APPLICATION: IDEAL ROCKET NOZZLE

Flow through an ideal rocket nozzle is everywhere
isentropic. Gas comes out of the nozzle with a pressure
that matches that of the surroundings. The combustion
chamber is taken to be large. Let U denote the combustion
chamber, D denote the nozzle exit and T denote the throat.
The Mach Number in the combustion chamber is approximately
zero and the Mach Number at the throat is unity. The thrust

generated by the nozzle is

M Up

The mass flow rate anywhere in the nozzle is

M = oAU

With known pressure and temperature in the combustion
chamber, the isentropic ratios can be used to get pressure

and temperature at the throat. One can then write

M = P;/[RT;] Ar V[kKRTr]

With the combustion chamber and nozzle exit pressures known,
the pressure ratio equation gives the Mach Number Mp at the
exit. The temperature ratio equation then gives the
temperature Tp at the exit. This allows us to calculate the
sound speed Cp at the exit. With known Mach Number and sound

speed, one can calculate the gas speed Up at the exit.






APPLICATION: SHOCKS DUE TO EXPLOSIONS

Consider an explosion in still air with known pressure and
temperature. Let the gas ball pressure be known. The
explosion generates a spherical shock wave. Let U indicate
just upstream of the shock and D indicate just downstream
of the shock. In a reference frame moving with the shock,
the still air seems to approach at a supersonic speed. With
known air and gas pressures, the normal shock eguation
gives the Mach Number My of the shock. With the still air
temperature Ty known, one can calculate the sound speed
front of the shock. This allows us to calculate the shock
speed Uy. The Mach Number connection gives the Mach Number
Mp downstream relative to the shock. The temperature ratio
equation gives the temperature Tp downstream of the shock.
This allows us to calculate the sound speed Cp there. With
known Mach Number and sound speed, one can calculate the
flow speed Up relative to the shock. The absolute flow speed
Uxr downstream is equal to the shock speed Uy minus the flow
speed Up downstream relative to the shock. This is known as

the drift speed. It is a supersonic speed.
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APPLICATION: BLUNT OBJECT IN SUPERSONIC FLOW

Consider a blunt object in a supersonic flow. A bow shock
wave forms upstream of the object. Directly in front of the
object this shock wave 1s a normal shock wave. Let U
indicate Jjust upstream of the shock and D indicate just
downstream of the shock. Let S 1indicate the stagnation
point on the object. Assume that the pressure Py and
temperature Ty upstream of the shock are known and that the
Mach Number My of the shock is also known. One can use the
pressure ratio equation for a normal shock wave to find the
pressure Pp just downstream of the shock. One can then use
the pressure ratio equation for isentropic flow to get the
pressure Ps at the stagnation point. One <can use the
temperature ratio equation from upstream to the stagnation

point to get the temperature Ts at the stagnation point.






APPLICATION: SUPERSONIC FLAT PLATE FOIL

Consider a supersonic flat plate foil moving at a known
Mach Number through still air with known pressure and
temperature. When the foil has a moderate angle of attack,
an oblique shock wave forms below it and an expansion wave
forms above it. These turn the flow parallel to the plate.
Let U indicate conditions upstream of the foil. Let T
indicate conditions top of the foil and B 1indicate
conditions bottom of the foil. One can use the expansion
wave plot to find the Mach Number M; on top of the foil.
With known Mach Number there and upstream of the foil, the
isentropic pressure ratio equation gives the pressure Pr
there. One can use the oblique shock plot to find the shock
angle . One can use this to get the Mach Number Ny of the
normal component of the flow. Substitution into the
pressure ratio equation for obligque shock waves then gives
the pressure Py below the foil. With pressure top and bottom

of the foil known, one can then calculate the 1lift.






