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PREAMBLE

Unsteady flow in pipe networks can be caused by a number of
factors. A turbomachine with blades can send pressure waves
down a pipe. If the period of these waves matches a natural
period of the pipe wave speed resonance develops. A piston
pump can send similar waves down a pipe. Waves on the surface
of a water reservoir can also excite resonance of inlet
pipes. Sudden valve or turbomachine changes can send waves up
and down pipes. These can cause the pipes to explode or
implode. In some cases interaction between pipes and devices
is such that oscillations develop automatically. Examples
include oscillations set up by leaky valves and those set up

by slow turbomachine controllers.



WAVE PROPAGATION IN PIPES

Consider flow in a rigid pipe with a wvalve at its downstream
end and a reservoir at its upstream end. Assume that there
are no friction losses. This implies that the pressure and

flow speed are the same everywhere along the pipe.

Imagine now that the valve is suddenly closed. This causes a
high pressure or surge wave to propagate up the pipe. As it
does so, it brings the fluid to rest. The fluid immediately
next to the valve is stopped first. The valve is like a wall.
Fluid enters an infinitesimal layer next to this wall and
pressurizes it and stops. This layer becomes like a wall for
an infinitesimal layer just upstream. Fluid then enters that
layer and pressurizes it and stops. As the surge wave
propagates up the pipe, it causes an infinite number of these
pressurizations. When it reaches the reservoir, all of the
inflow has been stopped, and pressure is high everywhere

along the pipe. The pipe resembles a compressed spring.

When the surge wave reaches the reservoir, 1t creates a
pressure imbalance. The layer of fluid Jjust inside the pipe
has high pressure fluid downstream of 1t and reservoir
pressure upstream. Fluid exits the layer on its upstream side
and depressurizes it. The ©pressure drops Dback to the
reservoir level. A backflow wave is created. The speed of the
backflow is exactly the same as the speed of the original
inflow. The pressure that was generated by taking the

original inflow away is exactly what is available to generate



the backflow. The backflow wave propagates down the pipe

restoring pressure everywhere to its original level.

When the backflow wave reaches the valve, it creates a flow
imbalance. This causes a low pressure or suction wave to
propagate up the pipe. As it does so, it brings the fluid to
rest. Again, the wvalve is like a wall. Because of backflow,
fluid exits an infinitesimal layer next to this wall and
depressurizes it and stops. The pressure drops below the
reservoir level by exactly the amount 1t was above the

reservoir level in the surge wave.

When the suction wave reaches the reservoir, all of the
backflow has been stopped, and pressure is low everywhere
along the pipe. The pipe resembles a stretched spring. At the
reservoir, the suction wave creates a pressure imbalance. An
inflow wave 1is created. The speed of the inflow is exactly
the same as the speed of the backflow. The inflow wave
travels down the pipe restoring pressure to its original
level. Conditions in the pipe become what they were Jjust

before the valve was closed.

During one cycle of vibration, there are 4 transits of the
pipe by pressure waves. This means that the natural period of
the pipe is 4 times the length of the pipe divided by the
wave speed. Without friction, the vibration cycle repeats

over and over. With friction, it gradually dies away.



BASIC WAVE EQUATIONS

Consider a wave travelling up a rigid pipe. In a reference

frame moving with the wave, mass considerations give

o A (U+a) = (ptAp) A (U+AU+a)

where p 1s density, A is pipe area, U is flow velocity and

a is wave speed. When a >> U, this reduces to

Momentum considerations give

PA (U+a) [ (U+AU+a) - (U+a)] = [P - [P+AP]] A

where P is pressure. When a >> U, this reduces to

© a AU = - AP

Manipulations give

a =\ [AP/0p]

For a gas such as air moving down a pipe, one can assume

ideal gas behavior for which:

P/p =R T



R 1is the ideal gas constant and T is the absolute
temperature of the gas. For a wave propagating through a
gas, oOne can assume processes are 1sentropic: in other
words, adiabatic and frictionless. The wave moves so fast
through the gas that there is no time for heat transfer or

friction. The isentropic equation of state is:

where K 1is another constant and k is the ratio of specific

heats. Differentiation of this equation gives

AP/Ap = k P/p

The ideal gas law into this gives

AP/Ap =k R T

So wave speed for a gas becomes

a =4V [k R T]

For a liquid, fluid mechanics shows that

AP = - K AV/V

where K i1s the bulk modulus of the liquid. It is a measure

of its compressibility. For a bit of fluid mass



A [pV] =V Ap + p AV

AM

This implies that

AP = K Ap/p AP/Ap = K/p
So wave speed for a liquid becomes
a = V [K/p]

The bulk modulus of a gas follows from

K/o=kRT

The wave speed for a mixture is

a = \ [Ku/ou]

ou = 2[pcVel /Vy Ky = Vu/2[Ve/Ke]

The wave speed for a flexible pipe is

a =V [K/p] K=K/ [1+ [DK]/[Ee]]

where E is the Elastic Modulus of the pipe wall material,

is the wall thickness and D is the pipe diameter.

e



WATERHAMMER ANALYSIS

Waterhammer analysis allows one to connect unknown pressure
and flow velocity at one end of a pipe to known pressure and
velocity at the other end of the pipe one transit time back
in time. The derivation of the waterhammer equations starts
with the conservation of momentum and mass equations for

unsteady flow in a pipe. These are:

p 0U/0t + pU O0U/0x + OP/0x - pg Sina + £/D pU|U|/2 = 0

OP/0t + U O0P/0x + pa’ 0U/dx = 0

where P 1is pressure and U is velocity. For the case where
gravity and friction are insignificant and the mean flow

speed is approximately zero, these reduce to:

o 0U/ot + 0P/0x = 0

OP/ot + pa’ dU/0x = 0

Manipulation gives the wave equations:

0°P/ot? = a® 6°p/ox?

0°U/ot? = a? 0*u/ox?



The general solution consists of two waves: one wave which
travels up the pipe known as the F wave and the other which

travels down the pipe known as the f wave.

In terms of these waves, pressure and velocity are:

where N and M are wave fixed frames given by:

N=x-at M

X + at

For a given point N on the f wave, the N equation shows that
X must i1ncrease as time increases, which means the wave must
be moving down the pipe. For a given point M on the F wave,
the M equation shows that x must decrease as time increases,
which means the wave must be moving up the pipe. Substitution
of the general solution into mass or momentum or the wave

equations shows that they are valid solutions.

Multiplying U by pa and subtracting it from P gives:



Let the F wave travel from the downstream end of the pipe to
the upstream end. For a point on the wave, the wvalue of F

would be the same. This implies

AP = + pa AU

Multiplying U by pa and adding it to P gives:

[P-P,] + palU-U,] = 2f£(N)

Let the f wave travel from the upstream end of the pipe to
the downstream end. For a point on the wave, the value of f

would be the same. This implies

AP

- pa AU

The AP vs AU equations allow us to connect unknown conditions
at one end of a pipe at some point in time to known
conditions at the other end back in time. They are known as

the waterhammer equations.



SUDDEN VALVE CLOSURE

Imagine a pipe with a reservoir at its upstream end and a
valve at its downstream end. The valve 1is initially open.
Then 1t 1is suddenly shut. From that point onward, the
velocity at the valve 1is zero. We ignore losses. Because of
this, the pressure at the reservoir is fixed at its initial
level. We start at point 1 which is at the reservoir and move
along an f wave to point 2 which is at the wvalve. A surge
wave 1s created at the valve. We then move from the wvalve
along an F wave to point 3 which is at the reservoir. A
backflow wave 1is created at the reservoir. We then move from
the reservoir along an f wave to point 4 which is at the
valve. A suction wave 1is created at the valve. We then move
from the wvalve along an F wave to point 1 which is at the
reservoir. An inflow wave 1is created at the reservoir. From
this point onward the <cycle repeats. Friction gradually

dissipates the waves and the velocity homes in on zero.






LEAKY VALVES

A stable leaky valve is basically one that has a P versus U
characteristic which resembles that of a wide open valve.
This has a parabolic shape with positive slope throughout.
An unstable 1leaky wvalve has a characteristic that has a
positive slope at low pressure but negative slope at high
pressure. Basically, the wvalve tries to shut itself at high
pressure. The flow rate Jjust upstream of a valve 1is pipe
flow speed times pipe area. The flow rate within the wvalve
is valve flow speed times valve area. In a stable leaky
valve, the areas are both constant. The valve flow speed
increases with pipe pressure so the pipe flow speed also
increases. In an unstable leaky wvalve, the flow speed
within the wvalve also increases with pipe pressure but the
valve area drops because of suction within the wvalve. The
suction 1s generated by high speed flow through the small
passageway within the wvalve. It pulls on flexible elements
within the wvalve and attempts to shut it. Graphical
waterhammer plots for stable and unstable leaky wvalves are
given below. As can be seen, they both resemble the sudden
valve closure plot, but the stable one is decaying while
the unstable one is growing. In the unstable case, greater
suction is needed each time a backflow wave comes up to the
valve Dbecause the flow requirements of the wvalve keep
getting bigger. In the stable case, less suction is needed

because the flow requirements keep getting smaller.
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