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PREAMBLE

Potential flow 1is based on two major assumptions.
First, the fluid is taken to be inviscid, which means
it has =zero wviscosity. Second, the fluid motion 1is
taken to Dbe irrotational, which means each fluid
particle does not spin on 1its own internal axis.
Particles move through space 1like the carts on a
Ferris Wheel. The fluid is said to be ideal. It can be
compressible or incompressible. For hydrodynamic

flows, the fluid can be taken to be incompressible.

When a body moves at steady speed through an ideal
fluid, theory shows that the net load acting on the
body 1is =zero. This includes bodies that in reality
have 1lift and drag forces acting on them. This 1is
known as D'Alemberts Paradox. So it appears that ideal

fluid theory is of little practical wvalue.



POTENTIAL FLOW EQUATIONS

The derivation of the equations for potential or ideal
flow start with the conservation laws of mass and

momentum for an incompressible fluid.

V.v =0

oov/0t + p v.V v + VP + Vpgz - pVv = 0

where v = Ui + Vj + Wk is the velocity vector, ijk are
unit vectors in xyz, p is density, P is pressure, pu is

viscosity and g is gravity.

For ideal flows, we assume that the fluid has zero
viscosity or is inviscid. With this assumption, the

conservation laws become

V.v =0

pov/ot + p v.V v + VP + Vpgz = 0

For ideal fluid flows, we also assume that fluid
motion is irrotational. This means that fluid
particles do not spin on internal axes: mathematically

this means that the spin vector Q is zero.

One can show that the spin vector £ 1is half the
vorticity wvector ®. So, for an irrotational flow, the

vorticity vector is zero. One can write this as:



For any scalar ¢, one can show that

VxVep = 0

This suggests that for an irrotational flow

v = Vo

Substitution wv = Vo into the conservation of mass

equation gives after some manipulation:

A vector identity shows that

v.Vv=V(v.v/2) - vxe

With this conservation of momentum becomes

pov/ot + p V(v.v/2) + VP + Vpgz = 0

Substitution v = V¢ into the conservation of momentum

equation gives after some manipulation:

op/0t + (Vo.Vo)/2 + P/p + gz = C



The primitive variable equations

V.v =0

pov/ot + p v.V v + VP + Vpgz = 0

where

v =Ui + V3 + Wk

have become

Vip = 0

op/ot + (Vo.Ve)/2 + P/p + gz = C

where

The last equation implies

U = 0¢/0x V = 0p/0y W = 09p/0z



SUPERPOSITION OF ELEMENTAL FLOWS

Potential or ideal flows around Dbodies are wusually
obtained by superposition of certain basic or
elemental flows. Superposition produces in the flow a
stream surface that separates inner and outer flows.
The stream surface mimics a thin shell body in the
flow that deflects inner and outer flows. We are
usually interested 1in the outer flow. The most
elemental flow is a stream. This 1s usually uniform,
meaning that all fluid particles are moving 1in the
same direction at the same speed. Another elemental
flow is a source. Here all fluid particles are moving
outwards from a center. The center is a line in 2D and
a point in 3D. At the center the fluid is moving at
infinite speed! The inverse of a source 1is a sink.
Here all fluid particles are moving inwards to a
center. Superposition of a strong source and a strong
sink of equal strength very close together produces
the elemental flow known as a doublet. The final
elemental flow 1s known as a potential vortex. Here
all fluid particles are moving along circular
streamlines. The speed of the particles is inversely
proportional to the streamline radius, so particles at
the center of the vortex move at infinite speed!
Points in a flow where fluid particles are moving at
infinite speed are known as singularities. Such points

do not exist in reality!



DRAG ON CYLINDERS

Superposition of a 2D stream and a 2D doublet gives
approximately the flow pattern around a cylinder. The

potential function for the flow is
© =S X + S XR*/[X?+Y?]

where R 1is the cylinder radius and S 1is the stream
speed. To calculate the loads on the cylinder, we
need the pressure at points on it. The Bernoulli
Equation applied between points on the cylinder and a
point in the flow well upstream gives pressure. For
this, we need the speed of the fluid over the
cylinder. On the cylinder, where VIX?+Y?] is equal to

R, the potential function reduces to

On the cylinder, geometry gives
X = - R Coso

where o 1is a clockwise angle over the cylinder. The
circumferential distance over the cylinder is c=Ro.

This allows us to rewrite the potential function as
@ = -2 S R Cos[c/R]
The speed of the fluid over the cylinder is

0p/0c = 2 S Sino



Application of Bernoulli gives

P/o + (8¢/0c)?/2 = §%/2
Manipulation gives

P=p/2 [ S* - (89/dc)? ]

P=p/2S [1- 4 Sinc ]

This 1is only good up to separation. In the wake
downstream, the pressure is approximately constant and
is approximately equal to the pressure where the
boundary layer separates. At a point on the cylinder,

pressure acts over the incremental area : dA = Rdo.

This gives the incremental force

dFF = P dA = P R do

and the following incremental drag and 1lift forces

dD = + dF Coso

dL - dF Sino

Integration gives the total drag and lift.



DRAG ON SPHERES

Superposition of a 3D stream with a 3D doublet
produces the ideal flow around a sphere. The potential

function is
@ =- S r Cosc - S/2 R*/r? Coso

where R is the radius of the sphere, r is a distance
out from the center of the sphere, S is the stream
speed and o is a clockwise angle over the sphere. To
calculate the 1loads on the sphere, we need the
pressure at points on it. For this, we need flow
speed. On the sphere, where r=R and c=Rg, the

potential function reduces to

@ = - 3/2 S R Cos[c/R]
The speed of the fluid over the sphere is
0op/0c = 3/2 S Sino
Application of Bernoulli gives
P/o + (0¢/0c)?/2 = S?/2

Manipulation gives



P=p/2 [ S? - (89/dc)? ]

P=p/2S [1- 9/4 Sinc ]

As it was for the cylinder, this is only good up to
separation. At a point on the sphere, pressure acts

over the incremental area
dA = R do R dO R = R Sino
This gives the incremental force
dF = P dA = P R® Sinc do dO®
and the following incremental drag and 1lift forces

dD = dF Coso

dL = - dF Sinoc Cos®

Integration gives the total drag and 1ift.



LIFTING BODIES

Ideal fluid theory predicts that for a body shaped
like a foil the fluid is able to turn the sharp corner
at the trailing edge and move back over the top of the
foil to join with fluid that moved around the leading
edge and over the top. The two bits of fluid would
pass through two stagnation or =zero velocity points:
one on the bottom and one on the top. In reality, the
fluid cannot turn the sharp corner at the rear. The
fluid  has to undergo infinite deceleration and
acceleration to turn such a corner. Associated with
this is an infinite suction pressure. As a real fluid
tries to moves away from this into a higher pressure
region on top of the foil, it moves inside a boundary
layer. Within 1it, energy is taken from the fluid by
viscous drag forces. The low to high pressure is known
as an adverse pressure gradient. It turns out that
fluid in a boundary layer would not be able to move
into such a strong gradient and would be stopped at
the trailing edge. The fluid is said to separate. The
trailing edge becomes a stagnation point and a
separation point. The fluid can be seen to leave the
trailing edge smoothly. It turns out that the loads on
the foil in this case are not =zero. Note that this
happens because of the behavior of a boundary layer,
which 1s a mainly wviscous phenomenon. This suggests
that without wviscosity wings would not work and

present day airplanes would not be able to fly!



One can use a potential vortex to force the ideal flow
over a foil to mimic a real flow. The vortex drags the
stagnation point normally on top of the foil back to
the trailing edge. When this is done, 1loads are no

longer =zero.

Superposition of a 2D stream and a 2D doublet with a
potential 1line vortex gives approximately the flow
pattern around a spinning cylinder. The potential

function for the flow is
© = S X + S XR?’/[X°+Y?’] + T/[2u] ©

where R is the cylinder radius, S is the stream speed,
I' is the vortex strength and ¢ is a clockwise angle

over the cylinder. On the circle this becomes

© =2 S X+ T/[2n] o

It turns out that the flow around the cylinder can be
mapped into flow around a foil shape. The foil

coordinates in terms of circle coordinates are

o = x + xa’/ (x°+y?)

B =y - va®/ (x*+y")

Geometry gives



X = X Cos® + Y Sin®
Y = Y Cos® - X Sin®
X =x+n Y=y -m
a = V[R?—mz] - n

where ® is the angle of attack of the foil and n and m
are offsets. To make the flow look realistic around
the foil, the trailing edge must be a stagnation
point. It turns out that the point where the x axis
hits the circle in the <circle plane maps to the
trailing edge of the foil in the foil plane, and this
point 1is a stagnation point 1in both planes. Setting
the speed to zero there in the circle plane shows that

the circulation must be:

I'= 47nSR Sink

K= O+ ¢ e = tan! [m/ (n+a)]

One can show that the theoretical 1ift on the foil is
pSI' while the theoretical drag is zero. Note that 1lift
is zero when the vortex strength is zero. The vortex
mimics wviscosity. One can also estimate the 1lift and
drag numerically. The Bernoulli equation gives for

pressure at any point on the foil:



QP



p/2 [ S* - (8p/dc)? ]
A finite difference approximation is:

p/2 [ S* - (A@/Ac)? ]

where

Ap = 2 S AX + T/[2n] Ao

AX = AX Cos® + AY Sin®

Ac = V[Ac?+AB?]

The incremental 1lift and drag are:

PAc Sin (0-0)

PAc Cos (0-0)

where 0 is the foil normal. Summation gives

L = ZAL

D = XAD
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