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LUBRICATION FLOWS

Lubrication flows are governed by Reynolds Equation for
For a Cartesian geometry, its derivation starts with the

simplified form of the Conservation Laws:

0U/0x + 0OV/O0y + OW/0z = O

0P /0x nuo*U/0z?

O0P/0y = n0°v/0z?

0 = po*Ww/oz?
Integration of Mass across the gap gives

[ [ou/ox + 6v/oy + ow/dz] dz = O

Manipulation gives

0I/0x + 0J/0y + OK/0z = 0

where

T = [ vdz J = | vdz

K = [ wWdz

Integration of Momentum across the gap gives

Pressure.

following



OP/0x (z°-zh)/2u + (Ur-Ug)z/h + Up
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OP/dy (z%-zh)/2u + (Vo-Vg)z/h + Vg

W = (WT_WB)Z/h + WB

where h is the local gap and the subscripts T and B indicate the

velocities of the bearing surfaces.

Substitution into integrated mass gives

d/0x (h’/12p 6P/0x) + 0/dy (h’/12p OP/dy)

= O0[h(Up+Ug) /2]1/0x + O[h(Vy+Vg)/2]1/0y + (Wr—Wg)

This 1s Reynolds Equation for Pressure. Analytical solutions to

this 2D equation are generally impossible and one must use CFD.

Manipulation of Reynolds equation gives

0/0x (h® oP/ox) + ©0/0y (h® éP/dy) = 6uS oh/ox

Application of a North South East West CFD scheme

Cartesian geometry gives

[ [ (hethp) /217 (Pg=Pp) / AX - [ (hythp) /217 (Pp-Py)/ Ax]/ Ax
_I_
[ [ (hy+thp) /2]° (Py=Pp)/ Ay - [ (hsthp)/21° (Pp-Ps)/ Ay]/ Ay

= 6uS (he - hu)/[2AX]

to

the






Manipulation gives the template

Pp = (A P +B Py + CPy+DPs+H / (A + B+ C + D)

where

A = [(hgthp)/2]1° / [Ax]?

B = [ (hyths)/2]1° / [Ax]?
C = [(hwthp) /217 / [Ay)?
D = [(hsthp) /2]° / [Ay]?
H=- 6u S (hg—hy)/[2Ax]

For a cylindrical geometry, Reynolds Equation is

1/r 0/0r (rh*/12uéP/0r) + 1/r 0/00 (h’/12p 1/r OP/00@)

= 1/r 0/0r [rh(Us+Ug) /2] + 1/r 0/00® [h(Ve+Vg) /2] + (Wr—Wg)

This can be written as

0/0r (rh’/12p 0P/0r) + 1 0/0c (h’/12u OP/0c)

= O [rh(Ug+Ug)/2]1/0r + O [h(Ve+Vg)/2]1/00 + 1 (We—Wg)

Manipulation gives



r 6/6c (h® 0P/Oc) + 0/0r (rh® 0P/dr) = 6uS 0h/00O

Application of a North South East West CFD scheme to the

cylindrical geometry gives

re [ [ (hgthp) /217 (Pg=Pp) /Ac - [ (hythp)/2]1° (Pp-Py)/Ac ] / Ac
_|_

[[ [hel® [rytrel/2] (Py=Pp) /Ar — [ [hpl® [rstrpl/2] (Pe-Ps)/Ar ] / Ar

—  6uS (hs - hy)/[2A0]

Manipulation gives the template

Pp = (A P +B Py + CPy+DPs+H) / (A + B+ C + D)

where

A = [(hgthp)/2]° 1 / [Ac]?
B = [(hgthe)/2]° rp / [Ac]®
C = [hp]® [(rytrp) /2] / [Ar?]
D = [hp]® [(rstre) /2] / [Ar?]

H = - o6p rp@ (heg—hy)/[2A0]



Probably the most important application of the Cartesian
formulation 1s hydrodynamic lubrication journal bearings. A
journal bearing consists of a shaft or rotor which rides inside a
cylindrical sleeve. It turns out that the curvature of the
geometry 1is not 1important and one can analyze the bearing by
rolling it out flat. During operation, there is a minimum gap
between the rotor and the sleeve. It turns out that downstream of
this gap, where the fluid moves into a diverging wedge shaped
space, the fluid film Dbreaks down and the ©pressure is
approximately atmospheric or zero gage. Upstream of the minimum
gap, where the fluid moves into a converging wedge shaped space,
high pressures are generated. Once pressures are calculated using
the rolled out geometry, they can be rolled back onto the shaft
and the load supported by the bearing can be calculated. Probably
the most important application of the cylindrical formulation is
hydrodynamic lubrication thrust bearings. These are often used on
ships and submarines to isolate the engine from the propeller
shaft load. A photograph of such a bearing is given at the back. A
matlab m code for it and a pressure plot produced by the code are

also given on the next few pages.

Although analytical solutions are generally not possible for 2D
geometries, they are possible for certain 1D geometries. For wide

bearings, the Cartesian Reynolds Equation becomes

d/dx (h’ dP/dx) = 6u S dh/dx = H dh/dx

Integration of this equation gives

h® dP/dx = H h + A
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HYDRODYHNAMIZ THEUTIT BEARING

clear all
MNME=51:MNA=51;:MNIT==2=2:
MRE=NE—-1;Mi=Ni-1:
FI=3.14159;:; DENSITY=S5S50.0:
CRAVITY=29.51; WISZZO3IITY=0.
EPM=100.0; RPI=RPMSE50.0;
RIN=0.5:ROUT=1.5;
LTIMN=+10.0; ,00T=+70.0;
ATHN=ATN/1530.0%FP1I;
AOUT=aO0UT/180.0%F1I;
CONE=0.001; TWwo=0.00:2

DELE= (ROUT—-RIMN] /ME:
DELA=(LAOUT—LATN) A MA;
GFAP=TWO—-OMNE ;
SPAN=AOUT—-4THN:
SLOPE=GAP/IPAMN;
FPRESSURE=0.0;

FMNODE=RTIMN:

for JJI=1:NE

ANODE=ATM:

for IT=1:Ma
R{(IT,JJ)=RMNODE;

HEAD(II,  JJ)=0.0;
CHAMNGE=ANODE—-LTH
P(IT,JJ)=PREZIZURE:
X(IT,JJ)=+FNODE*co=zs [ ANODE)
YTiIT,JJ)=4+FNODE*=in (AMNODE)]
H{(IT,JJ)=CNE4+ILOPE*CHANGE
ANODE=ANODE+DELA ;

=1l

RMNODE=FRMNODE4DELER:

end

1:

e

Ll



THRUST=0.0;

for IT=1:NIT

for JJ=Z:HR

for II=2:Mi

DELC=DELL*E(II,JJ);

ARELA=DELR*DELC;
SPEED=RPS3%z.0%PI*R(II,JJ):
A=((H({II+1,JI)+H(II,JJ))/2.0)~3/DELC"2;
B=((H{II,JJ)+H(II-1,JJ))1/2.01"3/DELC"2;
C=((H{II,JJ+1)+H(II,JJ))/2.0)"3/DELR"2;
D=((H{II,JJ)4+H(II,JJ-1))/2.0)"3/DELR"2;
C=C*(R(IL,JI+L)+R(II,JT))/2.0;
D=D#*(R(II,JJ)+R({II,JI-1)1/2.0;
A=pA*R(II,JJ); B=B*R(II,Jd):

o=0. . 0*VISCOSITY*SPEED*3LOPE;
Ah=A*P(II+1,JJ); BE=B*P(II-1,Jd):
Co=C*P(II,JJ+1); DD=D*P(II,JJ-1):
PiII,JJ1=(3+AR+BE+CC4+DD)/ (A+B+C+D) ;
DELP=F(II,JJ)-PREISURE:
HEAD(II,JJ)=DELP/DENSITY/GRLVITY:
FORCE=(P(II,JJ)-PREISURE) *AREL;
if(IT==NIT) THRUST=THRUIT+FORCE:end:
end

end

end

THEUZT=THRUIT*Z .0

surf (X, ¥,HELD)












where A is a constant of integration. Manipulation gives

dP/dx = H/h? + A/h°

For a linear gap variation

where s is the bearing slope and b is the front gap. If a is the
back gap, then s=(a-b)/d where d 1is the Dbearing length.
Substitution into the gradient equation gives

dP/dx = H/ (sx+b)? + A/ (sx+b)’
Another integration gives

P = -H/[s(sx+b)] - A/[2s(sx+b)?] + B

At the edges of the bearing, pressure is atmospheric pressure P.

Application of these boundary conditions gives
A = 2H [a’b-bal / [b*-a’]
B=P+ H/ [s(bt+ta)]
For a step bearing, where there is a Jump in gap from one
constant level to another constant level, the pressure gradient

equation shows that the gradient is constant in the constant gap

regions. This means that the pressure variation is linear in the



constant gap regions. Let the peak pressure be P. Let the gap
front of the step be b and let the gap at the back be a. Let the
length of the front region be w and the length of the back

region be v. Across the step, one can write

A [h® dP/dx] = H Ah

Substitution into this gives

a’> [0-P]/v - b [P-0]/w = H [a-D]

Manipulation gives

P =1H [b-a] / [a’/v + b>/w]

For narrow bearings, Reynolds Equation reduces to

d/dy (h’ dP/dy) = 6u S dh/dx = H dh/dx

This equation ignores leakage due to pressure gradients in the x

direction. For a wedge bearing, manipulation gives

d/dy (dP/dy) = H/h® dh/dx = G

Integration gives

P=G/2 y° + Ay + B

where A and B are constants of integration.



DRUM VISCOMETER
A drum viscometer consists of a drum which rotates inside a
sleeve. A liquid fills the gap between the drum and the sleeve.
Let the gap be h. The torgque required to rotate the drum is:
T = R p Ro/h 2n RL

With known geometry and measured torque, one gets

n=[Th ]/ [20R L o]

DISK VISCOMETER
A disk viscometer consists of a disk which rotates inside a can.

A liguid fills the gap between the disk and the can. Let the gap

be h. The torque required to rotate the disk is:

T=]rpre/h 20 r dr

With known geometry and measured torque, one gets

n=1[2Th1 / [onR" w]









CAPILLARY FLOWS
The pressure driven flow through a small diameter tube is known

as capillary flow. The small size makes the flow inside the tube

laminar. Conservation of Mass considerations give

0u/0s = 0

while Conservation of Momentum considerations give

0P/0s = 1/r 0/0r (r p 0U/Or)

Integration of Momentum gives

-0P/0s r?/2 + r pndu/dr + K = 0

where K must be zero because r can be zero. Manipulation gives

oU/0r = r/[2u] OP/0s

Integration of this equation gives

U = r?/[4p] O0P/0s + C

At r equal to R, U is zero. So U becomes

U = - [R*-r?]/[4n] 0OP/0s



Integration gives the volumetric flow rate

Q0 = f U 2nor dr

= - | [R*-r?]/[4n] éP/ds 2unr dr = - [mR*1/[8u] OP/ds

For a tube L meters long open at both ends with its outlet H

meters below its inlet, this equation becomes

Q = - [mR*]1/([8u] [-pgH]/L = [nR*]1/[8p] [pgH]/L

Manipulation of this equation gives

n = [pgH] [DR*] / [8QL]

This is the equation for a tube viscometer.

For a steady flow the head loss is H. Solving for H gives

H = p [80QL] / [pg nR‘]

In terms of average flow speed U the flow is

0 = U nrR? = U nD?/4

With this head becomes

H = 64/Re L/D U?°/[2g] = £ L/D U?/[2g]






DRUM PUMP
A drum pump consists of a drum which rotates inside a sleeve. The
rotation drags liquid from an inlet to an outlet. Let the drum
rotational speed be Q. Let the drum radius be R. Let the gap
between the drum and the sleeve be h. Let the direction across the
gap be s and the circumferential direction be c.
Conservation of Momentum considerations give
OP/dc = n 0°U/0s?
Integration across the gap gives
U = 0P/0c [ s?/[2ul-sh/[2un] ] - RQs/h + RQ
Integration gives the volumetric flow rate
0= Juds = - h®/[12p] OP/dc + RQ h/2
This can be written as
AQ = - h’/[12p] AP/[2nR] + RQ h/2

Manipulation gives a characteristic of the form

AP = A + B AQ






BELT PUMP

A belt pump consists of a belt which moves vertically through a

bath of liquid. The motion drags liquid vertically upward.

Conservation of Momentum considerations give

d/ds ( p dWw/ds ) - pg = 0

Integration gives

ndWw/ds - pg s + A =0

nwW - pg s?/2 + As + B = 0

The boundary conditions are

dw/ds = 0 at s=h W=W at s=0

These give the constants of integration

Substitution gives

W=W- pg/[pl s [h-s/2]

Integration gives






WIRE COATING

Assume that the die is long and there 1s no axial wvariation

inside it. In this case Conservation of Momentum is:

0= 1/r d/dr [ r u du/dr ]

Integration gives

U =W In[r/Rp] / 1In[Ru/Rp]

The volumetric flow rate far downstream is

Q=W (oRRe - 1o Ry Ry)

The volumetric flow rate within the die is

0= [ 2nr U dr

Equating these flow rates gives

Re Re = [ RoRyh - RyRyl / [ 2 In[Rp/Ry] ]






POROUS MEDIA FLOWS

The Darcy Law gives

Vv= - K VP

where V is the velocity vector and P is pressure. The parameter K

is equal to the permeability k divided by the viscosity pu

K=%k/pn

Conservation of Mass gives

V.v=0

Substitution into Mass gives

V. [KVP] =0

Manipulation gives

8/6x [K dp/dx] + 8/dy [K 8p/by] + 8/dz [K 0P/dz] = 0

For a rectangular slab, central differencing gives



[ (KgtKp) /2 (Pg=Pp)/ Ax — (KytKp) /2 (Pp-Py)/ Ax 1 /AX

_l_

[ (KytKp) /2 (Py=Pp)/ Ay — (KstKp) /2 (Pp=Ps)/ Ay 1 /Ay
_I_

[ (KstKp) /2 (Py=Pp)/ Az — (K:+Kp) /2 (Pp-P1)/ Az 1 / Az
=0

Manipulation gives the template

(A Pp +B Py + C Py + D Ps + G Py + H Pr)
Pp =

(A + B +C+ D+ G + H)

A = [ (Kg+Kp) /2] /[AX?] B = [ (KytKp)/2]/[AX]
C = [ (KntKs) /21 /[AY’] D = [ (KstKp) /2] /[Ay’]
G = [ (Ks+Kp) /2]/[AZ"] H = [ (Ki+Kp) /2] /[AZ°]

The blocked sides CFD template for one point is

Pp = (A Pz +B Py) / (A + B)

For a blocked sides case, the pressure equation is






d/dx [K dP/dx] = 0

Integration gives

K dP/dx = G dP/dx = G/K

For a linear variation in the parameter K

K=ax + Db

The pressure gradient equation becomes

dP/dx = G / [ax + D]

Integration gives

P = G/a ln[ax+b] + H

The boundary conditions are

P=Py at x=0 P=Poyr at x=d

This allows one to find the constants of integration.



SLIGHTLY TAPERED SLAB (TRANSEFORMATION)

Consider an xyz slab which is slightly tapered 1in the x

direction. This can be transformed into a cubical ofe slab. The

transformation equations are:

X = au y = bp z = ne (l+ma) = ce

With this the pressure equation becomes

1/a 0/0x[K/a 0P/0a] + 1/b 0/0B[K/b O0P/OB] + 1/c 0/0s[K/c 0P/ds] = O

This can be solved numerically using central differences.

ARBITRARY SLAB (ISOPARAMETRIC FINITE ELEMENTS)

The governing equation is:

0/0x [K O0P/0Ox] + 0/0y [K OP/dy] + 0/0z [K 0P/0z] = O

For a Galerkin finite element analysis, we assume that pressure

can be given as a sum of scaled shape functions:

P = X Mm

where m is pressure at a node and M is a shape function. In terms

of nodal values, the parameter K is



Substitution of the assumed form for P into the governing equation
gives a residual. In a Galerkin analysis, weighted averages of
this residual throughout the slab are set to zero. After some

manipulation, one gets

[ IVW K VP] aVv - [ WK &P/On dS = O

where W is a weighting function. For a Galerkin analysis, shape
functions are used as weighting functions. Notice the integration
by parts of the space derivative terms in the weighted residual
integral. This introduces slope Dboundary conditions into the
formulation. It also allows us to use linear shape functions.
Without it we would have to use quadratic or higher order shape

functions. Linear shape functions for a brick finite element are:

M = 1/8 (l-¢) (1-o) (1-B) M, = 1/8 (l-¢) (1+o) (1-B)
M3 = 1/8 (l-¢) (1-o) (1+B) My, = 1/8 (l-¢) (14+o) (1+B)
Ms = 1/8 (1+¢) (1-o) (1-B) Mg = 1/8 (1l+g) (1+o) (1-B)
M; = 1/8 (1+e) (1-o) (1+B) Mg = 1/8 (1l+e) (1+o) (1+B)

where o [ € are local coordinates. In the global coordinate
system, the elements are isoparametric. Details of the local

global connection are beyond the scope of this note.

After performing the integrations numerically using Gaussian
Quadrature, one gets a set of algebraic equations for the nodal

pressures. Details of it are beyond the scope of this note.






