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CONSERVATION LAWS FOR A POINT IN A FLOW 

 

 

 LAGRANGIAN VS EULERIAN FORMULATIONS 

The Lagrangian Formulation focuses on a specific group of fluid 

particles in a flow. It is the most natural way to develop the 

governing equations but it not very practical from a mathematical 

point of view because there are just too many groups in a flow to 

follow. The Eulerian Formulation focuses on a specific region in 

space. Mathematically this control volume approach is much more 

practical. Here we start with the Lagrangian Formulation but use 

the Transport Theorem to switch to the Eulerian Formulation. For 

the derivations we assume that fluid is continuous. This means that 

no matter how much we zoom in on a bit of fluid we do not see any 

molecules. We also assume that the fluid is Newtonian.   

 

 CONSERVATION OF MASS 

Consider an arbitrary specific group of fluid particles with volume 

V and surface S anywhere within a flow. A differential volume dV 

within V would contain mass ρdV where ρ is the fluid density. 

Integration over the volume gives the total mass of the group. 

According to Conservation of Mass, the time rate of change of the 

mass of the group is zero.  Mathematically we can write 

                                           
D/Dt    ρ dV   =   0 

                             V               
 
 



 
The Transport Theorem allows us to rewrite the integral as  
 
              
 

  [ ρ/t + .(ρv) ] dV  =  0 
                   V 
 
where v is the fluid velocity and  is the del operator. For an 

arbitrary bit of mass, the integrand inside the square brackets 

must be zero. Setting it to zero gives: 

 
ρ/t + .(ρv)  =  0 

 
 
With v = Ui + Vj + Wk, this becomes 
 
 

ρ/t  +  (ρU)/x  +  (ρV)/y  +  (ρW)/z  =  0 
 
 

ρ/t + ρU/x + ρV/y  + ρW/z 
 

+  Uρ/x  +  Vρ/y  +  Wρ/z  =  0 
 
 
For incompressible flow, it reduces to 
 
 

U/x  +  V/y  +  W/z  =  0 
 
 
Mathematically velocity is divergence free. The Conservation of 

Mass equation is often called the Continuity equation. 

 

 CONSERVATION OF MOMENTUM 

Consider again an arbitrary specific group of fluid particles with 

volume V and surface S anywhere within a flow. A differential 

volume dV within V would contain momentum ρdVv. Integration over V 

gives the total momentum of the group. According to Conservation of 



Momentum, the time rate of change of the momentum of the group is 

equal to the net force acting on it. The forces acting can be of 

two types: surface forces and body forces. Surface forces in turn 

can be of two types: pressure and viscous traction. Body forces are 

generally due only to gravity. Mathematically we can write  

                                             
D/Dt   ρv dV   =     σ dS    +     ρb dV 

                  V              S             V 
 
where σ is a vector representing the stress or force per unit area 

at any point on the surface S and b is a vector representing the 

body force per unit mass at any point within the volume V. The 

Transport Theorem allows us to rewrite the integral as 

                                                 
  [(ρv)/t + .(ρvv)] dV   =     σ dS    +       ρb dV 

      V                               S               V 
 
The surface integral can be converted to a volume integral. Once 

this is done, all the volume integrals can be combined into one. 

For an arbitrary bit of mass, the integrand of this single integral 

must be zero. Setting the integrand to zero gives: 

 
X i  +  Y j  +  Z k  =  0 

 
X = 0   Y = 0    Z = 0 

 
 
The details of this manipulation are beyond the scope of this note. 

The X = 0 equation gives x momentum equation: 

 
ρ  (U/t + UU/x + VU/y + WU/z) = - P/x 

 
+ /x (λ [U/x + V/y + W/z])  + /x (μ [U/x + U/x]) 

 
+ /y (μ [V/x + U/y]) + /z (μ [W/x + U/z]) 

 
 



 
The Y = 0 equation gives y momentum equation: 
 
 

ρ  (V/t + UV/x + VV/y + WV/z) = - P/y 
 

+ /y (λ [U/x + V/y + W/z])  + /x (μ [V/x + U/y]) 
 

+ /y (μ [V/y + V/y]) + /z (μ [W/y + V/z]) 
 

 
The Z = 0 equation gives z momentum equation: 
 
 

ρ  (W/t + UW/x + VW/y + WW/z) = - P/z - ρg 
 

+ /z (λ [U/x + V/y + W/z])  + /x (μ [W/x + U/z]) 
 

+ /y (μ [V/z + W/y]) + /z (μ [W/z + W/z]) 
 

 
Stokes' Hypothesis states that λ=-2/3μ. For an incompressible fluid 

with constant viscosity, these equations reduce to:  

 
X Momentum 
 

ρ  (U/t + UU/x + VU/y + WU/z) = - P/x 
 

+  μ (2U/x2 + 2U/y2 + 2U/z2) 
 
Y Momentum 
 

ρ  (V/t + UV/x + VV/y + WV/z) = - P/y 
 

+  μ (2V/x2 + 2V/y2 + 2V/z2) 
 
Z Momentum 
 

ρ  ( W/t + UW/x + VW/y + WW/z) = - P/z - ρg 
 

+  μ (2W/x2 + 2W/y2 + 2W/z2) 
 

 
These equations are often called the Navier Stokes equations.    
 
 
  



 

CONSERVATION OF ENERGY 

Consider once more an arbitrary specific group of fluid particles 

with volume V and surface S anywhere within a flow. A differential 

volume dV within V would contain energy edV where e is the fluid 

energy density. The energy density consists of internal energy and 

observable kinetic and potential energies: 

 
e  =  u  + v.v/2  +  gz 

 
Integration over the volume gives the total energy of the group. 

According to Conservation of Energy, the time rate of change of the 

energy of the group is equal to rate at which heat flows to the 

group from the surroundings plus the rate at which the surroundings 

does work on the group. Assuming there is no internal heat 

generation, mathematically we can write 

                   
D/Dt  ρe dV   =   -    q.n dS   +   v.σ dS 

                 V               S              S      

where q is the heat flux vector and n is the unit outward normal at 

points on S. Here we assume that q is due to conduction only: 

radiation is ignored. A gravity body force work term is not present 

above because it has already been accounted for as potential energy 

in energy density. We could remove potential energy from energy 

density and add a body force work term after the v.σ equation:   

 
  v.ρb dV 

                             V 
 

 



 

One can show that both approaches give the same contribution to the 

conservation of energy equation. The Transport Theorem allows us to 

rewrite the energy integral as: 

              
 [(ρe)/t + .(ρev)] dV  =  -   q.n dS  +   v.σ dS             

       V                              S             S 
 

The surface integrals can be converted to volume integrals. Once 

this is done, all the volume integrals can be combined into one. 

For an arbitrary bit of mass, the integrand of this single integral 

must be zero. Setting the integrand to zero gives: 

 
ρ CV (T/t  +  UT/x + VT/y + WT/z)  = 

μ Φ  -  P (U/x + V/y + W/z) 

+  /x (kT/x)  +  /y (kT/y)  +  /z (kT/z) 

 
where T is temperature, k is the fluid thermal conductivity and Φ 

is a complex function known as the viscous dissipation function. 

Note that all of the mechanical energy terms have disappeared. The 

Conservation of Energy equation can also be written as  

 
ρ CP (T/t  +  UT/x + VT/y + WT/z)  = 

μ Φ  +  P/t  +  (UP/x + VP/y + WP/z) 

+  /x (kT/x)  +  /y (kT/y)  +  /z (kT/z) 



  
 

 

CONSERVATION LAWS FOR A STREAMTUBE 

 

 

 LAGRANGIAN VS EULERIAN FORMULATIONS 

The Lagrangian Formulation focuses on a specific group of fluid 

particles in a flow. It is the most natural way to develop the 

governing equations but it not very practical from a mathematical 

point of view because there are just too many groups in a flow to 

follow. The Eulerian Formulation focuses on a specific region in 

space. Mathematically this control volume approach is much more 

practical. Here we start with the Lagrangian Formulation but use 

the Transport Theorem to switch to the Eulerian Formulation.   

 

 

 CONSERVATION OF MASS 

Consider an arbitrary specific group of fluid particles with volume 

V and surface S anywhere within a flow. A differential volume dV 

within V would contain mass ρdV where ρ is the fluid density. 

Integration over the volume gives the total mass of the group. 

According to Conservation of Mass, the time rate of change of the 

mass of the group is zero.  Mathematically we can write 

      

                                   
D/Dt    ρ dV  =  0 

                              V               
 
 
Using the Transport Theorem this can be rewritten as 



              
 
 
                            

 ρ/t dV  +   ρ v.n dS  =  0 
                   V            S     

             

where v is the fluid velocity and n is the unit outward normal at 

points on S. For steady flow in a streamtube with multiple inlets 

and outlets conservation of mass reduces to  

 (ρCA)OUT  -   (ρCA)IN  =   M
.

OUT  -   M
.

IN  =  0 
 

 

where C is the flow speed and A is the tube area. 

 

 

 CONSERVATION OF MOMENTUM 

Consider again an arbitrary specific group of fluid particles with 

volume V and surface S anywhere within a flow. A differential 

volume dV within V would contain momentum ρdVv. Integration over V 

gives the total momentum of the group. According to Conservation of 

Momentum, the time rate of change of the momentum of the group is 

equal to the net force acting on it. The forces acting can be of 

two types: surface forces and body forces. Surface forces in turn 

can be of two types: pressure and viscous traction. Body forces are 

generally due only to gravity. Mathematically we can write  

                                          
 

D/Dt   ρv dV  =   σ dS  +   ρb dV 
                      V           S         V 
 
 
where σ is a vector representing the stress or force per unit area 



at any point on the surface S and b is a vector representing the 

body force per unit mass at any point within the volume V. Using 

the Transport Theorem the integral can be rewritten as  

                              
  

 ρv/t dV  +   ρv v.n dS  = 
                   V              S 

 
+   σ dS  +   ρb dV 

                          S          V 

 
For short streamtubes friction and gravity are often insignificant. 

In this case for steady flow in a streamtube with multiple inlets 

and outlets conservation of momentum reduces to 

 (ρvCA)OUT  -   (ρvCA)IN  =   (M
.
v)OUT  -   (M

.
v)IN 

= 

-   (PAn)OUT  -   (PAn)IN  +  R 

 

 
where R is the wall force on the fluid in the streamtube. 

  

 CONSERVATION OF ENERGY 

Consider once more an arbitrary specific group of fluid particles 

with volume V and surface S anywhere within a flow. A differential 

volume dV within V would contain energy edV where e is the fluid 

energy density. The energy density consists of internal energy and 

observable kinetic and potential energies: 

 
e  =  u  + v.v/2  +  gz 

 
Integration over the volume gives the total energy of the group. 



According to Conservation of Energy, the time rate of change of the 

energy of the group is equal to rate at which heat flows to the 

group from the surroundings plus the rate at which the surroundings 

does work on the group. Mathematically we can write 

                                                        
D/Dt  ρe dV  =  -  q.n dS  +   v.σ dS 

                   V             S           S 
 
 
A body force due to gravity work term is not present in this 

integral because it has already been accounted for as potential 

energy in energy density. Using the Transport Theorem the integral 

can be rewritten as 

 
 ρe/t dV  +   ρe v.n dS  = 

                   V              S 
 

 q.n dS  +   v.σ dS 
                         S           S 

 
 
For steady adiabatic isothermal flow in a streamtube with multiple 

inlets and outlets conservation of energy becomes  

 
 [(ρCA)(C2/2+gz+P/ρ)]OUT  -   [(ρCA)(C2/2+gz+P/ρ)]IN 

=   (M
.
gh)OUT  -   (M

.
gh)IN  =  T

.
 -  L

. 

 
where h is the flow head at inlets and outlets 

 
h  =  C2/2g  +  P/ρg  +  z 

 

and  L
.
 accounts for losses and  T

.
 accounts for shaft work. 

 

 



 
 

REYNOLDS TRANSPORT THEOREM 
 

 

Consider a small bit of fluid mass and follow it for a short period 

of time Δt. Let α be any property of the fluid such as its density. 

Since we have focused on a specific bit of mass, the property α can 

be only a function of time. The rate of change of the integral of α 

over the volume V of the mass is 

 
 
                                             

D/Dt  α(t) dV  =    Lim   [   α(t*) dV  -  α(t) dV  ] / Δt 
         V(t)          Δt0      V(t

*
)        V(t) 

 
 
 
where t

*
 = t + Δt. Now adding and subtracting the integral of α(t*) 

over V(t) inside the [] brackets allows us to rewrite the limit as 

        

                                   
Lim   [   α(t*) dV  -   α(t) dV  ] / Δt 

                              Δt0      V(t)          V(t) 
        
                               + 
                                   

Lim   [   α(t*) dV  -   α(t*) dV  ] / Δt 
                             Δt0      V(t

*
)         V(t) 

      
 
 
The first limit gives the Eulerian local derivative  
 
 
 
 
 
 
 



                                              
 α/t dV 

                             V(t) 
 
 

Geometric considerations give ΔV = [vΔt].[ndS] where S(t) is the 

surface which encloses V(t), v is the velocity at any point on this 

surface and n is the unit outward normal at this point. This allows 

us to replace the second limit with  

 
 
 

  α(t) v.n dS 
                           S(t) 
 
 
 
 
Gauss' Theorem can be used to convert the surface integral to a 

volume integral. When this is done one gets 

                               

   
 α(t) v.n dS  =    .(αv) dV 

                   S(t)              V(t) 
 
 
 
where  = /x i + /y j + /z k . So, one finally gets:  
 
 
 
                              

D/Dt    α(t) dV   =    [ α/t + .(αv) ] dV 
                 V(t)             V(t) 
 
 
 
 
This is Reynolds Transport Theorem. 
 
 
 
 
 



 
 
 

 
 


