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MACH WAVES 

 

 

Mach Number is the speed of something divided by the local 

speed of sound. When an infinitesimal disturbance moves at 

a steady speed, at each instant in time it generates a 

sound wave which moves radially outward from it in all 

directions. When the speed of the disturbance is 

supersonic, these waves can be found inside a cone which 

extends back from the disturbance. Half of this is shown in 

the sketch on the next page. Consider a disturbance which 

was at the center of the half circle but is now at the tip 

of the cone. Let the distance between these points be D. If 

the speed of the disturbance is U, then it took T equal to 

D/U seconds for the disturbance to move from the center to 

the tip. During this time, the wave travelled a distance d 

equal to a T where a is the speed of sound. Geometry shows 

that the cone half angle is: 

 

Sin[] = d/D = [aT]/[UT] = 1/M 

 

  =  Sin-1[1/M] 

 

Inside the cone is known as the zone of action: outside the 

cone is known as the zone of silence. An Expansion Wave is 

made up of an infinite number of Mach Waves in a fan like 

structure. A Shock Wave is where an infinite number of Mach 

Waves pile up into a single wave.    

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

THERMODYNAMIC CONNECTIONS 

 

 

According to thermodynamics 

 

h = u + Pv = u + P/ 

 

h = CP T    u = CV T    k = CP / CV  

 

Pv = P/ = R T 

 

Substitution into enthalpy gives 

 

CP T  =  CV T + R T 

 

CP  =  CV + R  

 

Manipulation gives 

 

CP/CP =  CV/CP + R/CP  

 
1 – 1/k = (k–1)/k = R/CP  

 
CP = k/(k–1) R 

 
 



 
CONSERVATION OF ENERGY 

 

 
For a streamtube, Conservation of Energy gives 

 

h + U2/2  =  K 

 

For two points in the tube  

 

h1 + U1U1 / 2  =  h2 + U2U2 / 2  

 

Thermodynamics and manipulation gives 

 

CP T1 + [U1U1] / 2 =   

CP T2 + [U2U2] / 2 

 
 T1 ( 1 + [U1U1] / [2CPT1] ) =   

T2 ( 1 + [U2U2] / [2CPT2] ) 

 
T1 ( 1 + (k-1)/2 [U1U1]/[kRT1] ) = 

  T2 ( 1 + (k-1)/2 [U2U2]/[kRT2] ) 

 
T1 ( 1 + (k-1)/2 [U1U1]/[a1a1] ) = 

  T2 ( 1 + (k-1)/2 [U2U2]/[a2a2]] ) 

 
T1 ( 1 + (k-1)/2 M1M1 ) = 

  T2 ( 1 + (k-1)/2 M2M2 ) 

 
 
 

T2 / T1 = ( 1 + (k-1)/2 M1M1 ) / ( 1 + (k-1)/2 M2M2 ) 

 
 
 
 



ISENTROPIC PROCESSES 
 

  

The Second Law of Thermodynamics gives 

 

T ds = du + Pdv      T ds = dh - vdP 
 

Manipulation gives:   

 

ds = Cv dT/T + R dv/v      ds = Cp dT/T – R dP/P 

 

Integration from one state to another state gives:  

 
s2 - s1 = Δs = Cv ln(T2/T1) + R ln(v2/v1) 

s2 - s1 = Δs = Cp ln(T2/T1) - R ln(P2/P1) 

 

For an isentropic process, the last equation gives 

 

ln(P2/P1) = Cp/R ln(T2/T1) = [k/(k-1)]R/R ln(T2/T1) 
 
 

P2/P1 = [T2/T1]k/(k-1) 

 

For an isentropic process, the Δs equations give 

 

ln(T2/T1) = - R/Cv ln(v2/v1) = + R/Cp ln(P2/P1) 

 

Manipulation of these equations gives  

 
P2/P1 = (v1/v2)k  =  (2/1)k 

 
P2 / [2]k  =  P1 / [1]k 

 
P / k  =  K      P =  K k   



 

NOZZLE FLOWS 

 

 

A nozzle is a short length of pipe or tube with a variable 

cross sectional area. For a flow of gas in a nozzle, 

conservation of mass considerations require that 

 

 A U 

 

must be constant along the nozzle, where  is the gas 

density, A is the nozzle area and U is the flow velocity. 

For two points very close together in a nozzle: 

 

 A U = (+) (A+A) (U+U) 

 

Manipulation gives 

 

                 A U  +  U A +  A U = 0 

 
ρ/ρ   +   A/A + U/U = 0 

 

Conservation of energy considerations require that  

 

h + U2/2 

 

must be constant along the nozzle, where h is enthalpy. 

Thermodynamics shows that 

 

h = CP T = k/(k-1) RT = k/(k-1) P/ 

 



 

 

With this, energy becomes 

 

k/(k-1) P/  +  U2/2 

 

For two points very close together in a nozzle 

 

k/(k-1) P/  +  U2/2  = 

 

k/(k-1) [P+P]/[+]  +  [U+U]2/2   

 

Expansion gives 

 

k/(k-1) P/  +  U2/2  = 
 

k/(k-1) [P+P]/[+] [-]/[-]  +  [U+U]2/2   

 

 

k/(k-1) [P - P]/2   + U U  = 0 

 

 

k/(k-1) [ kRT  -  RT ]/2   + U U  = 0 

 

k/(k-1) [(k-1)RT] /   + U U  = 0 

 

kRT /   + U U  = 0 

 

a2 /   + U U  = 0 

 

 



 

Manipulation gives 

 

/  =  - U/a2 U  = - U2/a2 U/U   

 

Energy into mass gives 

 

- U2/a2 U/U   +   A/A + U/U  =  0 

 

Manipulation gives 

 

             - U2/a2 U    +    U/A  A  + U  =  0 

 

(1- M2) U  +  U/A A =  0 

 

U = U A / [A (M2-1)] 

 

This equation shows that, if M is less than unity or flow 

is subsonic, then flow speed decreases when area increases 

and increases when area decreases. However, if M is greater 

than unity or flow is supersonic, then flow speed increases 

when area increases and decreases when area decreases. One 

can write the last equation as follows: 

 

U (M2-1) = U A/A 

 

When there is a transition from subsonic upstream of a 

throat to supersonic downstream, this equation suggests 

that the flow is sonic at the throat.  

 

 



 

 

CHOKED FLOW 

 

Consider gas flow down the converging/diverging 

tube shown on the back of this page. Consider the 

case where the upstream pressure PU is fixed and 

the downstream pressure PD is gradually lowered 

below the upstream level. Initially, with PD 

slightly less than PU, gas flow would be subsonic 

throughout the tube. Gas would speed up as it moved 

through the converging section and it would slow 

down as it moved through the diverging section. 

However, at some point as PD is reduced, the speed 

at the throat would become sonic. Further reduction 

in PD would create supersonic flow downstream of 

the throat: flow would remain sonic at the throat. 

As information waves cannot propagate faster than 

the speed of sound, they would be swept downstream 

by the supersonic flow and the mass flow rate would 

become independent of PD. The flow is said to be 

choked. Usually, when flow is choked, shock waves 

form downstream of the throat. However, for a given 

PU, there is an optimum PD where they do not form. 

 

 

 



 

 

 

 

 
 



NORMAL SHOCK WAVES 

 

 

When there is supersonic flow around a blunt object, a 

normal shock wave can be found directly in front of the 

object. The flow could be generated by the speed of the 

object or by a blast. Consider flow through a small bit of 

area A of the shock face. Conservation of mass gives 

 

M
.
 =  1 U1 A  =  2 U2 A  

 

while conservation of momentum gives 

 

              M
.

 ( U2 – U1 ) = ( P1 – P2 ) A 

 

Mass into momentum gives 

 

 

2 U2 A U2  -  1 U1 A U1  =  ( P1 – P2 ) A 

 

 

P1  +  1 U1U1  =  P2  +  2 U2U2 

 

 

Manipulation gives 

 



   

P1 ( 1 + 1/P1 [U1U1] )  =  P2 ( 1 + 2/P2 [U2U2] ) 

 

 

P1 ( 1 + [U1U1]/[RT1] )  =  P2 ( 1 + [U2U2]/[RT2] ) 

 

 

P1 ( 1 + k [U1U1]/[kRT1] )  =  P2 ( 1 + k [U2U2]/[kRT2] ) 

 

 

P1 ( 1 + k [U1U1]/[a1a1] )  =  P2 ( 1 + k [U2U2]/[a2a2] ) 

 

 

P1 ( 1 + k M1M1 )  =  P2 ( 1 + k M2M2 ) 

 

 

Conservation of energy gives 

 

 

h1  +  [U1U1]/2  =  h2  +  [U2U2]/2 

 

 

Manipulation gives 

 

 

T1 ( 1 + (k-1)/2 M1M1 )  =  T2 ( 1 + (k-1)/2 M2M2 ) 

 

 

Recall conservation of mass 

 

 



 

 

 1 U1 A  =  2 U2 A  

 

 

Manipulation gives 

 

 

2 / 1 =  U1 / U2  

 

= [ a1 U1/a1 ] / [ a2 U2/a2 ]  =  a1/a2  M1/M2 

 

=  [kRT1] / [kRT2]  M1/M2  =  T1/T2  M1/M2 

 

=  {[1 + (k-1)/2 M2M2] / [1 + (k-1)/2 M1M1]}  M1/M2 

 

 

The Ideal Gas Law gives 

 

 

P1 / [1 R T1]  =  P2 / [2 R T2] 

 

               

Manipulation gives 

                

2/1 T2/T1  =  P2/P1   

 

 

Substitution of ratios into this gives 

 

 



 

 

 

M2M2  = [(k-1) M1M1 + 2]  / [2k M1M1 - (k-1)] 

 

 

With this, the important ratio becomes 

 

 

P2/P1 = 1 + 2k/(k+1) (M1M1 - 1) 

 

 

T2/T1 = ([1+(k-1)/2 M1M1][2k M1M1-(k-1)])/[(k+1)2/2 M1M1] 

 

 

2/1 = [(k+1) M1M1] / [2 + (k-1) M1M1] 

 

 

For air where k=7/5 the ratios become  

 

M2M2  = [M1M1 + 5]  / [7 M1M1 - 1] 

 

P2/P1 = [7 M1M1 – 1] / 6 

 

T2/T1 = ([M1M1 + 5] [7 M1M1 - 1]) / [36 M1M1] 

 

2/1 = [12 M1M1] / [10 + 2 M1M1] 

 

 

 

 



 

 

 

The Mach Number connection predicts compression shocks with 

M1 greater than unity and M2 less than unity and expansion 

shocks with M1 less than unity and M2 greater than unity. 

The Second Law of Thermodynamics shows that compression 

shocks are possible but expansion shocks are impossible. 

The Second Law gives for entropy  

 

S2 – S1 = CP ln[T2/T1] – R ln[P2/P1] 

 

where  

 

T2 / T1  =   [ 2 + (k-1) M1M1 ] / [ 2 + (k-1) M2M2 ] 

 

 
  P2 / P1   = ( 1 + k M1M1 ) / ( 1 + k M2M2 ) 

 

 

For a compression shock this shows that S is greater than 

zero, which is possible, whereas for an expansion shock it 

shows that S is less than zero, which is impossible. In 

other words, a supersonic flow can suddenly go subsonic, 

but a subsonic flow cannot suddenly go supersonic.  

 

 

 

 

 



 

OBLIQUE SHOCK WAVES 

 

Oblique shock waves form on objects such as supersonic 

foils at a low angle of attack. The shock turns the flow 

and makes it parallel to the foil. The sketch on the next 

page shows the oblique shock geometry. Only the component 

of the flow normal to the shock is changed by passage 

through the shock. Because pressure is basically constant 

either side of the shock, the tangential component of the 

flow is not changed.  The normal component is changed by 

the amount needed to make the flow align with the foil. 

Properties depend on the Mach Numbers based on the normal 

component of the flow. These are: 

      

N1 = U1N/a1 =  U1Sin[β]/a1 = M1 Sin[β] 

 

N2 = U2N/a2 =  U2Sin[β-]/a2 = M2 Sin[κ]

 

where β is the shock angle and  is the angle of attack of 

the foil. The property ratio equations become: 

 

P2/P1 = 1 + 2k/(k+1) (N1N1 - 1) 

 

T2/T1 = ([1+(k-1)/2 N1N1][2k N1N1-(k-1)])/[(k+1)2/2 N1N1] 

 

2/1 = [(k+1) N1N1] / [2 + (k-1) N1N1] 

 

 

 

 



 

 

 

 

 



 

The Mach Number connection becomes:  

 

N2N2  = [(k-1) N1N1 + 2]  / [2k N1N1 - (k-1)] 

 

Conservation of mass gives 

 

1 U1N A  =  2 U2N A  
 

2 / 1 =  U1N / U2N  

 

Geometry gives 

 

U1N/U1T = Tan[β]        U2N/U2T = Tan[κ] 

 
                U1N / U2N  =  Tan[β] / Tan[κ] 

 

Thermodynamics gives 

 

2/1 = [(k+1) N1N1] / [2 + (k-1) N1N1] 

 

Manipulation gives  

 

Tan[β]/ Tan[κ] = (k+1) N1N1 / [(k-1) N1N1 + 2] 

 
= (k+1) M1M1 Sin2[β] / [(k-1) M1M1 Sin2[β] + 2] 

 

A plot of this equation is given on the next page. 

 



 
 

 
 

 



 

 

 

EXPANSION WAVES 

 

An expansion wave is basically a fan of Mach waves. 

Processes within such waves are isentropic. Expansion 

theory considers an expansion to be made up of an infinite 

number of infinitesimal expansions. The sketch on the next 

page shows the geometry of a Mach wave. The pressure either 

side of such a wave is basically constant. So the 

tangential component of fluid motion is unchanged when 

fluid crosses it. Only the normal component is changed. 

Geometry gives for the tangential component:  

 

 
U Cos[]  =  (U+U) Cos[+] 

 
 

Trigonometry gives 

 

 
Cos[+] =  Cos[] Cos[] - Sin[] Sin[] 

 
 
Small angle approximation gives 

 

Cos[+] =   Cos[] 1  - Sin[]   

 

=  Cos[]  -    / M 

 

 

 



 

 

 

 

 

 

 

 

 

 



 

The tangential equation becomes 

 

 

U Cos[]  =  (U+U) (Cos[] -  /M) 

 

 

Manipulation gives 

 

 

  =  M Cos[]  U/U 

 

= M (1-Sin2[]) U/U  =  (M2-M2/M2)  U/U 

 

=  (M2-1)   U/U 

 

 

The Mach Number is   

 

 

M = U/a = U / kRT 

 

 

Manipulation gives 

 

 

                    U = M kRT 

 

 

 

 



Differentiation gives 

 

 

U  =  M kRT    +   M / [2kRT]  kR T 

 

 

Manipulation gives 

 

 

U/U  =  M/M   + 1/2  T/T 

 

 

Conservation of energy gives 

 

U2/2 + h  = K 

 

=  U2/2  + CP T 

 

=  U2/2  +  kR/(k-1) T 

 

 

Differentiation gives 

 

 

U U  +  kR/(k-1) T  =   0 

 

 

Manipulation gives 

 

 
 

 



U/U   +   1/(k-1) [kRT]/U2  T/T   =   0 

 

U/U   +   1/(k-1) 1/M2 T/T   =   0 

 

T/T   =  - (k-1) M2 U/U 

 

Substitution into the U/U  equation gives 

 

U/U  =  M/M   -  (k-1)/2 M2 U/U 

 

U/U  =   1 / [ 1 + (k-1)/2 M2 ]  M/M 

 

Substitution into the geometry equation gives 

              

  =  (M2-1)   U/U 

 

=  (M2-1)  / [ 1 + (k-1)/2 M2 ]  M/M 

 

Integration of this equation gives 

 

 = K tan-1[(M2-1)/K] - tan-1[M2-1] 

 

K = (k+1)/(k-1) 

 
A plot of this equation is given on the next page. 

 
 
 

 
 



 
 

 

 

 



 

 

 

STEADY COMPRESSIBLE FLOW IN LONG PIPES 

 

 

FANNO LINE FLOW 

When a gas is flowing in a pipe, wall friction can cause 

the flow to choke. For subsonic flow, M increases to 1 

while for supersonic flow, it decreases to 1. For subsonic 

flow, extra length beyond that needed to choke flow causes 

flow reduction. For supersonic flow, extra length causes a 

shock wave to form in pipe.  

 

RAYLEIGH LINE FLOW 

When heat is added to the flow in a pipe, one finds that it 

can cause the flow to choke. Once the flow is choked, more 

heat addition causes a flow reduction. Heat removal reverses 

the process. It is interesting that heat addition for a 

subsonic flow can cause its temperature to drop. 

 

 

 

 

 

 



 
 
 
 
 
 
 
 

 
 
 
 
 
 
 



 
 
 

 



 
 
 

PIPE FLOWS WITH FRICTION 

 

For compressible flow in a pipe, the differential equations 

are 

 
dP/P = -kM2[1+(k-1) M2]/[2(1-M2)] fdx/D 

 
 

dT/T = -k(k-1)M4/[2(1-M2)] fdx/D 
 

 
dρ/ρ = -kM2/[2(1-M2)] fdx/D 

 
 

dM2/M2 = kM2[1+(k-1)/2M2] /[1-M2] fdx/D 

 
These equations can be integrated numerically to get how 

the various unknowns change down the pipe. The changes are 

usually tabulated in fluids texts. One finds that if M<1 it 

gradually increases to 1 whereas if M>1 it gradually 

decreases to 1. One finds that there is critical length L* 

that the flow must travel to become sonic. For adiabatic 

flow the critical length follows from   

 
fL*/D = (1-M2)/(kM2) + (k+1)/(2k) ln[(k+1)M2/(2+(k-1)M2)] 

 
 
while for isothermal flow it follows from 

 
fL*/D = (1-kM2)/(kM2) + ln[kM2] 

 
 
 
 

 

 




