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LUBRICATION FLOWS 

 

Lubrication flows are governed by Reynolds Equation for Pressure. 

For a Cartesian geometry, its derivation starts with the following 

simplified form of the Conservation Laws: 


U/x + V/y + W/z = 0 

 
P/x = μ2U/z2 

 
P/y = μ2V/z2 


0 = μ2W/z2 

 
 
Integration of Mass across the gap gives 
 
 

 [U/x + V/y + W/z] dz = 0 
 
     
Manipulation gives 
 
 

I/x + J/y + K/z = 0 
 

where 
 
 

I =  Udz    J =  Vdz      
 

K =  Wdz 
       
 
 
Integration of Momentum across the gap gives 
 

 
 



 
U = P/x (z2-zh)/2μ + (UT-UB)z/h + UB 

 
V = P/y (z2-zh)/2μ + (VT-VB)z/h + VB 


W = (WT-WB)z/h + WB 

 

 

where h is the local gap and the subscripts T and B indicate the 

velocities of the bearing surfaces. 

 

Substitution into integrated mass gives  

 

/x (h3/12μ P/x)  +  /y (h3/12μ P/y) 
 

=  [h(UT+UB)/2]/x  +  [h(VT+VB)/2]/y  +  (WT-WB) 

 

This is Reynolds Equation for Pressure. Analytical solutions to 

this 2D equation are generally impossible and one must use CFD. 

Manipulation of Reynolds equation gives 


/x (h3 P/x)  +  /y (h3 P/y)  =  6 μ S h/x   

 

Application of a North South East West CFD scheme to the 

Cartesian geometry gives 

 

 [ [(hE+hP)/2]3 (PE-PP)/x - [(hW+hP)/2]3 (PP-PW)/x ] /x 

+ 

 [ [(hN+hP)/2]3 (PN-PP)/y - [(hS+hP)/2]3 (PP-PS)/y ] /y 

 
=  6μS (hE – hW)/[2x] 

 

 

 



 

 

 

 

 

 

 

 

 



 

Manipulation gives the template 

 

PP = (A PE + B PW + C PN + D PS + H) / (A + B + C + D) 

 

where 

A = [(hE+hP)/2]3  / x]2 
 

B = [(hW+hP)/2]3  x]2 
 

C = [(hN+hP)/2]3  y]2 
 

D = [(hS+hP)/2]3  y]2 
 

H = - 6μ S (hE-hW)/[2x] 
 
 
For a cylindrical geometry, Reynolds Equation is  
 
 

1/r /r (rh3/12μP/r)  +  1/r / (h3/12μ 1/r P/) 
 

=  1/r /r [rh(UT+UB)/2]  + 1/r / [h(VT+VB)/2] + (WT-WB) 
 
 
 
This can be written as 
 
 
             

/r (rh3/12μ P/r)  +  r /c (h3/12μ P/c) 
 

=  [rh(UT+UB)/2]/r  +  [h(VT+VB)/2]/   +  r(WT-WB) 
 
 

Manipulation gives 

 

 
 
 
 



 
 

r /c (h3 P/c) + /r (rh3 P/r) =  6μS h/    
 
 

 
Application of a North South East West CFD scheme to the 

cylindrical geometry gives 

 

rP [ [(hE+hP)/2]3 (PE-PP)/c - [(hW+hP)/2]3 (PP-PW)/c ] / c 

+ 

[[ [hP]3 [rN+rP]/2] (PN-PP)/r – [ [hP]3 [rS+rP]/2] (PP-PS)/r ] / r 

 
=  6μS (hE – hW)/[2] 

 
 

Manipulation gives the template 

 

PP = (A PE + B PW + C PN + D PS + H) / (A + B + C + D) 

 

where 

 
A = [(hE+hP)/2]3  rP / c]2 

 
B = [(hW+hP)/2]3  rP / c]2 

 
C = [hP]3  [(rN+rP)/2] r2]     

 
D = [hP]3  [(rS+rP)/2] r2] 

 
H = - 6μ rP (hE-hW)/[2] 

 
 



 

 

Probably the most important application of the Cartesian 

formulation is hydrodynamic lubrication journal bearings. A 

journal bearing consists of a shaft or rotor which rides inside a 

cylindrical sleeve. It turns out that the curvature of the 

geometry is not important and one can analyze the bearing by 

rolling it out flat. During operation, there is a minimum gap 

between the rotor and the sleeve. It turns out that downstream of 

this gap, where the fluid moves into a diverging wedge shaped 

space, the fluid film breaks down and the pressure is 

approximately atmospheric or zero gage. Upstream of the minimum 

gap, where the fluid moves into a converging wedge shaped space, 

high pressures are generated. Once pressures are calculated using 

the rolled out geometry, they can be rolled back onto the shaft 

and the load supported by the bearing can be calculated. Probably 

the most important application of the cylindrical formulation is 

hydrodynamic lubrication thrust bearings. These are often used on 

ships and submarines to isolate the engine from the propeller 

shaft load. A photograph of such a bearing is given at the back. A 

matlab m code for it and a pressure plot produced by the code are 

also given on the next few pages.   

 

 

Although analytical solutions are generally not possible for 2D 

geometries, they are possible for certain 1D geometries. For wide 

bearings, the Cartesian Reynolds Equation becomes 

 

d/dx (h3 dP/dx)  =  6μ S dh/dx   =  H dh/dx 
 

Integration of this equation gives 

              

h3 dP/dx  = H h + A 



 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

 

 

 

 

 
 

 

 

 



 

 

 

 

 

 
 

 

 

 



 

 

 

 

 

 

 

 



 

 

 

where A is a constant of integration. Manipulation gives 

 

dP/dx = H/h2 + A/h3 

 

For a linear gap variation  

 

h = s x + b 

 

where s is the bearing slope and b is the front gap. If a is the 

back gap, then s=(a-b)/d where d is the bearing length. 

Substitution into the gradient equation gives  

 

dP/dx = H/(sx+b)2 + A/(sx+b)3 

 

Another integration gives 

 

P = -H/[s(sx+b)] - A/[2s(sx+b)2] + B 

             

At the edges of the bearing, pressure is atmospheric pressure P. 

Application of these boundary conditions gives  

 

A = 2H [a2b-b2a] / [b2-a2] 

 

B = P + H / [s(b+a)] 

            

For a step bearing, where there is a jump in gap from one 

constant level to another constant level, the pressure gradient 

equation shows that the gradient is constant in the constant gap 

regions. This means that the pressure variation is linear in the 



 

 

constant gap regions. Let the peak pressure be P. Let the gap 

front of the step be b and let the gap at the back be a. Let the 

length of the front region be w and the length of the back 

region be v. Across the step, one can write 

 

[h3 dP/dx] = Hh 

 

Substitution into this gives 

 

a3 [0-P]/v - b3 [P-0]/w = H [a-b] 

 

Manipulation gives 

 

P = H [b-a] / [a3/v + b3/w] 

  

For narrow bearings, Reynolds Equation reduces to 

 

d/dy (h3 dP/dy)  =  6μ S dh/dx   =  H dh/dx 
 

This equation ignores leakage due to pressure gradients in the x 

direction. For a wedge bearing, manipulation gives  

 

d/dy(dP/dy) = H/h3 dh/dx = G 

 

Integration gives 

 

P = G/2 y2 + Ay + B 

  

where A and B are constants of integration.  

 



 

 

 

 

DRUM VISCOMETER 
 

 
A drum viscometer consists of a drum which rotates inside a 

sleeve. A liquid fills the gap between the drum and the sleeve. 

Let the gap be h. The torque required to rotate the drum is: 

 

T = R µ Rω/h 2π RL 

 

With known geometry and measured torque, one gets  

  

µ = [ T h ] / [ 2π R3 L ω ] 

 

 
DISK VISCOMETER 

 

A disk viscometer consists of a disk which rotates inside a can. 

A liquid fills the gap between the disk and the can. Let the gap 

be h. The torque required to rotate the disk is: 

 

T = r µ rω/h 2π r dr 

 

With known geometry and measured torque, one gets   

 

µ = [ 2 T h ] / [π R4 ω]  

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 



 

 

 

CAPILLARY FLOWS 
 
 

The pressure driven flow through a small diameter tube is known 

as capillary flow. The small size makes the flow inside the tube 

laminar. Conservation of Mass considerations give 

 

U/s = 0 

 

while Conservation of Momentum considerations give   

 

P/s = 1/r /r (r µ U/r) 

 

Integration of Momentum gives 

 

P/s r2/2  +  r µ U/r  +  K  =  0  

  

where K must be zero because r can be zero. Manipulation gives 

 

                  U/r  = r/[2µ] P/s 

 

Integration of this equation gives 

 

U  =  r2/[4µ] P/s  +  C 

 

At r equal to R, U is zero. So U becomes 

 

U = - [R2-r2]/[4µ] P/s 

 



 

 

Integration gives the volumetric flow rate 

 

Q =   U 2πr dr    

 

= -  [R2-r2]/[4µ] P/s 2πr dr    = - [πR4]/[8µ]P/s 

 

For a tube L meters long open at both ends with its outlet H 

meters below its inlet, this equation becomes 

 

Q = - [πR4]/[8µ][-ρgH]/L  = [πR4]/[8µ][ρgH]/L 

 

Manipulation of this equation gives 

 

µ = [ρgH][πR4] / [8QL] 

 

This is the equation for a tube viscometer. 

 

For a steady flow the head loss is H. Solving for H gives 

 

H  =  µ [8QL] / [ρg πR4] 

 

In terms of average flow speed U the flow is 

 

Q = U πR2 = U πD2/4 

 

With this head becomes 

 

H  =  64/Re L/D U2/[2g]  =  f L/D U2/[2g] 

 

 



 

 

 

 

 

 

 

 



 

 

 

DRUM PUMP 

 

A drum pump consists of a drum which rotates inside a sleeve. The 

rotation drags liquid from an inlet to an outlet. Let the drum 

rotational speed be Ω. Let the drum radius be R. Let the gap 

between the drum and the sleeve be h. Let the direction across the 

gap be s and the circumferential direction be c.  

 

Conservation of Momentum considerations give 

 

P/c = µ U/s2 

 

Integration across the gap gives  

 

U = P/c [ s2/[2µ]-sh/[2µ] ] – RΩs/h + RΩ 

 

Integration gives the volumetric flow rate 

 

Q = Uds  =  - h3/[12µ] P/c + RΩ h/2 

 

This can be written as 

 

ΔQ = - h3/[12µ] ΔP/[2πR] + RΩ h/2 

 

Manipulation gives a characteristic of the form 

 

ΔP = A + B ΔQ 

                  

 



 

 

 

 

 

 

 



 

 

BELT PUMP 

 
 
A belt pump consists of a belt which moves vertically through a 

bath of liquid. The motion drags liquid vertically upward.   

 
Conservation of Momentum considerations give 

 

d/ds ( µ dW/ds ) – ρg  =  0 

 

Integration gives 

µ dW/ds – ρg s + A = 0 
 

µ W - ρg s2/2 + As + B = 0 

 

The boundary conditions are 

 

dW/ds = 0  at s=h          W = W  at s=0 

 

These give the constants of integration 

 

A = ρg h     B = - µ W 

 

Substitution gives 

 

W = W – ρg/[µ] s [h-s/2] 

 

Integration gives 

 

Q = Wds  =  W h  - ρg/[3µ] h3 

 



 

 

 

 

 

 

 

 

 

 



 

 

 

 

WIRE COATING 

 

Assume that the die is long and there is no axial variation 

inside it. In this case Conservation of Momentum is: 

 

0 =  1/r d/dr [ r µ dU/dr ]  

 

Integration gives 

 

U = W ln[r/RD] / ln[RW/RD] 

 

The volumetric flow rate far downstream is 

 

Q = W ( π RC RC  –  π RW RW ) 

 

The volumetric flow rate within the die is 

 

Q =  2πr U dr 

 

Equating these flow rates gives 

 

RC RC  = [ RD RD  –  RW RW ] / [ 2 ln[RD/RW] ] 

 

 

 

 

 



 

 

 

 



 

 

 
POROUS MEDIA FLOWS 

 

 

The Darcy Law gives 

 
v = - K P          

 
 
where v is the velocity vector and P is pressure. The parameter K 

is equal to the permeability k divided by the viscosity μ   

 

K = k/ μ 

 
Conservation of Mass gives  

 
 

.v = 0 
 

 

Substitution into Mass gives  

 

. [K P] = 0 

 

Manipulation gives 

 

 
/x [K P/x] + /y [K P/y] + /z [K P/z] = 0 

 

 

For a rectangular slab, central differencing gives 



 

 

 

 

[(KE+KP)/2 (PE-PP)/ Δx - (KW+KP)/2 (PP-PW)/ Δx ] / Δx 

+ 

[(KN+KP)/2 (PN-PP)/ Δy - (KS+KP)/2 (PP-PS)/ Δy ] / Δy 

+ 

[(KJ+KP)/2 (PJ-PP)/ Δz - (KI+KP)/2 (PP-PI)/ Δz ] / Δz 

 
= 0 

 

Manipulation gives the template 

 

    (A PE + B PW + C PN + D PS + G PJ + H PI) 
       PP   =   ———————————————————————————————————— 

    (A + B + C + D + G + H) 

 

 

A = [(KE+KP)/2]/x2]    B = [(KW+KP)/2]/x2] 

C = [(KN+KP)/2]/y2]    D = [(KS+KP)/2]/y2] 

G = [(KJ+KP)/2]/z2]    H = [(KI+KP)/2]/z2] 

 

 

The blocked sides CFD template for one point is 

     

    PP = (A PE + B PW) / (A + B) 
 

 

For a blocked sides case, the pressure equation is 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

d/dx [K dP/dx] = 0 

 

Integration gives 

 

K dP/dx = G       dP/dx = G/K  

 

For a linear variation in the parameter K 

 

K = ax + b 

 

The pressure gradient equation becomes 

 

dP/dx = G / [ax + b] 

 

Integration gives 

 

P = G/a ln[ax+b] + H 

 

The boundary conditions are 

 

P=PIN at x=0        P=POUT at x=d 

 

This allows one to find the constants of integration.  



 

 

SLIGHTLY TAPERED SLAB (TRANSFORMATION) 
 

 
Consider an xyz slab which is slightly tapered in the x 

direction. This can be transformed into a cubical αβε slab. The 

transformation equations are: 

 

x = aα       y = bβ     z = nε(1+mα) = cε 

 

With this the pressure equation becomes 

 

1/a /α[K/a P/α] + 1/b /β[K/b P/β] + 1/c /ε[K/c P/ε] = 0 

 

This can be solved numerically using central differences. 

 

 

ARBITRARY SLAB (ISOPARAMETRIC FINITE ELEMENTS) 

 

The governing equation is: 

                                          

/x [K P/x] + /y [K P/y] + /z [K P/z] = 0 

          

For a Galerkin finite element analysis, we assume that pressure 

can be given as a sum of scaled shape functions: 

 

P  =   M m 

 

where m is pressure at a node and M is a shape function. In terms 

of nodal values, the parameter K is 

 

K  =   M k     



 

 

   

Substitution of the assumed form for P into the governing equation 

gives a residual. In a Galerkin analysis, weighted averages of 

this residual throughout the slab are set to zero. After some 

manipulation, one gets 

                    

 [W K P] dV  -   W K P/n dS  =  0 

                     

where W is a weighting function. For a Galerkin analysis, shape 

functions are used as weighting functions. Notice the integration 

by parts of the space derivative terms in the weighted residual 

integral. This introduces slope boundary conditions into the 

formulation. It also allows us to use linear shape functions. 

Without it we would have to use quadratic or higher order shape 

functions. Linear shape functions for a brick finite element are:  

 

  M1 = 1/8 (1-ε) (1-α) (1-β)     M2 = 1/8 (1-ε) (1+α) (1-β) 

  M3 = 1/8 (1-ε) (1-α) (1+β)     M4 = 1/8 (1-ε) (1+α) (1+β) 

  M5 = 1/8 (1+ε) (1-α) (1-β)     M6 = 1/8 (1+ε) (1+α) (1-β) 

  M7 = 1/8 (1+ε) (1-α) (1+β)     M8 = 1/8 (1+ε) (1+α) (1+β) 

 

where α β ε are local coordinates. In the global coordinate 

system, the elements are isoparametric. Details of the local 

global connection are beyond the scope of this note. 

 

After performing the integrations numerically using Gaussian 

Quadrature, one gets a set of algebraic equations for the nodal 

pressures.  Details of it are beyond the scope of this note. 

 

 



 

 

 

 

 


