 
 
       ρU/t + ρ (UU/x + VU/y + WU/z) = - P/x  
 
             +  μ (2U/x2 + 2U/y2 + 2U/z2)   
 
 
       ρV/t + ρ (UV/x + VV/y + WV/z) = - P/y  
 
             +  μ (2V/x2 + 2V/y2 + 2V/z2)   
 
 
     ρW/t + ρ (UW/x + VW/y + WW/z) = - P/z - ρg   
 
             +  μ (2W/x2 + 2W/y2 + 2W/z2)   
 

 

Conservation of Energy 
 
 

        ρC T/t  +  ρC (UT/x + VT/y + WT/z)  =  μ Φ  

        +  /x(kT/x)  +  /y(kT/y)  +  /z(kT/z) 

 

 

 

 

 



 

 

 

The PDEs for Turbulent Wake Flows are given on the next few 

pages. Identify each PDE. [10] Explain briefly how CFD can 

be used to get flows step by step in time. [10] 

 
 
 

Conservation of X Momentum 
 
 ρ ( U/t + UU/x + VU/y + WU/z ) + A = - P/x  
 
 +  [ /x (μ U/x) + /y (μ U/y) + /z (μ U/z) ] 
 
 

Conservation of Y Momentum 
 
 ρ ( V/t + UV/x + VV/y + WV/z ) + B = - P/y  
 
 +  [ /x (μ V/x) + /y (μ V/y) + /z (μ V/z) ] 
 
 
 

Conservation of Z Momentum 
 
 ρ ( W/t + UW/x + VW/y + WW/z ) + C = - P/z - ρg  
 
 +  [ /x (μ W/x) + /y (μ W/y) + /z (μ W/z) ] 
 
 
 
 

Conservation of Mass 
 
 P/t + ρ c2 ( U/x + V/y + W/z ) = 0  
 
 
 

Water Surface Tracker 
 
 F/t +  UF/x + VF/y + WF/z = 0  
 
 
 
 
 



 
 

Kinetic Energy of Turbulence  
 
 
 k/t + Uk/x + Vk/y + Wk/z = TP - TD  
 
+  [ /x (μ/a k/x) + /y (μ/a k/y) + /z (μ/a k/z) ] 
 
 
 
 

Dissipation Rate of Turbulence 
 

 
 ε/t + Uε/x + Vε/y + Wε/z = DP - DD  
 
+  [ /x (μ/b ε/x) + /y (μ/b ε/y) + /z (μ/b ε/z) ] 
 
 
 
 
 

Time Stepping Template 
 
             M/t = N      MNEW = MOLD + t NOLD  
 
 
 
 

Production and Dissipation Functions 
 

 
             TP = G μt / ρ    DP = TP C1 ε / k   
 
 
              TD = CD ε       DD = C2 ε2 / k 
 
 
 

Eddy and Effective Viscosity 
 

 
             μt = C3 k2 / ε      μ = μt + μl   
 



 

 

 

The region of interest is divided by a CFD grid. CFD cells 

surround each point where grid lines cross. Each PDE is put 

into the form:  



M/t = N 

 

Application of simple time stepping gives: 

 

MNEW = MOLD + t NOLD 

 

This template is applied to each PDE at each point in the 

grid. Finite differences are used to approximate the 

various derivatives in N. Central differences are used to 

approximate the diffusion terms. Upwind differences are 

used to approximate the convective terms. The eddy 

viscosity concept is used to model turbulence. The volume 

of fluid concept is used to track the water surface. The 

function F is 1 inside water and 0 outside it: cells with F 

between 1 and 0 contain the water surface. The Semi 

Implicit Method for Pressure Linked Equations or SIMPLE 

procedure is used to update pressure and correct velocities 

so that they satisfy mass and momentum. 



 

BONUS [5] 

 

 

Two menus from FLOW 3D are given below. Make notes on these 

menus to indicate the purpose of each submenu. 

 

 

This shows the Meshing and Geometry Submenu. 

 

 

 

 



 

 

 

This shows the 3D output display submenu. 

 

 

 



 

 

 

Navigator:  Sets up workspace.  

 

Model Setup: Series of menus for a simulation. 

 

General: Sets things like simulation duration, number of 

fluids and type of fluid interface. 

 

Physics: Sets things like gravity, GMO and turbulence.  

 

Fluids: Imports the fluid properties from a data base.  

 

Mesh & Geometry: Sets the xyz mesh and GMO properties. 

 

Boundaries: Sets the boundary conditions on the mesh. 

 

Initial: Sets the initial state of the fluid. 

 

Output: Sets the output time step.  

 

Numerics: Sets details of CFD. 

 

Simulate: Runs the simulation. 

 

Analyze: Picks what data to look at. 

 

Display: Displays the data in various formats. 

 



 

 

FORMULA SHEET 

 

 

 

                            +G             
S g V =    x g x w dx 

                           -G 

 

 
                      +G 

K =     x2 w dx      V = A h 
                      -G 

 

 

S = K/V   =  R  

 

 

 

T  =  Δ[ ρQ VT R ] 
 
 

 
P  =  T ω  =  Δ[ ρQ VT R ω ] 

 
         
 

P Q        VB = R  
 
 

P =  [VJ]2 / 2         Q = VJ A 
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Consider a pipe with a valve at its downstream end and a 

large pressurized tank at its upstream end. Using wave 

reflection concepts, explain what happens inside the pipe 

when there is a sudden valve closure. [10] 

 

 

 

When the valve is suddenly closed, it creates a flow 

imbalance. A high pressure or surge wave propagates up the 

pipe. As it does so, it brings the fluid to rest. The pipe 

has high pressure all along its length.  

 

When the surge wave reaches the tank, it creates a pressure 

imbalance. A backflow wave is created. The backflow wave 

propagates down the pipe restoring pressure everywhere to its 

original level.  

 

When the backflow wave reaches the valve, it creates a flow 

imbalance. This causes a low pressure or suction wave to 

propagate up the pipe. As it does so, it brings the fluid to 

rest. The pipe has low pressure all along its length.  

 

When the suction wave reaches the tank, it creates a pressure 

imbalance. An inflow wave is created. The inflow wave travels 

down the pipe restoring pressure to its original level. 

Conditions in the pipe become what they were just before the 

valve was closed.  

 

 



   

 

 



 

Consider a small deadend pipe attached to a large pipe with 

a valve at its downstream end and a large pressurized tank 

at its upstream end. Using algerbraic waterhammer concepts, 

explain how you would calculate pressure and flow velocity 

in the deadend pipe following a sudden valve closure in the 

large pipe. Sketch the PU plot for the deadend pipe. [15] 

Identify the important equations. 

  

 

The small deadend pipe does not influence waves in the large 

pipe. The surge wave in the large pipe caused by a sudden 

valve closure causes a sudden pressure rise at the entrance 

to the deadend pipe. It fixes the pressure there. Let the 

entrance be A and the deadend be B.  

 

Move along an F wave from B to A. For an F wave: 



ΔP = + ρa ΔU 
 

[PA - PB] = + ρa [UA - UB] 
 

 
In this equation, UB=0; PB=PO; PA=PS. It gives UA. 

 
 

Move along an f wave from A to B. For an f wave: 
 
 

ΔP = - ρa ΔU 
 
 

[PB - PA] = - ρa [UB - UA] 
 
 

In this equation, UB=0; PA=PS; UA known. It gives PB. 



 

 

 

 

 



Explain how you would calculate the drift speed generated 

by an explosion. [15] Identify the important equations. 

 

Assume that the pressure ratio across the shock wave 

generated by the explosion is known. In the shock frame, 

air upstream moves towards the shock at supersonic speed 

and air downstream moves away from it at subsonic speed. 

The pressure ratio equation gives MU:  

 
PD/PU = 1 + [2k/(k+1)] (MUMU - 1) 

 
The wave speed equation gives aU: 
 

aU = [kRTU] 
 
The Mach Number equation gives UU: 
 

MU = UU/aU        
 
The Mach Number connection gives MD: 
 

MDMD  = [(k-1) MUMU + 2]  / [2k MUMU - (k-1)] 
 
The temperature ratio equation gives TD: 
 

TD/TU = [ (1 + [(k-1)/2] MUMU) / (1 + [(k-1)/2] MDMD) ] 

 
The wave speed equation gives aD: 
 

aD = [kRTD] 
 
The Mach Number equation gives UD: 
 

MD = UD/aD     
  
The drift speed is UU minus UD. 
 
 
 
 



 
 
 
 
 
 



 
Explain how you would calculate the thrust of an ideal 

rocket nozzle. [15] Identify the important equations.  

 

Let the combustion chamber be U and the nozzle exit be D and 

the nozzle throat be T. For an ideal rocket nozzle, MU is 

zero and MT is unity. Flow is isentropic throughout the 

nozzle. Pressure and temperature in the combustion chamber 

are known. The nozzle throat diameter is known. The nozzle 

exit pressure is atmospheric.   

The thrust is M
.
UD. The mass flow rate is:  

M
.
  =   ρT  AT UT   =   PT/[RTT] AT [kRTT]       

 
The isentropic temperature ratio equation gives TT:  

 

TT/TU = (1 + [(k-1)/2] MUMU) / (1 + [(k-1)/2] MTMT) 

 
The isentropic pressure ratio equation gives PT: 

 
PT/PU = [TT/TU]x        x = k/(k-1) 

 
The isentropic pressure ratio equation gives MD: 

 
PD/PU = [ (1 + [(k-1)/2] MUMU) / (1 + [(k-1)/2] MDMD) ]x         

 
The isentropic temperature ratio equation give TD:  

 
TD/TU = (1 + [(k-1)/2] MUMU) / (1 + [(k-1)/2] MDMD) 

 

The wave speed equation aD = [kRTD] gives aD. The Mach 

Number equation  MD = UD/aD  gives UD.   



 

 



 

Explain how you would calculate the lift on a supersonic 

flat plate foil. Identify the important equations. [15]  

 

 

A flat plate supersonic foil has an expansion wave at the 

leading edge at the top and an oblique shock wave at the 

leading edge on the bottom.  

 

With known upstream Mach Number MU and attack angle Θ, the 

oblique shock plot gives the shock angle β. Substitution 

into the normal Mach Number equation gives NU: 

 

NU = MU Sinβ 
 
 

Substitution into the pressure ratio equation gives PB: 
 

 
PB/PU = 1 + [2k/(k+1)] (NUNU - 1) 

 

With known upstream Mach Number MU and attack angle Θ, the 

expansion wave plot gives MT. The isentropic pressure ratio 

equation then gives PT. The lift is: 

 

PB C Cos Θ  - PT C Cos Θ 

 

 
 



 

 

 

 

 

 



 



 



 

Explain how you would calculate the pressure at points on a 

Joukowsky foil. [10] Identify the important equations.  

 

 

An application of the Bernoulli equation from a point far 

upstream of the foil to a point on the foil gives: 

 

P =  ρ/2 [ S2 – (φ/c)2 ]   

 

An approximation to this is: 

     

ρ/2 [ S2 - (Δφ/Δc)2 ] 

 

Geometry gives:  

 

Δc = [Δα2+Δβ2]        

α = x + xa2/(x2+y2)        β = y - ya2/(x2+y2) 

x = X – n      y = Y + m 

X = - R Cos      Y = + R Sin 

 

Potential flow theory gives: 

 

Γ = 4πSR Sinκ     

κ = Θ + ε     ε = tan-1 [m/(n+a)]      

Δφ = 2S ΔX +  Γ/[2π] Δσ 

X = X CosΘ + Y SinΘ      



 

 

 

 

 



 

Explain how you would calculate lift on a Joukowsky foil 

from calculated pressure. What is the theoretical lift on 

the foil? [10] Identify the important equations.  

 

 

The lift on the foil is: 

 

ΔL = PΔc Sin(θ-Θ) 

  

The foil normal θ is:     

 

θ = tan-1[-Δ/+Δ]                 

 

The total lift L is: 

 

L=ΣΔL     

The theoretical lift is: 

  

ρSΓ    

          

The circulation is: 

Γ = 4πSR Sinκ   

    

κ = Θ + ε     ε = tan-1 [m/(n+a)]      

 

        



Answer TRUE or FALSE and briefly explain each answer [10]: 

 

(1) Shock waves cannot occur in water. False 

Water has a finite speed of sound.   

 

(2) Waterhammer waves travel at supersonic speeds. False 

Waterhammer waves travel at sonic or subsonic speeds. 

 

(3) A single Mach wave cannot be heard. True 

It is generated by an infinitesimal disturbance. 

 

(4) A free falling body cannot have M>1. False 

For a spear like body drag will be less than weight.  

 

(5) At singularities, flow speed is zero. False 

At singularities flow speed is infinite. 

 

(6) An expansion shock wave is not possible. True 

The Second Law shows ΔS<0 when M<1 goes M>1. 

 

(7) A doublet is the source of foil lift. False 

A vortex is the source of foil lift. 

 

(8) Viscous flows are irrotational flows. False 

Fluid spin is not zero in viscous flows.  

  

(9) Flow is isentropic in ideal rocket engines. True 

Friction and heat transfer are insignificant.  

 

(10) Joukowsky foils are subsonic foils. True 

Theory assumes that the fluid is incompressible. 

 



BONUS [5] 

 

Explain how you would calculate the pressure and the 

temperature at the stagnation point on a blunt object in a 

supersonic flow. Identify the important equations.  

 

A bow shock wave forms directly in front of a blunt object 

in a supersonic flow. Let A be just upstream of the shock 

and B be just downstream. At the stagnation point on the 

object, MS is zero. Conditions at A are known. 

 

The temperature ratio equation based on energy gives the 

stagnation point temperature TS:  

 

 TS/TA = [ (1 + [(k-1)/2] MAMA) / (1 + [(k-1)/2] MSMS) ] 
 

 

The pressure ratio equation gives the pressure downstream 

of the bow shock wave PB:  

 

PB/PA = 1 + [2k/(k+1)] (MAMA - 1) 
 

 

The Mach Number connection gives MB:  
  

 
MBMB  = [(k-1) MAMA + 2]  / [2k MAMA - (k-1)]  

 

 
The isentropic pressure ratio equation gives PS: 

 

PS/PB = [ (1 + [(k-1)/2] MBMB) / (1 + [(k-1)/2] MSMS) ]x         
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Consider a pipe with a valve at its downstream end and a large 

pressurized tank at its upstream end. Using wave reflection 

concepts, explain what happens inside the pipe when there is a 

sudden valve closure. [10] 

 

When the valve is suddenly closed, it creates a flow imbalance. A 

high pressure or surge wave propagates up the pipe. As it does so, 

it brings the fluid to rest. The pipe has high pressure all along 

its length.  

 

When the surge wave reaches the tank, it creates a pressure 

imbalance. A backflow wave is created. The backflow wave 

propagates down the pipe restoring pressure everywhere to its 

original level.  

 

When the backflow wave reaches the valve, it creates a flow 

imbalance. This causes a low pressure or suction wave to propagate 

up the pipe. As it does so, it brings the fluid to rest. The pipe 

has low pressure all along its length.  

 

When the suction wave reaches the tank, it creates a pressure 

imbalance. An inflow wave is created. The inflow wave travels down 

the pipe restoring pressure to its original level. Conditions in 

the pipe become what they were just before the valve was closed.  

 

 

 

 

 

 

 



 

 



 

Consider a small deadend pipe attached to a large pipe with a 

valve at its downstream end and a large pressurized tank at its 

upstream end. Using the method of characteristics, explain how 

you would calculate the pressure and flow velocity at 3 points 

in the deadend pipe following a sudden valve closure in the 

large pipe. Do surge wave case only. Use waterhammer analysis if 

you cannot remember method of characteristics. Identify the 

important equations. [15]   

 

 

The deadend pipe does not influence the large pipe. The surge wave 

in the large pipe caused by a sudden valve closure causes a sudden 

pressure rise at the entrance to the deadend pipe. It fixes the 

pressure there. Let the entrance be A and the deadend be B.  

 

Move along an F wave from B to A. For an F wave: 



ΔP = + ρa ΔU 
 

[PA - PB] = + ρa [UA - UB] 
 

 
In this equation, UB=0; PB=PO; PA=PS. It gives UA. 

 
 

Move along an f wave from A to B. For an f wave: 
 
 

ΔP = - ρa ΔU 
 
 

[PB - PA] = - ρa [UB - UA] 
 
 

In this equation, UB=0; PA=PS; UA known. It gives PB. 

 



 

 

 

 

 



 

Let A B C indicate present pressure and flow velocity at 3 

points along the deadend pipe: A is at the entrance to the 

deadend pipe, B is in the middle of the deadend pipe and C is at 

the deadend. Let I J K indicate pressure and flow velocity a 

step forward in time at the corresponding points. At the 

entrance the pressure is the surge pressure PS. At the deadend 

the flow velocity is zero.  

 

At the deadend, the C+ characteristic gives 

 

UK – UB + (PK-PB)/[ρa] = 0 

 

PK = + [ρa] UB +  PB 

 

At the entrance, the C- characteristic gives 

 

UI – UB - (PI-PB)/[ρa] = 0 

 

UI = UB + (PI-PB)/[ρa] 

 

At the middle, the C+ and C- characteristics give 

 

UJ = 0.5 [ UA + UC + [PA-PC]/[ρa] ] 

PJ = 0.5 [PA + PB + [ρa][UA-UC] ] 



Explain how you would calculate the drift speed generated by an 

explosion. [15] Identify the important equations.  

 

Assume that the pressure ratio across the shock wave generated 

by the explosion is known. In the shock frame, air upstream 

moves towards the shock at supersonic speed and air downstream 

moves away from it at subsonic speed. The pressure ratio 

equation gives MU:  

 
PD/PU = 1 + [2k/(k+1)] (MUMU - 1) 

 
The wave speed equation gives aU: 
 

aU = [kRTU] 
 
The Mach Number equation gives UU: 
 

MU = UU/aU        
 
The Mach Number connection gives MD: 
 

MDMD  = [(k-1) MUMU + 2]  / [2k MUMU - (k-1)] 
 
The temperature ratio equation gives TD: 
 

TD/TU = [ (1 + [(k-1)/2] MUMU) / (1 + [(k-1)/2] MDMD) ] 

 
The wave speed equation gives aD: 
 

aD = [kRTD] 
 
The Mach Number equation gives UD: 
 

MD = UD/aD     
  
The drift speed is UU minus UD. 
 

 



 

 

 

 

 



 

Explain how you would calculate the thrust of an ideal rocket 

nozzle. [15] Identify the important equations.  

 

Let the combustion chamber be U and the nozzle exit be D and the 

nozzle throat be T. For an ideal rocket nozzle, MU is zero and MT 

is unity. Flow is isentropic throughout the nozzle. Pressure and 

temperature in the combustion chamber are known. The nozzle throat 

diameter is known. The nozzle exit pressure is atmospheric.   

The thrust is M
.
UD. The mass flow rate is:  

M
.
  =   ρT  AT UT   =   PT/[RTT] AT [kRTT]       

 
The isentropic temperature ratio equation gives TT:  

 

TT/TU = (1 + [(k-1)/2] MUMU) / (1 + [(k-1)/2] MTMT) 

 
The isentropic pressure ratio equation gives PT: 

 
PT/PU = [TT/TU]x        x = k/(k-1) 

 
The isentropic pressure ratio equation gives MD: 

 
PD/PU = [ (1 + [(k-1)/2] MUMU) / (1 + [(k-1)/2] MDMD) ]x         

 
The isentropic temperature ratio equation give TD:  

 
TD/TU = (1 + [(k-1)/2] MUMU) / (1 + [(k-1)/2] MDMD) 

 

The wave speed equation aD = [kRTD] gives aD. The Mach Number 

equation  MD = UD/aD  gives UD.       

      



 

 

 
 



 

Explain how you would calculate the pressure and flow velocity 

changes which occur when a high speed flow moves down a pipe. 

Identify the important equations. [15]  

 

Gas dynamics theory gives 

 

M2/M2 = kM2[1+[(k-1)/2]M2] /[1-M2] fx/D 
 

P/P = -kM2[1+(k-1) M2]/[2(1-M2)] fx/D 
 
                T/T = -k(k-1)M4/[2(1-M2)] fx/D  
 
 

These can be put into the form: 
 

M2 = A x 

 
P = B x 

 
T = C x 

 

For moving a step down a pipe, these equations give: 

  

[M2]NEW = [M2]OLD + AOLD x 

 
PNEW = POLD + BOLD x 

 
TNEW = TOLD + COLD x 

 

Note that A B C is each a function of M2 so they must be updated 

after each step down the pipe. 



 

Explain how you would calculate the pressure at points on a 

Joukowsky foil. [10] Identify the important equations.  

 

An application of the Bernoulli equation from a point far 

upstream of the foil to a point on the foil gives: 

 

P =  ρ/2 [ S2 – (φ/c)2 ]   

 

An approximation to this is: 

     

ρ/2 [ S2 - (Δφ/Δc)2 ] 

 

Geometry gives:  

Δc = [Δα2+Δβ2]        

α = x + xa2/(x2+y2)     β = y - ya2/(x2+y2) 

x = X – n      y = Y + m 

X = - R Cos      Y = + R Sin 

 

Potential flow theory gives: 

 

Γ = 4πSR Sinκ      

κ = Θ + ε     ε = tan-1 [m/(n+a)]      

Δφ = 2S ΔX +  Γ/[2π] Δσ 

X = X CosΘ + Y SinΘ      

 



 

 

 

 

 

 

  



 

Explain how you would calculate lift on a Joukowsky foil from 

calculated pressure. What is the theoretical lift on the foil? 

[10] Identify the important equations.  

 

 

The lift on the foil is: 

 

ΔL = PΔc Sin(θ-Θ) 

  

The foil normal θ is:     

 

θ = tan-1[-Δ/+Δ]                 

 

The total lift L is: 

 

L=ΣΔL     

The theoretical lift is: 

  

ρSΓ    

          

The circulation is: 

Γ = 4πSR Sinκ   

    

κ = Θ + ε     ε = tan-1 [m/(n+a)]      

 



Answer TRUE or FALSE and briefly explain each answer [10]:  

 

(1) Shock waves cannot occur in water. False 

Water has a finite speed of sound.   

 

(2) Waterhammer waves travel at supersonic speeds. False 

Waterhammer waves travel at sonic or subsonic speeds. 

 

(3) A single Mach wave cannot be heard. True 

It is generated by an infinitesimal disturbance. 

 

(4) A free falling body cannot have M>1. False 

For a spear like body drag will be less than weight.  

 

(5) At singularities, flow speed is zero. False 

At singularities flow speed is infinite. 

 

(6) An expansion shock wave is not possible. True 

The Second Law shows ΔS<0 when M<1 goes M>1. 

 

(7) A doublet is the source of foil lift. False 

A vortex is the source of foil lift. 

 

(8) Viscous flows are irrotational flows. False 

Fluid spin is not zero in viscous flows.  

  

(9) Flow is isentropic in ideal rocket engines. True 

Friction and heat transfer are insignificant.  

 

(10) Joukowsky foils are subsonic foils. True 

Theory assumes that the fluid is incompressible. 

 



BONUS [5] 

 

Explain how you would calculate the pressure and the 

temperature at the stagnation point on a blunt object in a 

supersonic flow. Identify the important equations.  

 

A bow shock wave forms directly in front of a blunt object 

in a supersonic flow. Let A be just upstream of the shock 

and B be just downstream. At the stagnation point on the 

object, MS is zero. Conditions at A are known. 

 

The temperature ratio equation based on energy gives the 

stagnation point temperature TS:  

 

 TS/TA = [ (1 + [(k-1)/2] MAMA) / (1 + [(k-1)/2] MSMS) ] 
 

 

The pressure ratio equation gives the pressure downstream 

of the bow shock wave PB:  

 

PB/PA = 1 + [2k/(k+1)] (MAMA - 1) 
 

 

The Mach Number connection gives MB:  
  

 
MBMB  = [(k-1) MAMA + 2]  / [2k MAMA - (k-1)]  

 

 
The isentropic pressure ratio equation gives PS: 

 

PS/PB = [ (1 + [(k-1)/2] MBMB) / (1 + [(k-1)/2] MSMS) ]x         
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