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PREAMBLE 

 

Potential flow is based on two major assumptions. 

First, the fluid is taken to be inviscid, which means 

it has zero viscosity. Second, the fluid motion is 

taken to be irrotational, which means each fluid 

particle does not spin on its own internal axis. 

Particles move through space like the carts on a 

Ferris Wheel. The fluid is said to be ideal. It can be 

compressible or incompressible. For hydrodynamic 

flows, the fluid can be taken to be incompressible. 

 

When a body moves at steady speed through an ideal 

fluid, theory shows that the net load acting on the 

body is zero. This includes bodies that in reality 

have lift and drag forces acting on them. This is 

known as D'Alemberts Paradox. So it appears that ideal 

fluid theory is of little practical value.  

 

 



POTENTIAL FLOW EQUATIONS 

 

The derivation of the equations for potential or ideal 

flow start with the conservation laws of mass and 

momentum for an incompressible fluid.  



.v = 0 

 
ρv/t + ρ v. v + P + ρgz - µv = 0 

 

where v = Ui + Vj + Wk is the velocity vector, ijk are 

unit vectors in xyz, ρ is density, P is pressure, µ is 

viscosity and g is gravity.    

 

For ideal flows, we assume that the fluid has zero 

viscosity or is inviscid. With this assumption, the 

conservation laws become  



.v = 0 

 
ρv/t + ρ v. v + P + ρgz = 0 

 

For ideal fluid flows, we also assume that fluid 

motion is irrotational. This means that fluid 

particles do not spin on internal axes: mathematically 

this means that the spin vector Ω is zero.  

 

One can show that the spin vector Ω is half the 

vorticity vector  ω. So, for an irrotational flow, the 

vorticity vector is zero. One can write this as:  

 

 



 

ω = 2Ω = xv = 0 

 

For any scalar φ, one can show that   

 

xφ = 0 

 

This suggests that for an irrotational flow  

 

v = φ 

 

Substitution v = φ  into the conservation of mass 

equation gives after some manipulation:  

 

.φ  =  2φ  =  0 

 

A vector identity shows that 

 

v. v = v.v/2) – vxω 

 

With this conservation of momentum becomes       

 

ρv/t + ρ v.v/2) + P + ρgz = 0 

 
 

Substitution v = φ into the conservation of momentum 

equation gives after some manipulation: 

 
φ/t + (φ.φ)/2 + P/ρ + gz = C 



 

The primitive variable equations 



.v = 0       

 
ρv/t + ρ v. v + P + ρgz = 0 

 

where 

 

v = Ui + Vj + Wk 

 

have become 



2φ  =  0 



φ/t + (φ.φ)/2 + P/ρ + gz = C 

 

where 

 

v = φ 

 

The last equation implies 

 

U = φ/x     V = φ/y     W = φ/z 

 

 

  



 

SUPERPOSITION OF ELEMENTAL FLOWS 

 

Potential or ideal flows around bodies are usually 

obtained by superposition of certain basic or 

elemental flows. Superposition produces in the flow a 

stream surface that separates inner and outer flows. 

The stream surface mimics a thin shell body in the 

flow that deflects inner and outer flows. We are 

usually interested in the outer flow. The most 

elemental flow is a stream. This is usually uniform, 

meaning that all fluid particles are moving in the 

same direction at the same speed. Another elemental 

flow is a source. Here all fluid particles are moving 

outwards from a center. The center is a line in 2D and 

a point in 3D. At the center the fluid is moving at 

infinite speed! The inverse of a source is a sink. 

Here all fluid particles are moving inwards to a 

center. Superposition of a strong source and a strong 

sink of equal strength very close together produces 

the elemental flow known as a doublet. The final 

elemental flow is known as a potential vortex. Here 

all fluid particles are moving along circular 

streamlines. The speed of the particles is inversely 

proportional to the streamline radius, so particles at 

the center of the vortex move at infinite speed! 

Points in a flow where fluid particles are moving at 

infinite speed are known as singularities. Such points 

do not exist in reality!    

 

 

 



 

DRAG ON CYLINDERS 

 

Superposition of a 2D stream and a 2D doublet gives 

approximately the flow pattern around a cylinder. The 

potential function for the flow is 

 
φ = S X + S XR2/[X2+Y2] 

 
where R is the cylinder radius and S is the stream 

speed.  To calculate the loads on the cylinder, we 

need the pressure at points on it. The Bernoulli 

Equation applied between points on the cylinder and a 

point in the flow well upstream gives pressure. For 

this, we need the speed of the fluid over the 

cylinder. On the cylinder, where [X2+Y2] is equal to 

R, the potential function reduces to 

 
φ = 2 S X 

 
On the cylinder, geometry gives  

 
X = - R Cosσ 

 
where σ is a clockwise angle over the cylinder. The 

circumferential distance over the cylinder is c=Rσ. 

This allows us to rewrite the potential function as 

 
φ = -2 S R Cos[c/R] 

 
The speed of the fluid over the cylinder is 

 
φ/c = 2 S Sinσ 

 
 



 
 
 
 
 

Application of Bernoulli gives 

 

P/ρ  +  (φ/c)2/2  =  S2/2 

 
Manipulation gives 

 
P = ρ/2 [ S2 - (φ/c)2 ] 

 

P = ρ/2 S2 [ 1 – 4 Sin2 ] 

 
This is only good up to separation. In the wake 

downstream, the pressure is approximately constant and 

is approximately equal to the pressure where the 

boundary layer separates. At a point on the cylinder, 

pressure acts over the incremental area : dA = Rdσ.  

 

This gives the incremental force :  

 

dF = P dA = P R dσ 

 

and the following incremental drag and lift forces 

 
dD = + dF Cosσ        

 

dL = - dF Sinσ 

 
Integration gives the total drag and lift. 

 



 

 

 

DRAG ON SPHERES 

 

Superposition of a 3D stream with a 3D doublet 

produces the ideal flow around a sphere. The potential 

function is 

 
φ = - S r Cosσ  -  S/2 R3/r2 Cosσ 

 
where R is the radius of the sphere, r is a distance 

out from the center of the sphere, S is the stream 

speed and σ is a clockwise angle over the sphere. To 

calculate the loads on the sphere, we need the 

pressure at points on it. For this, we need flow 

speed. On the sphere, where r=R and c=Rσ, the 

potential function reduces to 

 
φ = - 3/2 S R Cos[c/R] 

 

The speed of the fluid over the sphere is 

 
φ/c = 3/2 S Sinσ 

 
Application of Bernoulli gives 

 
P/ρ  +  (φ/c)2/2  =  S2/2 

 
Manipulation gives 

 
 
 
 
 



 
 
 
 

 
 

P = ρ/2 [ S2 - (φ/c)2 ] 

 

P = ρ/2 S2 [ 1 – 9/4 Sin2 ] 

 
 

As it was for the cylinder, this is only good up to 

separation. At a point on the sphere, pressure acts 

over the incremental area 

 
dA = R dσ R dΘ     R = R Sinσ 

 
This gives the incremental force 

 
dF = P dA = P R2 Sinσ dσ dΘ 

 
and the following incremental drag and lift forces 

 
dD = dF Cosσ      

 

dL = - dF Sinσ CosΘ 

 
Integration gives the total drag and lift. 

 

 

 

 

 



 

LIFTING BODIES 

 

Ideal fluid theory predicts that for a body shaped 

like a foil the fluid is able to turn the sharp corner 

at the trailing edge and move back over the top of the 

foil to join with fluid that moved around the leading 

edge and over the top. The two bits of fluid would 

pass through two stagnation or zero velocity points: 

one on the bottom and one on the top. In reality, the 

fluid cannot turn the sharp corner at the rear. The 

fluid has to undergo infinite deceleration and 

acceleration to turn such a corner. Associated with 

this is an infinite suction pressure. As a real fluid 

tries to moves away from this into a higher pressure 

region on top of the foil, it moves inside a boundary 

layer. Within it, energy is taken from the fluid by 

viscous drag forces. The low to high pressure is known 

as an adverse pressure gradient. It turns out that 

fluid in a boundary layer would not be able to move 

into such a strong gradient and would be stopped at 

the trailing edge. The fluid is said to separate. The 

trailing edge becomes a stagnation point and a 

separation point. The fluid can be seen to leave the 

trailing edge smoothly. It turns out that the loads on 

the foil in this case are not zero. Note that this 

happens because of the behavior of a boundary layer, 

which is a mainly viscous phenomenon. This suggests 

that without viscosity wings would not work and 

present day airplanes would not be able to fly! 

 

 



 

One can use a potential vortex to force the ideal flow 

over a foil to mimic a real flow. The vortex drags the 

stagnation point normally on top of the foil back to 

the trailing edge. When this is done, loads are no 

longer zero.  

 

Superposition of a 2D stream and a 2D doublet with a 

potential line vortex gives approximately the flow 

pattern around a spinning cylinder. The potential 

function for the flow is 

 
φ = S X + S XR2/[X2+Y2]  +  Γ/[2π] σ 

 
where R is the cylinder radius, S is the stream speed, 

Γ is the vortex strength and σ is a clockwise angle 

over the cylinder. On the circle this becomes 

 

φ = 2 S X +  Γ/[2π] σ 

 

It turns out that the flow around the cylinder can be 

mapped into flow around a foil shape. The foil 

coordinates in terms of circle coordinates are  

 
α = x + xa2/(x2+y2)      

 

β = y - ya2/(x2+y2) 

 
Geometry gives 

 
 

 

 



 

 

X = X CosΘ + Y SinΘ      

 
Y = Y CosΘ - X SinΘ 

 
 X = x + n     Y = y - m             

    
a = [R2-m2] - n      

 
where Θ is the angle of attack of the foil and n and m 

are offsets. To make the flow look realistic around 

the foil, the trailing edge must be a stagnation 

point. It turns out that the point where the x axis 

hits the circle in the circle plane maps to the 

trailing edge of the foil in the foil plane, and this 

point is a stagnation point in both planes. Setting 

the speed to zero there in the circle plane shows that 

the circulation must be:  

 

Γ = 4πSR Sinκ 

 

κ = Θ + ε      ε = tan-1 [m/(n+a)] 

 

One can show that the theoretical lift on the foil is 

ρSΓ while the theoretical drag is zero. Note that lift 

is zero when the vortex strength is zero. The vortex 

mimics viscosity. One can also estimate the lift and 

drag numerically. The Bernoulli equation gives for 

pressure at any point on the foil:        

 
 
 



 

 
 
 
 
 



 
 

 

ρ/2 [ S2 - (φ/c)2 ] 

     
A finite difference approximation is: 

 
ρ/2 [ S2 - (Δφ/Δc)2 ] 

where  

 

Δφ = 2 S ΔX +  Γ/[2π] Δσ 

 

ΔX = ΔX CosΘ + ΔY SinΘ      

 

 Δc = [Δα2+Δβ2]  

 

 

The incremental lift and drag are: 

 

PΔc Sin(θ-Θ)     

 

PΔc Cos(θ-Θ)   

 
 
where  θ   is the foil normal. Summation gives 

 
L = ΣΔL      

 

D = ΣΔD 

 

 

 

 

 







 

 

 


