HIGH SPEED

GAS DYNAMICS

HINCHEY



MACH WAVES

Mach Number is the speed of something divided by the local
speed of sound. When an infinitesimal disturbance moves at
a steady speed, at each instant 1in time it generates a
sound wave which moves radially outward from it in all
directions. When the speed of the disturbance is
supersonic, these waves can be found inside a cone which
extends back from the disturbance. Half of this is shown in
the sketch on the next page. Consider a disturbance which
was at the center of the half circle but is now at the tip
of the cone. Let the distance between these points be D. If
the speed of the disturbance is U, then it took T equal to
D/U seconds for the disturbance to move from the center to
the tip. During this time, the wave travelled a distance d
equal to a T where a is the speed of sound. Geometry shows

that the cone half angle is:

L= Sin"t[1/M]

Inside the cone is known as the zone of action: outside the
cone 1is known as the zone of silence. An Expansion Wave 1is
made up of an infinite number of Mach Waves in a fan like
structure. A Shock Wave is where an infinite number of Mach

Waves pile up into a single wave.






THERMODYNAMIC CONNECTIONS

According to thermodynamics
h=u+ Pv=u+ P/p

k:CP/CV

Substitution into enthalpy gives

Cp T = Cy T+ RT
Ce = Cy + R
Manipulation gives
Cp/Cp = Cy/Cp + R/Cp

1 - 1/k = (k-1)/k = R/Cp

Cp k/(k-1) R



CONSERVATION OF ENERGY

For a streamtube, Conservation of Energy gives

h + U?/2 = K

For two points in the tube

h,y + U1U; / 2 = hy, + UyU, / 2

Thermodynamics and manipulation gives

Ce T1 + [UU1] / 2 =
Ce Ty, + [UyUz] / 2

Ty (1 + [UU1] / [2CpT1] ) =
T, (1 + [U,U;] / [2CpT2] )

Ty (1 + (k=1)/2 [UiU;]/[kRT1] )
T, (1 + (k=1)/2 [UyU,;]1/[kRT,] )

Ty (1 + (k=-1)/2 [UiU;]/[aia1] ) =
T, (1 + (k=1)/2 [UyUz]1/[azaz1] )

T, (1 + (k—l)/Z MiM; ) =
T, (1 + (k—l)/Z M,M, )

T, / T1 = (1 + (k-1)/2 MiMy ) / (1 + (k-1)/2 MMy



ISENTROPIC PROCESSES

The Second Law of Thermodynamics gives

T ds = du + Pdv T ds = dh - vdP

Manipulation gives:

ds = C, dT/T + R dv/v ds = C, dT/T - R dP/P

Integration from one state to another state gives:

S, — 51 = As Cy In(T»/Ty) + R 1In(vy/vy)

S, — 81 = As = Cp lH(Tz/Tl) - R ln(Pz/Pl)

For an isentropic process, the last equation gives

In(P2/P1) = Co/R 1In(T2/T:) = [k/(k-1)]R/R 1n(T2/T1)

P,/P; = [To/T.]% V)

For an isentropic process, the As equations give

In(T,/T1) = - R/Cy 1In(vy/vi) = + R/Cy 1n(Py/P1)

Manipulation of these equations gives
Py/P1 = (vi/v2)® = (pa/p1)”

P, / [p21® = P/ [p1]"



NOZZLE FLOWS

A nozzle is a short length of pipe or tube with a wvariable
cross sectional area. For a flow of gas 1in a nozzle,

conservation of mass considerations require that

p AU

must Dbe constant along the nozzle, where p 1is the gas

density, A is the nozzle area and U 1is the flow velocity.

For two points very close together in a nozzle:

p A U= (ptAp) (A+AR) (U+AU)

Manipulation gives

AUAp + pUAA + p A AU =0

Ap/p + AA/A + AU/U = 0

Conservation of energy considerations require that

h + U?/2

must be constant along the nozzle, where h is enthalpy.

Thermodynamics shows that

h=20Cp, T = k/(k-1) RT = k/(k=-1) P/p



With this, energy becomes

k/(k-1) P/p + U?/2

For two points very close together in a nozzle

k/(k-1) P/p + U?/2 =

k/ (k=1) [P+AP]/[p+Ap] + [U+AU]?/2

Expansion gives

k/(k-1) P/p + U?/2 =

k/ (k-1) [P+AP]/[p+Ap]l [p-Apl/[p-Ap] + [U+AU]?/2

k/ (k=1) [pAP - PApl/p®> + U AU = 0

k/(k-1) [p kRT Ap - PpRT Apl/p? + U AU = 0

k/(k-1) [(k-1)RT] Ap/p + U AU = 0

kRT Ap/p + UAU =0

a’ Ap/p + UAU =0



Manipulation gives

Ap/p = - U/a® AU = - U’/a’ AU/U
Energy into mass gives

- U?/a® AU/U + AA/A + AU/U = 0
Manipulation gives

- U%/a®? AU + U/A AA + AU = 0

(1- M) AU + U/A AA = 0
AU = U AA / [A (M*-1)]

This equation shows that, if M is less than unity or flow
is subsonic, then flow speed decreases when area increases
and increases when area decreases. However, if M is greater
than unity or flow is supersonic, then flow speed increases

when area increases and decreases when area decreases. One

can write the last equation as follows:
AU (M?-1) = U AA/A
When there is a transition from subsonic upstream of a

throat to supersonic downstream, this equation suggests

that the flow is sonic at the throat.



CHOKED FLOW

Consider gas flow down the converging/diverging
tube shown on the back of this page. Consider the
case where the upstream pressure Py 1is fixed and
the downstream pressure Pp 1s gradually lowered
below the upstream level. Initially, with Pp
slightly less than Py, gas flow would be subsonic
throughout the tube. Gas would speed up as it moved
through the converging section and it would slow
down as it moved through the diverging section.
However, at some point as Pp 1s reduced, the speed
at the throat would become sonic. Further reduction
in Pp would create supersonic flow downstream of
the throat: flow would remain sonic at the throat.
As information waves cannot propagate faster than
the speed of sound, they would be swept downstream
by the supersonic flow and the mass flow rate would
become independent of Pp. The flow 1is said to be
choked. Usually, when flow is choked, shock waves
form downstream of the throat. However, for a given

Py, there is an optimum P, where they do not form.






NORMAL SHOCK WAVES

When there 1is supersonic flow around a blunt object, a
normal shock wave can be found directly in front of the
object. The flow could be generated by the speed of the
object or by a blast. Consider flow through a small bit of

area AA of the shock face. Conservation of mass gives

M = P1 U4 AA = P2 U, AA

while conservation of momentum gives

M (U, -U )= (P - P,) AA

Mass into momentum gives

P2 U, AAUz - P1 U, AAU]_ = ( P1 — Py ) AA

Pp + p1 UUp = Py + p2 U0

Manipulation gives



P, (1 + pi/P1 [UiUq]

P; (1 + [U;U11/[RT1]

P, (1 + k [U;U1]/[kRTq]
Py (1 + k [UiU1]/[a1a1]
P, (1 + k MMy

Conservation of energy gives

h, + [UU1]/2
Manipulation gives
T (1 + (k-1)/2 MM

Recall conservation of mass

Py

P,

P,

Py

Py

h,

T,

(

p2/P2 [UU;]

[U,U,]1/ [RT2]

k [UyU2]1/ [kRT,]

k [U,0;]/ [azaz]

k MpM; )

[U,U,1/2

1 +

(k=1)/2 MM,

)

)

)

)

)



p1 Ui AA = p, U, AA

Manipulation gives

p2 / pr = Ui / Uy

= [ a1 Ui/a1 1 / [ az Ux/az 1 = ai/a, M /M

VIKRT:] / V[kRT2] Mi/M, = ANT./T, M/M,

Vo{IT + (k-1)/2 MpM) / [1 + (k-1)/2 MiMi]}  Mi/My

The Ideal Gas Law gives

P1 / [pr R Ti1] = Py / [p2 R T3]

Manipulation gives

p2/p1 T2/T1

P,/P;

Substitution of ratios into this gives



MM, = [(k-1) MiMy + 2]/ [2k MiMy - (k-1)]

With this, the important ratio becomes

P,/P; = 1 + 2k/(k+1) (MM - 1)

To/T1 = ([1+(k-1)/2 MM;] [2k MyMy— (k=1)1) /[ (k+1)?/2 MyM;]

p2/p1 = [(k+1) MiM;] / [2 + (k-1) MiM;]

For air where k=7/5 the ratios become

MM, = [M;M; + 5] / [7 MiM; - 1]
P,/Py = [7T MiM; — 11 / 6
T,/Ty = ([MiM; + 51 [7 MiM; - 11) / [36 MiM;]

p2/p1 = [12 MiM;] / [10 + 2 MiM;]



The Mach Number connection predicts compression shocks with
M; greater than unity and M, less than unity and expansion
shocks with M; less than unity and M, greater than unity.
The Second Law of Thermodynamics shows that compression
shocks are possible but expansion shocks are impossible.

The Second Law gives for entropy

S; = S1 = Cp In[T2/T1] - R 1In[Py/Py]
where
T, / T1 = [ 2 + (k=-1) MMy 1 / [ 2 + (k=-1) MM, ]
P2/P1 :(l+kM1M1)/(l+kM2M2)

For a compression shock this shows that AS is greater than
zero, which is possible, whereas for an expansion shock it
shows that AS is 1less than =zero, which is impossible. 1In
other words, a supersonic flow can suddenly go subsonic,

but a subsonic flow cannot suddenly go supersonic.



OBLIQUE SHOCK WAVES

Oblique shock waves form on objects such as supersonic
foils at a low angle of attack. The shock turns the flow
and makes it parallel to the foil. The sketch on the next
page shows the oblique shock geometry. Only the component
of the flow normal to the shock is changed by passage
through the shock. Because pressure is basically constant
either side of the shock, the tangential component of the
flow is not changed. The normal component is changed by
the amount needed to make the flow align with the foil.
Properties depend on the Mach Numbers based on the normal

component of the flow. These are:

N: = Uwnv/ai1 = UiSin[B]/a1 = M1 Sin[B]

Ny = Usxn/az = U2Sin[B-0]/a2 = M2 Sin[x]

where B is the shock angle and 0 is the angle of attack of

the foil. The property ratio equations become:

P,/P; = 1 + Zk/(k-l-l) (N{N; - 1)

T2/T1 = ([1+4(k-1)/2 NiN1] [2k NiNi-(k-1)1])/[(k+1)2/2 NiNi]

p2/p1r = [(k+1) NiNi] / [2 + (k-1) NiNi]






The Mach Number connection becomes:

NN = [(k-1) NaNy + 2]/ [2k NuN; - (k-1)]

Conservation of mass gives

p1 U AA = py; Uy AA
p2 / p1 = U / Uxy
Geometry gives
Un/Uir = Tan[p] Uoy/Uzr = Tan([x]
Uy / Uy = Tan[B] / Tan[x]

Thermodynamics gives

p2/p1 = [(k+1) NyN;] / [2 + (k-1) N;N;]

Manipulation gives

Tan[R]/ Tan[x] = (k+1) NiN; / [(k-1) NiN; + 2]

= (k+1) M;M; Sin?[B] / [(k-1) M;M; Sin?[B] + 2]

A plot of this equation is given on the next page.
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EXPANSION WAVES

An expansion wave 1s basically a fan of Mach waves.
Processes within such waves are isentropic. Expansion
theory considers an expansion to be made up of an infinite
number of infinitesimal expansions. The sketch on the next
page shows the geometry of a Mach wave. The pressure either
side of such a wave 1is basically constant. So the
tangential component of fluid motion 1is unchanged when
fluid crosses 1it. Only the normal component 1is changed.

Geometry gives for the tangential component:

U Cos[u] = (U+AU) Cos[u+Av]

Trigonometry gives

Cos[put+tAv] = Cos[pu] Cos[Av] - Sin[u] Sin[Av]

Small angle approximation gives

Cos[utAv] = Cos[pu] 1 - Sin[p] Av

= Cos[u] - Av / M






The tangential equation becomes

U Cos[pn] = (U+AU) (Cos[p]l - Av/M)

Manipulation gives

Av = M Cos[u] AU/U

= M V(1-Sin?[p]) AU/U = ~N(M>-M*/M?) AU/U

= V(M?*-1) AU/U

The Mach Number is

M = U/a = U / VKRT

Manipulation gives

U = M VKRT



Differentiation gives

AU = AM VkRT + M / [2VkRT] kR AT

Manipulation gives

AU/U = AM/M + 1/2 AT/T

Conservation of energy gives

U?/2 + h =K

= U?/2 + Cp T

U’/2 + kR/(k-1) T

Differentiation gives

U AU + kR/(k-1) AT = 0

Manipulation gives



AU/U + 1/ (k-1) [kRT]/U? AT/T =

AU/U + 1/(k-1) 1/M? AT/T = 0

AT/T = - (k-1) M?> AU/U

Substitution into the AU/U equation gives

AU/U = AM/M - (k-1)/2 M? AU/U

AU/U = 1/ [ 1+ (k-1)/2 M* ] AM/M

Substitution into the geometry equation gives

Av = N (M*-1) AU/U

= JW*-1) / [ 1+ (k-1)/2 M> ] AM/M

Integration of this equation gives

v = VK tan N[ (M?-1) /K] - tan "W [M*-1]

K = (k+1)/(k-1)

A plot of this equation is given on the next page.
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STEADY COMPRESSIBLE FLOW IN LONG PIPES

FANNO LINE FLOW
When a gas 1is flowing in a pipe, wall friction can cause
the flow to choke. For subsonic flow, M increases to 1
while for supersonic flow, it decreases to 1. For subsonic
flow, extra length beyond that needed to choke flow causes
flow reduction. For supersonic flow, extra length causes a

shock wave to form in pipe.

RAYLEIGH LINE FLOW

When heat is added to the flow in a pipe, one finds that it
can cause the flow to choke. Once the flow is choked, more
heat addition causes a flow reduction. Heat removal reverses
the process. It is interesting that heat addition for a

subsonic flow can cause its temperature to drop.



FRICTION
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PIPE FLOWS WITH FRICTION

For compressible flow in a pipe, the differential equations

are

dP/P = -kM?[1+ (k-1) M?]/[2(1-M?)] fdx/D

dT/T = -k (k-1)M*/[2(1-M?)] fdx/D

dp/p = -kM?/[2(1-M%)] fdx/D

damM?/M?> = kM?[1+ (k-1)/2M?] /[1-M?] fdx/D

These equations can be integrated numerically to get how
the wvarious unknowns change down the pipe. The changes are
usually tabulated in fluids texts. One finds that if M<1 it
gradually increases to 1 whereas if M>1 it gradually
decreases to 1. One finds that there is critical length L~
that the flow must travel to Dbecome sonic. For adiabatic

flow the critical length follows from

fL'/D = (1-M?)/ (kM%) + (k+1)/(2k) 1n[ (k+1)M?/ (24 (k-1)M?)]

while for isothermal flow it follows from

fL'/D = (1-kM?)/ (kM?) + 1n[kM?]





