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PREAMBLE 

 

Unsteady flow in pipe networks can be caused by a number of 

factors. A turbomachine with blades can send pressure waves 

down a pipe. If the period of these waves matches a natural 

period of the pipe wave speed resonance develops. A piston 

pump can send similar waves down a pipe. Waves on the surface 

of a water reservoir can also excite resonance of inlet 

pipes. Sudden valve or turbomachine changes can send waves up 

and down pipes. These can cause the pipes to explode or 

implode. In some cases interaction between pipes and devices 

is such that oscillations develop automatically. Examples 

include oscillations set up by leaky valves and those set up 

by slow turbomachine controllers.  

 

 

 



 

WAVE PROPAGATION IN PIPES 
 

 

Consider flow in a rigid pipe with a valve at its downstream 

end and a reservoir at its upstream end. Assume that there 

are no friction losses. This implies that the pressure and 

flow speed are the same everywhere along the pipe.  

 

Imagine now that the valve is suddenly closed. This causes a 

high pressure or surge wave to propagate up the pipe. As it 

does so, it brings the fluid to rest. The fluid immediately 

next to the valve is stopped first. The valve is like a wall. 

Fluid enters an infinitesimal layer next to this wall and 

pressurizes it and stops. This layer becomes like a wall for 

an infinitesimal layer just upstream. Fluid then enters that 

layer and pressurizes it and stops. As the surge wave 

propagates up the pipe, it causes an infinite number of these 

pressurizations. When it reaches the reservoir, all of the 

inflow has been stopped, and pressure is high everywhere 

along the pipe. The pipe resembles a compressed spring. 

 

When the surge wave reaches the reservoir, it creates a 

pressure imbalance. The layer of fluid just inside the pipe 

has high pressure fluid downstream of it and reservoir 

pressure upstream. Fluid exits the layer on its upstream side 

and depressurizes it. The pressure drops back to the 

reservoir level. A backflow wave is created. The speed of the 

backflow is exactly the same as the speed of the original 

inflow. The pressure that was generated by taking the 

original inflow away is exactly what is available to generate 



the backflow. The backflow wave propagates down the pipe 

restoring pressure everywhere to its original level.  

 

When the backflow wave reaches the valve, it creates a flow 

imbalance. This causes a low pressure or suction wave to 

propagate up the pipe. As it does so, it brings the fluid to 

rest. Again, the valve is like a wall. Because of backflow, 

fluid exits an infinitesimal layer next to this wall and 

depressurizes it and stops. The pressure drops below the 

reservoir level by exactly the amount it was above the 

reservoir level in the surge wave.  

 

When the suction wave reaches the reservoir, all of the 

backflow has been stopped, and pressure is low everywhere 

along the pipe. The pipe resembles a stretched spring. At the 

reservoir, the suction wave creates a pressure imbalance. An 

inflow wave is created. The speed of the inflow is exactly 

the same as the speed of the backflow. The inflow wave 

travels down the pipe restoring pressure to its original 

level. Conditions in the pipe become what they were just 

before the valve was closed.  

 

During one cycle of vibration, there are 4 transits of the 

pipe by pressure waves. This means that the natural period of 

the pipe is 4 times the length of the pipe divided by the 

wave speed. Without friction, the vibration cycle repeats 

over and over. With friction, it gradually dies away.  

 

 

 

 



BASIC WAVE EQUATIONS    

 

 

Consider a wave travelling up a rigid pipe. In a reference 

frame moving with the wave, mass considerations give 

 

ρ A (U+a) = (ρ+Δρ) A (U+ΔU+a) 

 

where ρ is density, A is pipe area, U is flow velocity and 

a is wave speed. When a >> U, this reduces to 

 

ρ ΔU = - a Δρ 

 

Momentum considerations give 

 

 ρA(U+a) [(U+ΔU+a) - (U+a)] = [P – [P+ΔP]] A 

 

where P is pressure. When a >> U, this reduces to 

 

ρ a ΔU = - ΔP 

 

Manipulations give 

a =  [ΔP/Δρ] 

 

For a gas such as air moving down a pipe, one can assume 

ideal gas behavior for which:  

 

P/ρ = R T 

 



R is the ideal gas constant and T is the absolute 

temperature of the gas. For a wave propagating through a 

gas, one can assume processes are isentropic: in other 

words, adiabatic and frictionless. The wave moves so fast 

through the gas that there is no time for heat transfer or 

friction. The isentropic equation of state is:  

 

P = K ρ
k 

 

where K is another constant and k is the ratio of specific 

heats. Differentiation of this equation gives 

 

ΔP/Δρ  = k P/ρ 

 

The ideal gas law into this gives 

 

ΔP/Δρ  = k R T 

 
So wave speed for a gas becomes  

 

a = [k R T] 

 
For a liquid, fluid mechanics shows that 

 

                    ΔP  =  - K ΔV/V 

 

where K is the bulk modulus of the liquid. It is a measure 

of its compressibility. For a bit of fluid mass 

 



 
ΔM = Δ [ρ V] = V Δρ  +  ρ ΔV  =  0 

 
                  

This implies that  

 

 ΔP  =  K Δρ/ρ        ΔP/Δρ  =  K/ρ 
 

 

So wave speed for a liquid becomes 


a =  [K/ρ] 

 
The bulk modulus of a gas follows from  

 

a = [k R T]  =  [K/ρ] 

 

K/ρ = k R T      K = k ρ R T     K = k P 

    
 
The wave speed for a mixture is  

 

a =  [KM/ρM] 

 

             ρM = [ρCVC]/VM      KM = VM/[VC/KC] 

 

The wave speed for a flexible pipe is 

 

a =  [K/ρ]        K = K / [1 + [DK]/[Ee]] 

where E is the Elastic Modulus of the pipe wall material, e 

is the wall thickness and D is the pipe diameter.  

 



 

WATERHAMMER ANALYSIS 
 

Waterhammer analysis allows one to connect unknown pressure 

and flow velocity at one end of a pipe to known pressure and 

velocity at the other end of the pipe one transit time back 

in time. The derivation of the waterhammer equations starts 

with the conservation of momentum and mass equations for 

unsteady flow in a pipe. These are: 

 

ρ U/t + ρU U/x + P/x - ρg Sinα + f/D ρU|U|/2 = 0 

P/t + U P/x + ρa2 U/x = 0 

 

where P is pressure and U is velocity. For the case where 

gravity and friction are insignificant and the mean flow 

speed is approximately zero, these reduce to: 

 

ρ U/t + P/x = 0 

P/t + ρa2 U/x = 0 

 

Manipulation gives the wave equations: 

 

2P/t2 = a2 2P/x2 

2U/t2 = a2 2U/x2 

 



 

The general solution consists of two waves: one wave which 

travels up the pipe known as the F wave and the other which 

travels down the pipe known as the f wave.  

 

In terms of these waves, pressure and velocity are: 

 

P – Po  =  f(N) + F(M) 

U - Uo  =  [f(N) - F(M)] / [ρa] 

 

where N and M are wave fixed frames given by: 

 

N = x – a t     M = x + a t 

 

For a given point N on the f wave, the N equation shows that 

x must increase as time increases, which means the wave must 

be moving down the pipe. For a given point M on the F wave, 

the M equation shows that x must decrease as time increases, 

which means the wave must be moving up the pipe. Substitution 

of the general solution into mass or momentum or the wave 

equations shows that they are valid solutions. 

 

Multiplying U by ρa and subtracting it from P gives: 

 

 



 

[P–Po] – ρa[U-Uo]  = 2F(M) 

 

Let the F wave travel from the downstream end of the pipe to 

the upstream end. For a point on the wave, the value of F 

would be the same. This implies  

 

ΔP = + ρa ΔU 

 

Multiplying U by ρa and adding it to P gives: 

 

 [P–Po] + ρa[U-Uo]  = 2f(N) 

 

Let the f wave travel from the upstream end of the pipe to 

the downstream end. For a point on the wave, the value of f 

would be the same. This implies  

 

ΔP = - ρa ΔU 

  

The ΔP vs ΔU equations allow us to connect unknown conditions 

at one end of a pipe at some point in time to known 

conditions at the other end back in time. They are known as 

the waterhammer equations. 

  

 



 

 

 

SUDDEN VALVE CLOSURE 

 

Imagine a pipe with a reservoir at its upstream end and a 

valve at its downstream end. The valve is initially open. 

Then it is suddenly shut. From that point onward, the 

velocity at the valve is zero. We ignore losses. Because of 

this, the pressure at the reservoir is fixed at its initial 

level. We start at point 1 which is at the reservoir and move 

along an f wave to point 2 which is at the valve. A surge 

wave is created at the valve. We then move from the valve 

along an F wave to point 3 which is at the reservoir. A 

backflow wave is created at the reservoir. We then move from 

the reservoir along an f wave to point 4 which is at the 

valve. A suction wave is created at the valve. We then move 

from the valve along an F wave to point 1 which is at the 

reservoir. An inflow wave is created at the reservoir. From 

this point onward the cycle repeats. Friction gradually 

dissipates the waves and the velocity homes in on zero. 

 

 

 

 

 

 



 

 

 

 

 
 

 



 

LEAKY VALVES 

 

A stable leaky valve is basically one that has a P versus U 

characteristic which resembles that of a wide open valve. 

This has a parabolic shape with positive slope throughout. 

An unstable leaky valve has a characteristic that has a 

positive slope at low pressure but negative slope at high 

pressure. Basically, the valve tries to shut itself at high 

pressure. The flow rate just upstream of a valve is pipe 

flow speed times pipe area. The flow rate within the valve 

is valve flow speed times valve area. In a stable leaky 

valve, the areas are both constant. The valve flow speed 

increases with pipe pressure so the pipe flow speed also 

increases. In an unstable leaky valve, the flow speed 

within the valve also increases with pipe pressure but the 

valve area drops because of suction within the valve. The 

suction is generated by high speed flow through the small 

passageway within the valve. It pulls on flexible elements 

within the valve and attempts to shut it. Graphical 

waterhammer plots for stable and unstable leaky valves are 

given below. As can be seen, they both resemble the sudden 

valve closure plot, but the stable one is decaying while 

the unstable one is growing. In the unstable case, greater 

suction is needed each time a backflow wave comes up to the 

valve because the flow requirements of the valve keep 

getting bigger. In the stable case, less suction is needed 

because the flow requirements keep getting smaller.  

 

 

 

 



 

 

 

 

 



 

 

 

 

 



 
 
 

 
 
 

SUDDEN VALVE CLOSURE 

 

 



 

 

 

 

 

STABLE LEAKY VALVE 

 

 



 

 

 

UNSTABLE LEAKY VALVE 

 

 


