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CONSERVATION LAWS FOR A POINT IN A FLOW

LAGRANGIAN VS EULERIAN FORMULATIONS
The Lagrangian Formulation focuses on a specific group of fluid
particles in a flow. It is the most natural way to develop the
governing equations but it not very practical from a mathematical
point of view because there are just too many groups in a flow to
follow. The Eulerian Formulation focuses on a specific region in
space. Mathematically this control volume approach is much more
practical. Here we start with the Lagrangian Formulation but use
the Transport Theorem to switch to the Eulerian Formulation. For
the derivations we assume that fluid is continuous. This means that
no matter how much we zoom in on a bit of fluid we do not see any

molecules. We also assume that the fluid is Newtonian.

CONSERVATION OF MASS
Consider an arbitrary specific group of fluid particles with volume
V and surface S anywhere within a flow. A differential volume dVv
within V would contain mass pdV where p is the fluid density.
Integration over the volume gives the total mass of the group.
According to Conservation of Mass, the time rate of change of the
mass of the group is zero. Mathematically we can write

D/Dt | pdv = 0
\



The Transport Theorem allows us to rewrite the integral as

[ [ ép/ot + V.(pv) 1 dV = 0
Vv

where v is the fluid velocity and V is the del operator. For an

arbitrary bit of mass, the integrand inside the square brackets

must be zero. Setting it to zero gives:
op/ot + V.(pv) = 0
With v = Ui + Vj + Wk, this becomes
op/ot + O(pU)/0x + O(pV)/Oy + O(pW)/0z = 0

op/o0t + pou/ox + pov/oy + powW/0z

+ Uop/ox + VOp/oy + Wop/0z = 0
For incompressible flow, it reduces to
ou/ox + OV/oy + OW/0z = O

Mathematically velocity is divergence free. The Conservation of

Mass equation is often called the Continuity equation.

CONSERVATION OF MOMENTUM
Consider again an arbitrary specific group of fluid particles with

volume V and surface S anywhere within a flow. A differential
volume dV within V would contain momentum pdvv. Integration over V

gives the total momentum of the group. According to Conservation of



Momentum, the time rate of change of the momentum of the group is
equal to the net force acting on it. The forces acting can be of
two types: surface forces and body forces. Surface forces in turn
can be of two types: pressure and viscous traction. Body forces are
generally due only to gravity. Mathematically we can write

D/Dt | pvdv = | ¢ ds + | pb av
\ S \

where 6 i1s a vector representing the stress or force per unit area
at any point on the surface S and b is a vector representing the
body force per unit mass at any point within the volume V. The

Transport Theorem allows us to rewrite the integral as

[ [o(pv)/ot + V.(pvw)] @&V = | o6ds  + | b av

v S v
The surface integral can be converted to a volume integral. Once
this is done, all the volume integrals can be combined into one.

For an arbitrary bit of mass, the integrand of this single integral

must be zero. Setting the integrand to zero gives:

The details of this manipulation are beyond the scope of this note.

The X = 0 equation gives x momentum equation:

p (0U/ot + UOU/0x + VOU/Oy + WoU/0z) = - OP/0x
+ 0/0x (A [0U/Ox + OV/Oy + OW/0z]) + 0/0x (pn [0U/0x + 0U/0x])

+ 0/0y (n [0V/Ox + 0U/oyl) + 0/0z (n [OW/0x + 0U/0z])



The Y = 0 equation gives y momentum equation:

p (0v/ot + UOV/0x + VOV/Oy + Wov/0z) = - OP/0y
+ 0/0y (A [0U/Ox + OV/Oy + OW/0z]) + 0/0x (pn [0V/Ox + 0U/0y])

+ 9/8y (u [6V/dy + 8V/oyl) + 0/0z (u [owW/dy + V/0z])

The Z = 0 equation gives z momentum equation:

p (ow/ot + UOW/0x + VOW/0y + WOW/0z) = - 0P/0z - pg
+ 0/0z (A [0U/Ox + OV/Oy + OW/0z]) + 0/0x (u [OW/0Ox + 0U/0z])

+ 0/0y (n [0V/0z + OW/0Oyl) + 0/0z (nu [OW/Oz + OW/0z])

Stokes' Hypothesis states that A=-2/3p. For an incompressible fluid

with constant viscosity, these equations reduce to:

X Momentum
p (0u/ot + UOU/0x + VOU/0y + WOU/0z) = - OP/0x
+ u (0u/ox’ + d'U/oy’ + 0'U/0z")
Y Momentum
p (ov/ot + UOV/0x + VOV/Oy + Wov/0z) = - 0OP/0y
+ u (OV/ox® + OV/oy' + OV/0z")
Z Momentum
p (OW/0t + UOW/0x + VOW/Oy + WOW/0z) = - OP/0z - pg

+ u (OW/ox* + OW/0y" + OW/0z")

These equations are often called the Navier Stokes equations.



CONSERVATION OF ENERGY
Consider once more an arbitrary specific group of fluid particles
with volume V and surface S anywhere within a flow. A differential
volume dV within V would contain energy edV where e is the fluid
energy density. The energy density consists of internal energy and

observable kinetic and potential energies:
e = u + v.v/2 + gz

Integration over the volume gives the total energy of the group.
According to Conservation of Energy, the time rate of change of the
energy of the group is equal to rate at which heat flows to the
group from the surroundings plus the rate at which the surroundings
does work on the group. Assuming there is no internal heat

generation, mathematically we can write

D/Dt | pe dv = - g.n ds + | v.o ds
Vv S S

where q is the heat flux vector and n is the unit outward normal at
points on S. Here we assume that g is due to conduction only:
radiation is ignored. A gravity body force work term is not present
above because it has already been accounted for as potential energy

in energy density. We could remove potential energy from energy

density and add a body force work term after the v.o equation:

[ v.pb av
Vv



One can show that both approaches give the same contribution to the
conservation of energy equation. The Transport Theorem allows us to

rewrite the energy integral as:

[ [6(pe)/ot + V.(pev)] a4V = -] gq.nds + | v.c ds
A% S S

The surface integrals can be converted to volume integrals. Once
this is done, all the volume integrals can be combined into one.
For an arbitrary bit of mass, the integrand of this single integral

must be zero. Setting the integrand to zero gives:

p C, (0T/ot + UOT/0x + VOT/Oy + WOT/0z) =
ud® - P (0U/0x + OV/Oy + OW/0z)

+ 0/0ox (koT/ox) + 0/0y (koT/oy) + 0/0z (kOT/0z)

where T is temperature, k is the fluid thermal conductivity and @

is a complex function known as the viscous dissipation function.
Note that all of the mechanical energy terms have disappeared. The

Conservation of Energy equation can also be written as

p C, (0T/0t + UOT/0x + VOT/Oy + WOT/0z) =
pd® + O0OpP/ot + (UOP/Ox + VOP/Oy + WOP/0z)

+ 0/ox (koT/ox) + 0/0y (koT/oy) + 0/0z (koT/0z)



CONSERVATION LAWS FOR A STREAMTUBE

LAGRANGIAN VS EULERIAN FORMULATIONS
The Lagrangian Formulation focuses on a specific group of fluid
particles in a flow. It is the most natural way to develop the
governing equations but it not very practical from a mathematical
point of view because there are just too many groups in a flow to
follow. The Eulerian Formulation focuses on a specific region in
space. Mathematically this control volume approach is much more
practical. Here we start with the Lagrangian Formulation but use

the Transport Theorem to switch to the Eulerian Formulation.

CONSERVATION OF MASS
Consider an arbitrary specific group of fluid particles with volume

V and surface S anywhere within a flow. A differential volume dVv
within V would contain mass pdV where p is the fluid density.

Integration over the volume gives the total mass of the group.
According to Conservation of Mass, the time rate of change of the

mass of the group is zero. Mathematically we can write

D/Dt [ pdv = 0
\

Using the Transport Theorem this can be rewritten as



[ ép/ot av + [ pwv.nds = o0
Vv S

where v is the fluid velocity and n is the unit outward normal at
points on S. For steady flow in a streamtube with multiple inlets

and outlets conservation of mass reduces to
Y (pCA)out - X (pCA)yw = Z Moyt - T My = o0

where C is the flow speed and A is the tube area.

CONSERVATION OF MOMENTUM
Consider again an arbitrary specific group of fluid particles with
volume V and surface S anywhere within a flow. A differential

volume dV within V would contain momentum pdvVwv. Integration over V

gives the total momentum of the group. According to Conservation of
Momentum, the time rate of change of the momentum of the group is
equal to the net force acting on it. The forces acting can be of
two types: surface forces and body forces. Surface forces in turn
can be of two types: pressure and viscous traction. Body forces are

generally due only to gravity. Mathematically we can write

D/Dt [ pvdv = Jeds + [ pb av
\ s \

where 6 is a vector representing the stress or force per unit area



at any point on the surface S and b is a vector representing the
body force per unit mass at any point within the volume V. Using

the Transport Theorem the integral can be rewritten as

[ épv/ot av + [ pv v.n ds =
A% S

+ Jeds + [ pbav
s \

For short streamtubes friction and gravity are often insignificant.
In this case for steady flow in a streamtube with multiple inlets

and outlets conservation of momentum reduces to

Y (pvCAlour - X (pvCA)iw = X (Mv)our - T (Mv)

- 2 (PAn)out - 2 (PAn)iy + R

where R is the wall force on the fluid in the streamtube.

CONSERVATION OF ENERGY
Consider once more an arbitrary specific group of fluid particles
with volume V and surface S anywhere within a flow. A differential
volume dV within V would contain energy edV where e is the fluid
energy density. The energy density consists of internal energy and

observable kinetic and potential energies:
e = u + v.v/2 + gz

Integration over the volume gives the total energy of the group.



According to Conservation of Energy, the time rate of change of the
energy of the group is equal to rate at which heat flows to the
group from the surroundings plus the rate at which the surroundings

does work on the group. Mathematically we can write

D/Dt | pe &4V = - [ gqnds + [ wv.c ds
A% S S

A Dbody force due to gravity work term is not present in this
integral because it has already been accounted for as potential

energy in energy density. Using the Transport Theorem the integral

can be rewritten as

| ope/ot dv + | pe v.n dS =
A\ S

— f g.n dS + f v.o ds
S S

For steady adiabatic isothermal flow in a streamtube with multiple

inlets and outlets conservation of energy becomes
T [(pcn) (C?/2+gz+P/p)lour - X [(pCA) (C?/2+gz+P/p)]lm
= 2 Mgh)our - = Mghyyw = T - C
where h is the flow head at inlets and outlets

h = C%?/2g + P/pg + z

and L[ accounts for losses and T accounts for shaft work.



REYNOLDS TRANSPORT THEOREM

Congider a small bit of fluid mass and follow it for a short period
of time At. Let a be any property of the fluid such as its density.

Since we have focused on a specific bit of mass, the property a can

be only a function of time. The rate of change of the integral of a

over the volume V of the mass is

D/Dt | o(t) AV = Lim [ Ja(t) av - [ a(t) av 1 / At
V(t) At—0 Vit ) V(t)

*

*
where t = t + At. Now adding and subtracting the integral of a(t )

over V(t) inside the [] brackets allows us to rewrite the limit as

Lim [ Ja(t) av - [a(t) av 1 / At
At—0 V(t) V(t)

+
Lim [ Ja(e) av - Ja(t) av 1 / At
At—0 V(t ) V(t)

The first limit gives the Eulerian local derivative



| 6a/0t av
V(t)

Geometric considerations give AV = [vAt]. [ndS] where S(t) is the
surface which encloses V(t), v is the velocity at any point on this

surface and n is the unit outward normal at this point. This allows

us to replace the second limit with

[ a(t) v.n ds

Gauss' Theorem can be used to convert the surface integral to a

volume integral. When this is done one gets

I o(t) v.n dS = I V.
S (t) V(t)

where V = 0/0x i + 0/0y j + 0/0z k . So, one finally gets:

D/Dt | o(t) dv = | [ da/ot + V. (av) 1 AV
V(t) V(t)

This is Reynolds Transport Theorem.






