
 

FLUID STRUCTURE INTERACTIONS 

 

PREAMBLE 
 

There are two types of vibrations: resonance and instability. 

Resonance occurs when a structure is excited at a natural 

frequency. When damping is low, the structure is able to 

absorb energy each oscillation cycle and dangerous amplitudes 

can build up. There are two types of instability: static and 

dynamic. Static instability occurs when a negative fluid 

stiffness overcomes a positive structural stiffness. Usually, 

because of nonlinearity, this instability is oscillatory: 

oscillations are often referred to as relaxation 

oscillations. Examples are wing stall flutter and gate valve 

vibration. Dynamic instability occurs when a negative fluid 

damping overcomes a positive structural damping. Examples 

include galloping of slender structures and tube bundle 

vibrations. In many cases, a system oscillates at a 

structural natural frequency. In these cases, frequency is a 

parameter in a semi empirical critical speed equation.  

Natural frequencies depend on the inertia of the structure 

and its stiffness. Usually the damping of the structure is 

ignored. It usually has only a small influence on periods. If 

the structure has a heavy fluid surrounding it, some of the 



fluid mass must be considered part of the structure. The 

structure appears more massive than it really is. For a 

simple discrete mass stiffness system, there is only one 

natural period. For distributed mass/stiffness systems, like 

wires and beams, there are an infinite number of natural 

periods. For each period, there is a mode shape. This shows 

the level of vibration at points along the structure.       

In some cases, the fluid structure interaction is so complex 

that vibration frequencies depend on both the structure and 

the fluid. Examples include flutter of wings and panels and 

pipe whip due to internal flow. 

  

 VORTEX SHEDDING PHEMOMENA 

When vortices are being shed from a cylinder in an asymmetric 

pattern, they induce a lateral oscillatory load on the 

cylinder. When the vortex shedding frequency is close to a 

natural frequency of the cylinder, it causes it to oscillate 

laterally. Once the cylinder begins to oscillate, it causes a 

phenomenon known as lock in. The vortices shed at the natural 

frequency of the cylinder. In other words, the cylinder 

motion controls the vortex shedding. It also increases the 

correlation length along the span. This means that vortex 

shedding along the span occurs at the same time. This gives 

rise to greater lateral loads. So, once shedding starts, it 



quickly amplifies motion. The Strouhal Number gives the 

vortex shedding frequency of the cylinder. Basically, this is 

structure transit time T divided by the vortex shedding 

period T. For a circular cylinder, the Strouhal Number is 

around 0.2. This means that the vortex shedding period T is 

approximately 5 times the diameter transit time T.  

 

 GALLOPING VIBRATIONS 

Galloping is a dynamic instability of a structure in a 

flow. It occurs when a positive damping load due to 

structural and viscous phenomena is overcome by a negative 

damping load due to flow. Only certain shapes gallop. When 

such a shape is moving laterally in a flow, a very strong 

vortex forms on one side that pulls it even more laterally! 

The structure moves until its stiffness stops it. The 

vortex disappears and the structure starts moving back the 

other way. As it does so, the vortex appears on the other 

side of the structure which pulls it the other way.      

  

TUBE BUNDLE VIBRATIONS 

There are three mechanisms that can cause tube bundles in a 

flow to vibrate. One is known as the displacement mechanism. 

As tubes move relative to each other, some passageways narrow 

while others widen. Fluid speeds up in narrowed passageways 



and slows down in widened passageways. Bernoulli shows that 

in the narrowed passageways pressure decreases while in the 

widened passageways it increases. Common sense would suggest 

that if tube stiffness and damping are low, at some point as 

flow increases, tubes must flutter or vibrate. Another 

mechanism known as the velocity mechanism is based on the 

idea that, when a tube is moving, the fluid force on it due 

its motion lags behind the motion because the upstream flow 

which influences the force needs time to redistribute. This 

time lag introduces a negative damping which can overcome the 

positive damping due to structural and viscous phenomena. The 

time lag is roughly the tube spacing divided by the flow 

speed within the bundle. Details of this model are beyond the 

scope of this note. The third mechanism for tube vibration 

involves vortex shedding and turbulence within the bundle.  

 

CRITICAL SPEED EQUATIONS 

For a slender structure, the Strouhal Number S is the 

transit time T divided by the vortex shedding period T: 

S=T/T. The transit time T is D/U. Solving for flow speed U 

gives: U = D/[ST]. During resonance, T=T where T is the 

structural period. So the critical flow speed is: 

 

 



 

U = D/[S T] 

 
For the lateral vibration of a slender structure known as 

galloping, the critical flow speed U is   

 
U = Uo M/Mo ζ a 

 
where  

 
Uo = D/T      Mo = ρD2 

 
The factor ζ accounts for damping: it is typically in the 

range 0.01 to 0.1. The parameter a accounts for the shape 

of the structure. For a square cross section structure a is 

8 while for a circular cross section structure a is .  

 

For tube bundle vibration, the critical flow speed is 

  
U = β/T √[Mδ/ρ]       U = βUo √[δM/Mo] 

 
The factor δ accounts for damping, and the parameter β 

accounts for the bundle geometry. Typically δ is in the 

range 0.05 to 0.25 while β is in the range 2.5 to 6.0. 

 

 

 



 

 

VIBRATION MODES OF SIMPLE WIRES AND BEAMS 

 

The natural periods of a simple wire are: 

 
Tn = [2L/n] [m/T] 

 
where m is the mass per unit length of the wire, L is the 

length of the wire and T is the tension in the wire. The 

natural periods of a beam with pivot supports are: 

 
Tn = [L/n]2 [2/π] [m/EI] 

 
where m is the mass per unit length of the beam, L is the 

length of the beam, E is the Elastic Modulus of the beam 

material and I is the second moment of area. The natural 

periods of a beam with one or more clamped supports are: 

 
Tn = 2πL2/Kn  [m/EI] 

 
For a cantilever or clamped-free beam, the constants are: 

K1=3.52; K2=22.0; K3=61.7; K4=120.9. For a clamped-clamped 

beam, the constants are: K1=22.4; K2=61.7; K3=120.9; K4=199.9. 

 

 

 



 
 

INSTABILITY OF VALVES 

 

Valves exhibit two types of unstable behaviour. One type is 

basically a static instability. It occurs when a positive 

structural stiffness is overcome by a negative fluid 

stiffness. It usually occurs when the valve is almost shut, 

and there is a flow through a small gap. An oscillation 

results because the negative fluid stiffness creates suction 

forces that cause the valve to slam shut. This stops the flow 

and allows pressure to build up. This allows the valve to 

recover. Indoor faucets, such as that shown in the sketch on 

the next page, are prone to such instability. Outdoor faucets 

are prone to a completely different type of instability. 

Whereas indoor faucets are prone to an axial, opening and 

closing, type of instability, outdoor faucets are prone to a 

lateral, back and forth, type of instability. Consider the 

outdoor faucet shown page after next. When the valve stem is 

moved laterally, say upward, a suction force is created 

momentarily of the upward side of the valve. This tends to 

move the valve even further upward. An oscillation develops 

which is basically a dynamic instability. It is caused by a 

time lag between valve motion and fluid reaction. 

  



 

 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

PIPE INSTABILITIES DUE TO INTERNAL FLOW 

 

For a pipe pivoted at both ends, a static force balance 

shows that centrifugal forces generated by internal fluid 

motion can cause buckling when U is greater than 

 

U2 = [ [EI]/[ρA] [π2/L2] + T/[ρA] - P/ρ ] 

                  

where EI is the flexural rigidity of the pipe, L is the 

pipe length, A is its cross sectional area,  T is the 

tension in the pipe and P is the internal gage pressure. 

For a pipe clamped at one end and open and free at the 

other end, a stability analysis shows that the pipe can 

undergo a flutter like phenomenon known as pipe whip. The 

critical speed U can be obtained from the sketch on the 

next page. A straight line fit to the wavy curve there is 

  

U = [4 + 14 Mo/M] Uo 

Uo = [EI]/[MoL2]       Mo = ρA 

 

 

 

 



 

 



PANEL FLUTTER 

 
Consider a panel with a fluid on top and a fluid on the 

bottom. Assume also that the panel is exposed to a horizontal 

flow on the top. Waves in the panel extract energy from the 

passing stream when the flow speed U is greater than:   

 

U
2
  =  S V/W  

 

S = + Tk
2
  +  Dk

4
  +  K/w  -  ρT g  +  ρB g   

 
V  = ρT / [k Tanh[kdT]]  +  ρB / [k Tanh[kdB]] + σ 

 

W = [ρB ρT] / [Tanh[kdT]Tanh[kdB]] + [kσ]ρT / Tanh[kdT] 
 

The details of the analysis are beyond the scope of this 

note. In the critical speed equation, T is the tension in the 

panel, D is the EI of the panel, K is the panel side support, 

w is the width of the panel, σ is the panel sheet density or 

mass per unit surface area, ρ is the fluid density, d is flow 

depth, g is gravity and k is 2 divided by the wavelength . 

The code on the next page calculates the critical speed for 

the panels on a greenhouse. It gives the plot of critical 

speed versus wavelength shown on the page after next.    

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

 

 



DIVERGENCE AND FLUTTER OF LIFTING BODIES 

 

Lifting bodies include wings, elevators, fins and rudders. 

Flutter is a dynamic instability. When it occurs, the heave 

and pitch motions of the body are 90o out of phase. The 

passing stream does work on the body over an oscillation 

cycle. Divergence is a static instability. It occurs when the 

pitch moment due to fluid dynamics overcomes the moment due 

to the structural pitch stiffness of the body. The sketch on 

the next page shows a foil, which is section of a wing. It 

shows 3 very important points on foils. They form lines which 

run along the wing span. The point labelled CP is the center 

of the pressure load on the foil. It is usually located a 

quarter chord length back from the leading edge of the foil. 

The point labelled EA is the elastic axis of the foil. A load 

applied at the elastic axis produces pure heave of the foil 

without any pitch rotation. The EA is usually located near 

where the main beam runs along the wing span, which means its 

position can be controlled. The point labelled CG is the 

center of mass of the foil. Again, its position can be 

controlled. If the CP is at the EA, then the foil cannot 

undergo divergence because no pitch moment can be generated. 

If the CG is at the EA, then inertia coupling is zero. This 

lowers the probability of the wing undergoing flutter.     



 
 

 


