
WATERHAMMER LAB

PURPOSE: The main purpose is to measure the wave speed for a water pipe and to compare the measured speed with theoretical speeds. Another purpose is to measure the pressure rise generated by a sudden valve closure and to compare this rise with a theoretical pressure rise.

SETUP: The setup consists of a pump which draws water through one long pipe from a tank and sends it back to the same tank through another long pipe. A high speed manual valve is installed just upstream of the pump inlet. A high speed pressure sensor is installed just upstream of the valve. It is used to measure the pressure transients that are generated by a sudden valve closure. The sensor is connected to an oscilloscope.

PROCEDURE: Use a sudden valve closure to determine the pipe period. Use the period to calculate the wave speed of the pipe. Compare the measured wave speed with the speed for a rigid pipe and the speed for a flexible pipe. Calculate the pressure rise for a number of flow rates and in each case compare with the theoretical pressure rise.

WAVE PROPAGATION IN PIPES

The pressure change caused by a flow speed change is

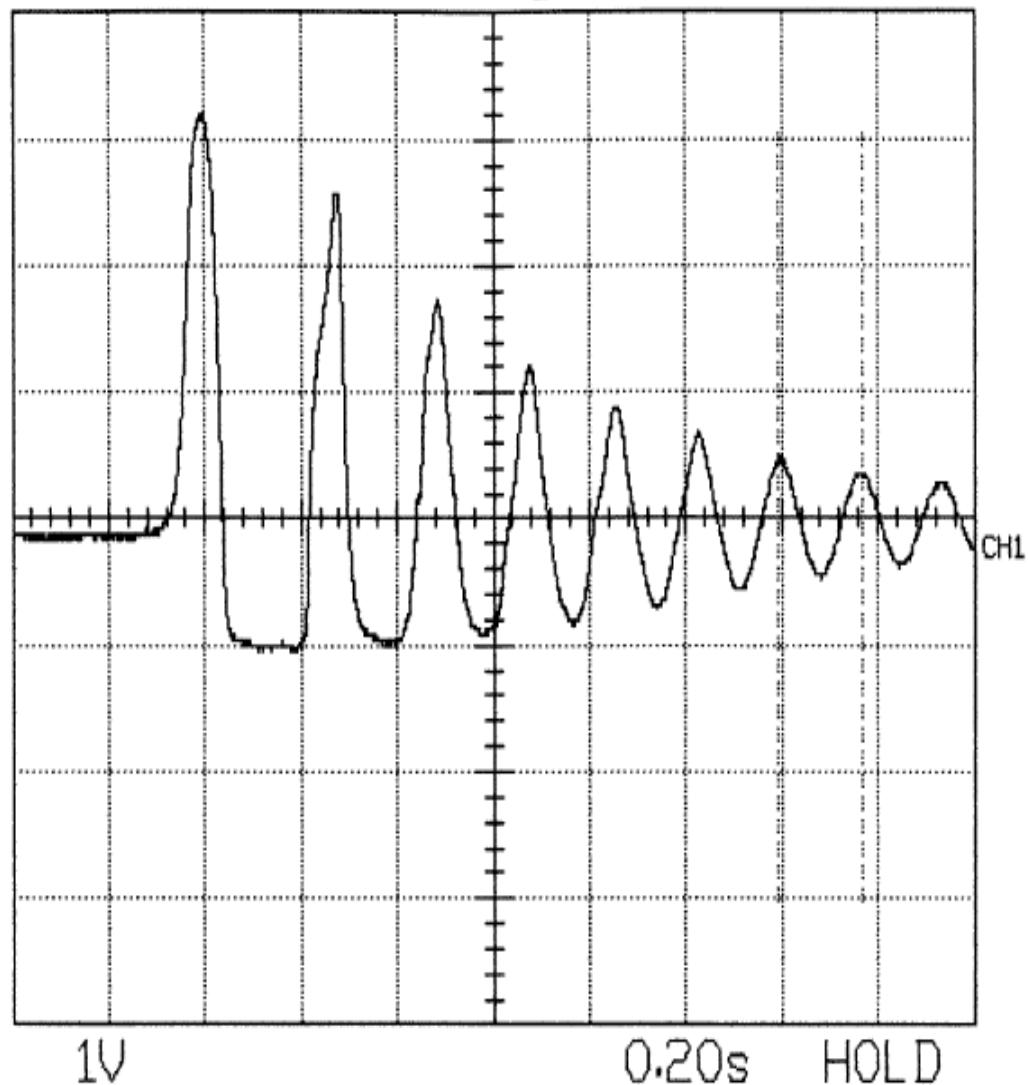
$$\Delta P = - \rho a \Delta S$$

For a wave travelling up a rigid pipe wave speed is

$$a = \sqrt{[K/\rho]}$$

where K is the bulk modulus of the fluid and ρ is its density. For a flexible pipe wave speed is

$$a = \sqrt{[K/\rho]}$$


where K is the effective bulk modulus of the pipe

$$K = K / [1 + DK/Ee]$$

where D is its diameter, e is its wall thickness and E is the Elastic Modulus of the pipe wall material. It takes 4 wave transits of a pipe to complete a cycle. This implies

$$T = 4 L / a \quad a = 4 L / T$$

ΔT 173.88ms Trig +0.2V CH1

WATERHAMMER DATA SHEET

PIPE PERIOD

SAMPLE CALCULATIONS

EXPERIMENTAL WAVE SPEED

$$a_E = 4L/T$$

THEORETICAL WAVE SPEEDS

$$a_R = \sqrt{K/\rho}$$

$$K = K / [1 + DK/Ee]$$

$$a_F = \sqrt{K/\rho}$$

PRESSURE RISE

$$S = M Q$$

$$\Delta P_T = \rho a_E S$$

$$\Delta P_E = N \Delta P$$

ABS PIPE DATA

L = 13.41 m

D = 40 mm

e = 4 mm

E = 2.2 GPa

WATER DATA

K = 2.2 GPa

ρ = 1000 kg/m³

CALIBRATION FACTORS

M = 0.013 [m/s] / [lpm]

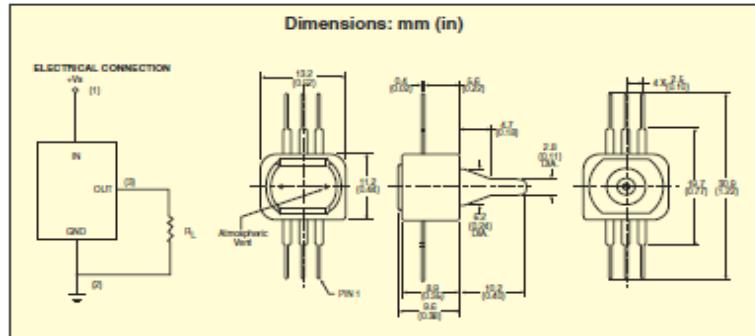
N = 1.7 [bar] / [volt]

MINIATURE VOLTAGE OUTPUT PRESSURE SENSORS FULLY TEMPERATURE COMPENSATED

PX40 Series 0.5 to 4 Vdc Output

PX40-15G5V, \$65, shown much larger than actual size.

All Ranges
\$65


- ✓ Smallest Amplified Package
- ✓ Small Lightweight Package
- ✓ Fully Signal Conditioned
- ✓ Temperature Compensated
- ✓ Port Designed for O-Ring Interface
- ✓ Excellent Media Compatibility
- ✓ Wet or Dry Industrial Applications

Typical Applications

- ✓ Laboratory Equipment
- ✓ Electronic Brake Systems
- ✓ Engine Oil Level
- ✓ Transmission Fluid Level
- ✓ Air Conditioning Systems
- ✓ Industrial Fluid Level

SPECIFICATIONS

Excitation:	5 Vdc @ 10 mA	
Output Source Current:	0.5 mA max	
Output Sink Current:	1.0 mA max	
Hysteresis and Repeatability:	0.15% FS	
Span:	Output:	Linearity:
±50 mmHg	4.00 Vdc typical	0.80%
0 to 15 psi	4.00 ±0.11 Vdc	0.20%
0 to 30 psi	4.00 ±0.08 Vdc	0.30%
0 to 100 psi	4.00 ±0.09 Vdc	0.10%
0 to 150 psi	4.00 ±0.07 Vdc	0.10%

Null:
 ±50 mmHg 2.50 ±0.05 Vdc
 0 to 15 psi 0.50 ±0.11 Vdc
 0 to 30 psi 0.50 ±0.04 Vdc
 0 to 100 psi 0.50 ±0.04 Vdc
 0 to 150 psi 0.50 ±0.04 Vdc

Operating Temp: -45 to 125°C (-49 to 257°F)

Compensated Temp: -45 to 125°C (-49 to 257°F)

Overpressure:

±50 mmHg	±170 mmHg
0 to 15 psi	45 psi
0 to 30 psi	60 psi
0 to 100 psi	200 psi
0 to 150 psi	300 psi

Response Time: 1 ms
Gage Type: Silicon

Media Compatibility: Limited to media that will not attack invar, copper, silicon, stainless steel, glass and solder (i.e., air, water, refrigerants, engine fuel)

Vent: Dry gases only

Weight: 5 g (0.18 oz)

Recommended Reference Book:
 What Every Engineer Should Know
 About Project Management,
GE-0511, \$70
 See Section Y
 For Additional Books

MOST POPULAR MODELS HIGHLIGHTED!

To Order (Specify Model Number)

GAGE MODELS (One Port)

RANGE	MODEL NO.	PRICE	COMPATIBLE METERS*
±50 mmHg	6.7 kPa	\$65	DP24-E, DP25B-E, DP41-E
0 to 15 psi	0 to 1 bar	\$65	DP24-E, DP25B-E, DP41-E
0 to 30 psi	0 to 2.1 bar	\$65	DP24-E, DP25B-E, DP41-E
0 to 100 psi	0 to 6.9 bar	\$65	DP24-E, DP25B-E, DP41-E
0 to 150 psi	0 to 10.3 bar	\$65	DP24-E, DP25B-E, DP41-E

* See section D for compatible meters.

Ordering Example: PX40-15G5V, 0 to 15 psi transducer with 0.5 to 4.5 Vdc output, \$65.