

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

FACULTY OF ENGINEERING AND APPLIED SCIENCE

FLUIDS II 5913

FINAL EXAMINATION

WEDNESDAY 14 APRIL 2004
9:00 AM TO 11:30 AM

INSTRUCTOR
M. HINCHEY

Identify on the formula sheets the block of formulas for each of the following: (1) unsteady flow in long pipes (2) choked flow in long pipes (3) turbulent wake flows (4) boundary layer flows (5) water wave phenomena. Write brief notes on each topic.

A certain journal bearing when unfolded is 2 by 2. Its minimum gap is 2 and its maximum gap is 6. The shaft tangential speed due to rotation is 280. The viscosity of the bearing oil is 1/12. Develop a single point NSEW CFD template for the bearing and use it to estimate P at the center of the bearing. Based on the single point template where would the minimum gap be located on the bearing? Describe one way to measure the viscosity of the bearing oil.

In the foil lab you tested a foil generated from a circle with known radius and known offsets. Imagine that the wind speed and foil angle of attack are both set. What is the theoretical lift and drag that can be generated by the foil? How could lift and drag be determined from pressure measurements and the geometry of the foil? Sketch a velocity vector plot for flow around the foil when it has a large angle of attack. Draw streamlines on the plot.

In the shock tube lab a supersonic flow was generated for a very short period of time. With words and formulas describe how you would get the speed of this flow from a single pressure sensor measurement. How would you get the pressure at the stagnation point on a very small blunt object placed in the supersonic flow? Would the flow change if the end of the tube was blocked? Explain.

With words and formulas describe how you would get the lift and drag on a supersonic half diamond foil moving at a set MACH Number. How would you get the lift and drag if expansion waves had to be modelled as inverse oblique shock waves? Sketch the flow pattern around the foil when it is flying at a very large angle of attack.

With words and formulas describe how you would calculate the thrust of an ideal rocket nozzle. How would you estimate the upstream chamber MACH Number? How would you find the nozzle exit area? How would you get the thrust if the downstream cone was removed? How would a normal shock wave within the nozzle influence thrust?

JOURNAL BEARING QUESTION

Unfold converging half of bearing flat letting the minimum gap be at the bottom. Calculate pressure using the single point CFD template

$$\begin{aligned} & [(h_e + h_p)/2]^3 (P_e - P_p)/\Delta x + [(h_p + h_w)/2]^3 (P_p - P_w)/\Delta x] / \Delta x \\ & [(h_y + h_p)/2]^3 (P_y - P_p)/\Delta y + [(h_p + h_s)/2]^3 (P_p - P_s)/\Delta y] / \Delta y \\ & = 3\mu S (h_e - h_w)/\Delta x \end{aligned}$$

Knowns : Gaps h_e h_s h_y h_w h_p . Speed S . Viscosity μ and Pressures $P_y = P_s = P_p = P_w = 0$. Unknown : P_p . Substitution into the template gives $P_p = 1$. Fold pressure back onto bearing. This shows that net load is horizontal. But load must be vertical. So load must be rotated 90 degrees.

FOIL LAB QUESTION

The theoretical lift is $\rho S R$. The theoretical drag is 0. Lift and drag from pressure measurements are:

$$\text{Lift} = 2 P A C \sin(\theta - \phi) \quad \text{Drag} = 2 P A C \cos(\theta - \phi)$$

where ϕ is the local inward pointing normal at points on the foil and θ is the angle of attack of the foil.

SHOCK TUBE LAB QUESTION

Supersonic flow behind the shock which goes down the tube creates another shock in front of small stationary blunt object in flow. Let U indicate upstream of the main shock and D indicate downstream. Also let A indicate just upstream of the object shock and B indicate just downstream while C is the stagnation point on the object. Use main shock fixed UD frame to get the speed of the flow. Use object fixed ABC frame to get stagnation point pressure. Pressure sensor measurement gives M_o . Speed of sound equation gives C_o . Mach Number connection gives M_s . Temperature ratio equation gives T_o . Speed of sound equation gives C_s . Mach Number equation gives U_o . Speed of supersonic flow is $U_s = U_o - U_o$. Absolute Mach Number is $M_A = C_A U_A$ and $C_A = C_o$. Normal shock pressure ratio equation gives P_s . Mach Number connection gives M_s . The stagnation Point Mach Number is $M_c = 0$. The pressure ratio equation gives pressure at the stagnation point.

SUPERSONIC FOIL QUESTION

Let 1 indicate upstream of the foil and 2 indicate below the foil. Let 3 indicate top of the foil at front and 4 indicate top of the foil to the rear. Lift and Drag are:

$$\begin{aligned} \text{Lift} &= P_2 C_2 \cos \theta_2 - P_3 C_3 \cos \theta_3 - P_4 C_4 \cos \theta_4 \\ \text{Drag} &= P_2 C_2 \sin \theta_2 - P_3 C_3 \sin \theta_3 - P_4 C_4 \sin \theta_4 \end{aligned}$$

For region 2 oblique shock plot gives β . Oblique shock pressure ratio equation gives P_2 . For region 3 expansion wave plot gives M_3 . Isentropic pressure ratio equation gives P_3 . For region 4 expansion wave plot gives M_4 . Isentropic pressure ratio equation then gives P_4 . Geometry gives angles θ_1 , θ_2 , θ_3 and chords C_1 , C_2 , C_3 , C_4 . At a large angle of attack a bow shock would form ahead of the foil: flow behind it would be subsonic. To model expansion wave as an inverse oblique shock we would use $\kappa = \beta + \theta$ instead of $\kappa = \beta - \theta$ in the $\tan \theta / \tan \kappa$ equation.

ROCKET NOZZLE QUESTION

Let U indicate the upstream combustion chamber and D indicate the nozzle exit. Let T indicate the nozzle throat. Knowns: P_0 , T_0 , $P_0 A_0 M_0 = 0$, $M_0 = 1$. Thrust for an ideal rocket nozzle is $\dot{M} U_0$. Mass flow rate is

$$\dot{M} = [P_0 / RT_0] A_0 \sqrt{kRT_0}$$

Isentropic equations connect point U to point T and gives P_T and T_T . Isentropic pressure ratio equation gives M_0 . Isentropic temperature ratio equation gives T_0 . Speed of sound equation gives C_0 . Mach Number equation gives U_0 . To get the upstream Mach Number one can use the fact that the mass flow is constant throughout the nozzle:

$$\dot{M} = [P_0 / RT_0] A_0 M_0 \sqrt{kRT_0}$$

Everything is known in this equation except M_0 . To get the nozzle exit area we can use

$$\dot{M} = [P_0 / RT_0] A_0 M_0 \sqrt{kRT_0}$$

Everything is known in this equation except A_0 . The thrust without a cone downstream of the throat is

$$\dot{M} U_0 + [P_T - P_0] A_0$$

A normal shock within the nozzle would cause the flow to go subsonic and this reduces U_0 and thus thrust $\dot{M} U_0$.

FLUIDS II QUIZ

Do you agree or disagree with each of the following statements? Briefly explain your answer.

A turbulent wake flow can be solved analytically. Disagree! A turbulent wake flow is too complicated to solve analytically: CFD is the only option. In irrotational flow each fluid particle spins on its own internal axis. Disagree! Viscosity makes particles spin. In irrotational flow viscosity is zero. Boundary layer theory can be used to estimate wake drag. Disagree! Boundary layer theory is used to estimate wall drag not wake drag. In hydrodynamic lubrication devices viscous forces are insignificant relative to inertia forces. Disagree! Because velocity gradients are very large across small gaps viscous forces are very strong. Processes within shock waves are isentropic. Disagree! Isentropic means adiabatic and frictionless. Mechanical energy is dissipated by friction inside shock waves. Also there is significant heat conduction within them.

Answer any 4 of the following 5 questions. In each case list the things that you would assume to be known.

With words and formulas describe how you would calculate the lift and drag on a V shaped flat plate supersonic foil. You would assume you know M_u P_u T_u upstream of the foil. You would also assume you know the geometry of the foil and its angle of attack. There would be two oblique shock waves on the bottom of the foil and two expansion waves on the top of the foil. To get across an oblique shock wave you use upstream M and plate angle to get β from oblique shock plot A. You would then calculate the normal mach numbers N either side of the shock. N upstream gives the pressure downstream of the shock while N downstream gives M downstream. To get across an expansion wave you use upstream M and plate angle to get downstream M from expansion wave plot B. The isentropic pressure ratio equation then gives P downstream. Knowing the pressure on each flat section of the plate we multiply by chord to get load on it. We then break each load down into vertical and horizontal components to get lift and drag. Pressures on the top of the foil give negative lift and negative drag. Pressures on the bottom of the foil give positive lift and positive drag.

With words and formulas describe how you would calculate the thrust of an ideal rocket nozzle. You would assume the following are known: P_0 T_0 P_D $M_0=0$ $M_T=1$ A_T . You would also assume processes isentropic throughout nozzle. For an ideal nozzle the thrust is MU_D . The surrounding pressure is P_D ; so ΔP is zero. The mass flow rate \dot{M} is $\rho_T A_T U_T$. The density ρ_T is P_T/RT_T . The speed U_T is $\sqrt{kRT_T}$. The isentropic ratios with known P_0 T_0 M_0 M_T give P_T and T_T . The isentropic pressure ratio equation with known P_0 M_0 P_D gives M_D . The temperature ratio equation with known T_0 M_0 M_D gives T_D . The speed C_D is $\sqrt{kRT_D}$. The speed U_D is $C_D M_D$. So thrust MU_D can now be calculated.

With words and formulas describe how you would calculate the mass flow rate through a valve in a high pressure gas line. You would assume that the ratio of high pressure P_H to low pressure P_L across the valve is large enough to make flow through it choked. You would assume that the valve has a minimum area or throat and the following are known: P_H T_H $M_H=0$ $M_T=1$ A_T . The mass flow rate is $\rho_T A_T U_T$. The density ρ_T is P_T/RT_T . The speed U_T is $\sqrt{kRT_T}$. The isentropic ratios with known P_H T_H M_H M_T give P_T and T_T . So the mass flow rate can now be calculated.

With words and formulas describe how you would get the pressure and temperature at the stagnation point on a blunt object moving faster than the speed of sound. You would assume that P_0 T_0 M_0 $M_S=0$ are known. The normal shock pressure ratio equation would allow you to get P_S just behind the shock. The normal shock mach number equation would give M_B just behind the shock. The isentropic pressure ratio equation with M_B and M_S known would then give the stagnation pressure P_S while the temperature ratio equation with T_0 M_0 and M_S known would give the stagnation temperature T_S .

With words and formulas describe how you would calculate the speed of the shock wave generated by an explosion in air. You would assume the explosion takes place in initially calm air. In a shock reference frame the air would approach the shock at the speed of the shock. You would assume you know P_A and T_A for the air and P_G for the gas ball. The normal shock equation with P_G and P_A known would give M_A . The sound speed in air C_A would be $\sqrt{kRT_A}$. The shock speed U_A would be C_A times M_A .

11

Rocker Nozzle Problem

KNOWNs P_U T_U B

$M_U = 0$ $M_T = 1$ A_T

IMPORTANT EQUATIONS

ENTROPIC RATIOS

σ_J

σ_T

$$\frac{P_T}{P_J} = \left(\frac{1 + \frac{R-1}{2} M_J^2}{1 + \frac{R-1}{2} M_T^2} \right)^{\frac{R}{R-1}}$$

$$\frac{T_T}{T_J} = \frac{1 + \frac{R-1}{2} M_J^2}{1 + \frac{R-1}{2} M_T^2}$$

② Ideal Rocket Thrust $\dot{M} D$,

Pressure ratio equation applied
between D and T gives P_T ,

Temperature ratio equation applied
between D and T gives T_T ,

Mass flow rate \dot{M}

$$\dot{M} = \dot{P}_T A_T L_T = \frac{P_T}{R T_T} A_T \sqrt{k R T_T}$$

Pressure ratio equation applied
between D and D gives M_D ,

Temperature ratio equation applied
 between 1 and 0 gives T_0 ,
 Sound speed equation gives C_0 ,
 Mach Number equation gives M_0 .

For nozzle without one throat is

$$\dot{m}_{\text{ref}} + (P_{\text{ref}} - P_0) A_{\text{ref}}$$

Following equation gives M_N

$$\sqrt{\dot{m}} = \frac{P_0}{RT_0} A_0 M_0 \sqrt{k R T_0}$$

Following equation gives P_0

$$\sqrt{\dot{m}} = \frac{P_0}{RT_0} A_0 M_0 \sqrt{k R T_0}$$

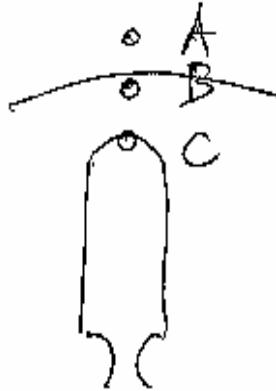
ROCKET STAGNATION POINT PRESSURE

E1

KNOWNS

$$P_A \ T_A \ M_A \ \ M_c = 0$$

Stagnation point $\Rightarrow c$



For rocket moving at low Subsonic speed \Rightarrow stagnation point pressure

$$\therefore P_c = \frac{P_A^2}{2}, \text{ For rocket moving}$$

at Supersonic speed normal shock equations are first used

to get P_B and M_B just

downstream of bow shock. (2)

$$\frac{P_B}{P_A} = 1 + \frac{2k}{R+1} (M_A^2 - 1)$$

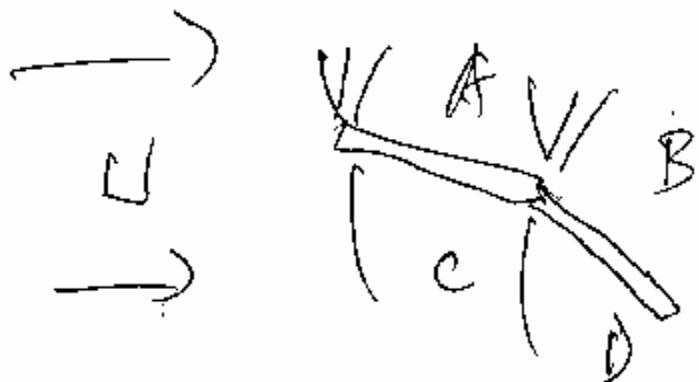
$$M_B^2 = \frac{(k-1)M_A^2 + 2}{[2kM_A^2 - (k-1)]}$$

Then Bernoulli equation is used to get P_c ?

$$\frac{P_c}{P_B} = \left(\frac{1 + \frac{k-1}{2} M_B^2}{1 + \frac{k-1}{2} M_c^2} \right) \frac{k}{k-1}$$

Supersonic V Shaped Fin

(P)



KNOWN'S: MU PU TO

AIR GEOMETRY

Obligee shock equations
one used to get P_c & P_D

$$\frac{P_c}{P_U} = 1 + \frac{2k}{R+1} \left(N_U^2 - 1 \right)$$

$$\frac{P_D}{P_c} = 1 + \frac{2k}{R+1} \left(N_c^2 - 1 \right)$$

(F2)

Barotropic equations are

used to get P_A & P_B

$$\frac{P_A}{P_0} = \left(\frac{1 + \frac{K}{2} M_0^2}{1 + \frac{K}{2} M_A^2} \right)^{\frac{K}{K-1}}$$

$$\frac{P_B}{P_A} = \left(\frac{1 + \frac{K}{2} M_A^2}{1 + \frac{K}{2} M_B^2} \right)^{\frac{K}{K-1}}$$

For a typical shock

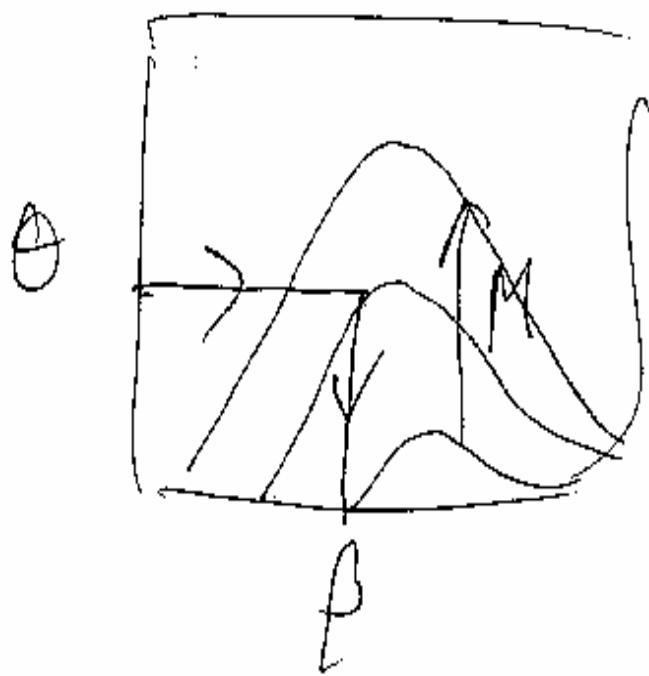
$$N_J = M_J \sin \beta$$

$$N_T^2 = \frac{(k-1)N_J^2 + 2}{[2kN_J^2 - (k-1)]T}$$

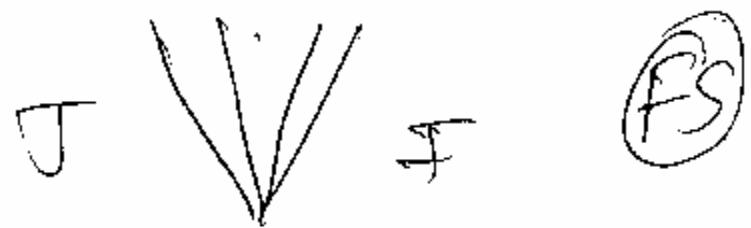
$$N_T = M_T \sin(\beta - \theta)$$

(P4)

Get β from oblique
Shock plot

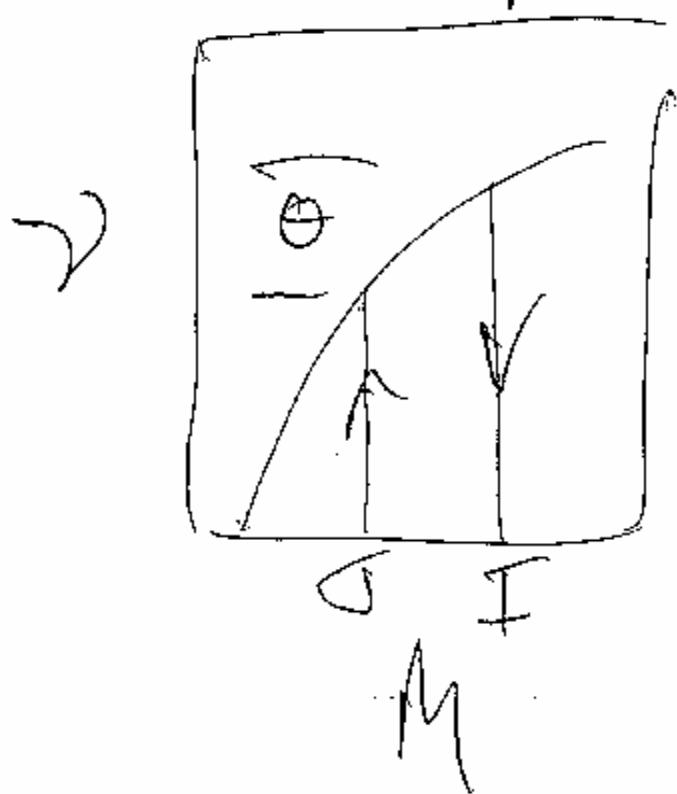


For a typical expansion



$$\gamma_I = \gamma_J + \theta$$

Get M from expansion plot



(A)

BLUNT OBJECT IN STICK TUBE

KNOWN'S: P_U T_U $\frac{P_D}{P_U}$ $M_C = 0$

STAGNATION point PRESSURE }

M_U C_U U_U P_D M_D T_D

C_D H_D U_A $C_A = C_D$ M_A

$P_A = P_D$ B M_B P_C

Joukowsky Rule

Theoretical lift and drag are

$$L = \rho V^2 S \quad D = c_0$$

Lift and Drag from
Summed incremental

Lift and drag are

$$L = \rho V^2 S \quad D = \sum \rho D$$

ΔL and ΔD can be
obtained from experiment
or fluid theory

$$\Delta L = P \sin \theta \sin(\theta - \alpha)$$

$$\Delta D = P \sin \theta \cos(\theta - \alpha)$$

Get P theoretically
from Bernoulli equation

$$P = \frac{1}{2} \left[\left(s - \left(\frac{\partial \phi}{\partial x} \right)^2 \right) \right] \leq P \left[s - \left(\frac{\partial \phi}{\partial x} \right)^2 \right]$$

(62)

(33)

Get δc from mapping
from circle to FDL plane

$$\delta c = \sqrt{(\delta \alpha)^2 + (\delta \beta)^2}$$

Get $\delta \phi$ from Circle plane

$$\phi = 25x + \frac{1}{2\pi} 5$$

Corresponding points in
circle and FDL plane
have same ϕ .

Proper circulation Γ is
that which make trailing
edge Stagnation point

Maneuvering gears

$$\Gamma = A \cdot T \cdot S \cdot R \cdot \sin \theta$$

$$R = \theta + \varepsilon$$

$$\varepsilon = \tan^{-1} \left(\frac{m}{a \cdot g} \right)$$

ZOR PREG PROBLEM

(A)

The turbulent smooth wall

$$\text{drag } \propto D = N b L \text{Re}^{-\frac{1}{K}} \rho D^2.$$

Use Re: to get N and K.

The turbulent rough wall

$$\text{drag } \propto D = K b L \rho D^2.$$

Use roughness plot to get K.

The laminar side wall drag

$$\propto D = M b L \text{Re}^{-\frac{1}{2}} \rho L^2.$$

Use data to get M.

(A8)

wake drag is $W = C_D B D^2 / 2$,

Use data to get C_D ,

Power is $P = (D f(\theta)) D$,

For curved geometry

external pressure gradient
acts on fluid in the
boundary layer

$$\frac{d}{dc} (\rho D^2 \theta) = \tau + \frac{df}{dc} \delta^*$$
$$= \tau - \rho \left[5 \frac{dD}{dc} \right] \delta^*$$

data relates T and θ
and S^* to S , get
an equation of form

$$\frac{dS}{dc} = f$$

Numerical integration gives

$$S_{\text{new}} = S_{\text{old}} + \Delta c \cdot f(c)$$

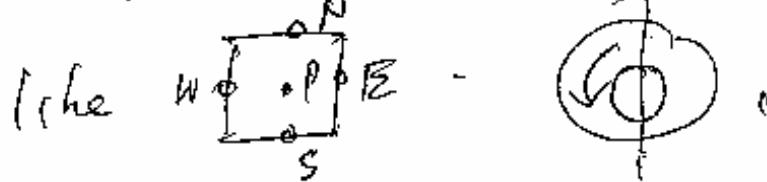
Another integration gives

$$\theta = \int_a^L T_b \, dc = \mathcal{E} T_b \, dc$$

Bl

JOURNAL BEARING PROBLEM

When unrotated bearing looks



Reynolds equation is

$$\frac{\partial}{\partial x} \left(h^3 \frac{\partial P}{\partial x} \right) + \frac{\partial}{\partial y} \left(h^3 \frac{\partial P}{\partial y} \right) = 6\mu S \frac{\partial h}{\partial e}$$

Application of CPD gives

$$\left[\left(\frac{h_N + h_P}{2} \right)^3 \left(\frac{h_E - h_P}{\partial x} \right) - \left(\frac{h_P + h_S}{2} \right)^3 \left(\frac{P_E - P_S}{\partial x} \right) \right] / \partial x$$

$$\left[\left(\frac{h_N + h_S}{2} \right)^3 \left(\frac{P_N - P_S}{\partial y} \right) - \left(\frac{h_P + h_E}{2} \right)^3 \left(\frac{P_E - P_S}{\partial y} \right) \right] / \partial y$$

$$= 6\mu S \left(\frac{h_E - h_S}{2 \partial x} \right)$$

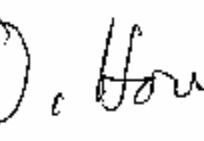
Manipulation gives

(B2)

$$P_p = \frac{AP_{et} + BP_w + CP_N + DP_S + f}{A + B + C + D}$$

Substitution off has given P_p .

When folded back onto shaft

load looks like . However

load must be vertical θ

must rotate 90°

If ends blocked $\frac{dP}{dy} = 0$?

C and D both zero

$$P_p = \frac{AP_{et} + BP_w + f}{A + B}$$

This gave higher P_p .

THRUST BEARING PROBLEM

01

Reynolds equation

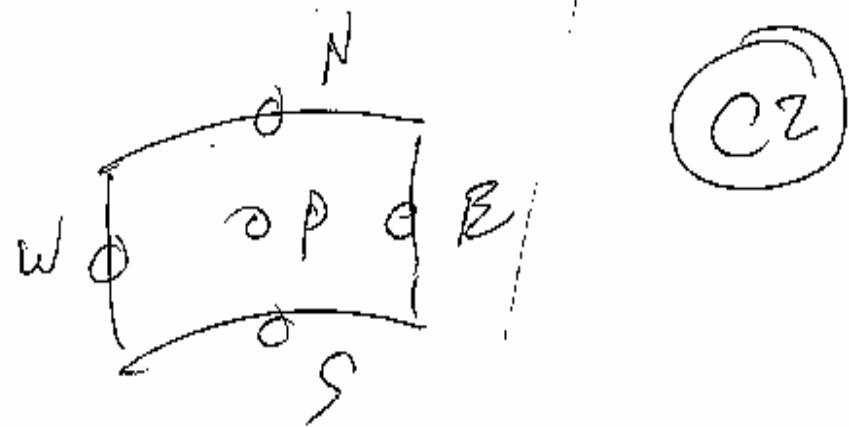
$$\frac{1}{r} \frac{\partial}{\partial r} \left(rh^3 \frac{\partial P}{\partial r} \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left(h^3 \frac{\partial P}{\partial \theta} \right) = 6\mu \frac{f}{r} \frac{\partial h}{\partial \theta}$$

For CFD this can be
rewritten in following forms:

$$\frac{1}{r} \frac{\partial}{\partial r} \left(rh^3 \frac{\partial P}{\partial r} \right) + \frac{\partial}{\partial c} \left(h^3 \frac{\partial P}{\partial c} \right) = 6\mu s \frac{\partial h}{\partial c} \quad ①$$

$$r \frac{\partial}{\partial r} \left(rh^3 \frac{\partial P}{\partial r} \right) + \frac{\partial}{\partial \theta} \left(h^3 \frac{\partial P}{\partial \theta} \right) = 6\mu s r \frac{\partial h}{\partial \theta} \quad ②$$

Application of CFD to ① gives



(C2)

$$\begin{aligned}
 & \left[\left(\frac{h_N + h_P}{2} \right)^3 \left(\frac{r_N + r_P}{2} \right) r_P \left(\frac{P_N - P_P}{\sigma r} \right) \right. \\
 & \left. - \left(\frac{h_P t h_S}{2} \right)^3 \left(\frac{r_P + r_S}{2} \right) r_P \left(\frac{P_P - P_S}{\sigma r} \right) \right] / \sigma r \\
 & + \left[\left(\frac{h_E + h_P}{2} \right)^3 \left(\frac{P_E - P_P}{\sigma \theta} \right) - \left(\frac{h_P t h_W}{2} \right)^3 \left(\frac{P_P - P_W}{\sigma \theta} \right) \right] / \sigma \theta \\
 & = 6 \mu S r_P \left(\frac{h_E - h_W}{2 \sigma \theta} \right)
 \end{aligned}$$

(C3)

Manipulation gives

$$P_P = \frac{AP_E + BP_w + (P_N + D)P_S + If}{A + B + C + D}$$

Substitution into the gives P_P ,

If ends of bearing blocked

and I both zero & $\frac{\partial P}{\partial r} \approx 0$,

$$P_P = \frac{AP_E + BP_w + If}{A + B}$$

This gives higher P_P .

A) Consider a circle with radius $R=1m$ and offsets $n=0$ and $m=0$. 1) Map 4 points on the circle to a Joukowsky foil plane. The foil is moving through STP air at speed S equal to 500m/s and angle of attack θ equal to 10 degrees. 2) Estimate pressure at 4 points on the foil. 3) Use this to estimate the lift on the foil. 4) This lift is not realistic. Why? Describe how you would get a more realistic estimate of lift.

B) Imagine that you know the pressure ratio across a shock wave generated by an explosion in still air. 1) With words and formulas describe how you would get the speed of the supersonic flow behind the shock wave. 2) With words and formulas describe how you would get the pressure at the stagnation point on a small blunt object placed in the flow. 3) With words and formulas describe choked flow. 4) Describe two situations where choked flow is important.

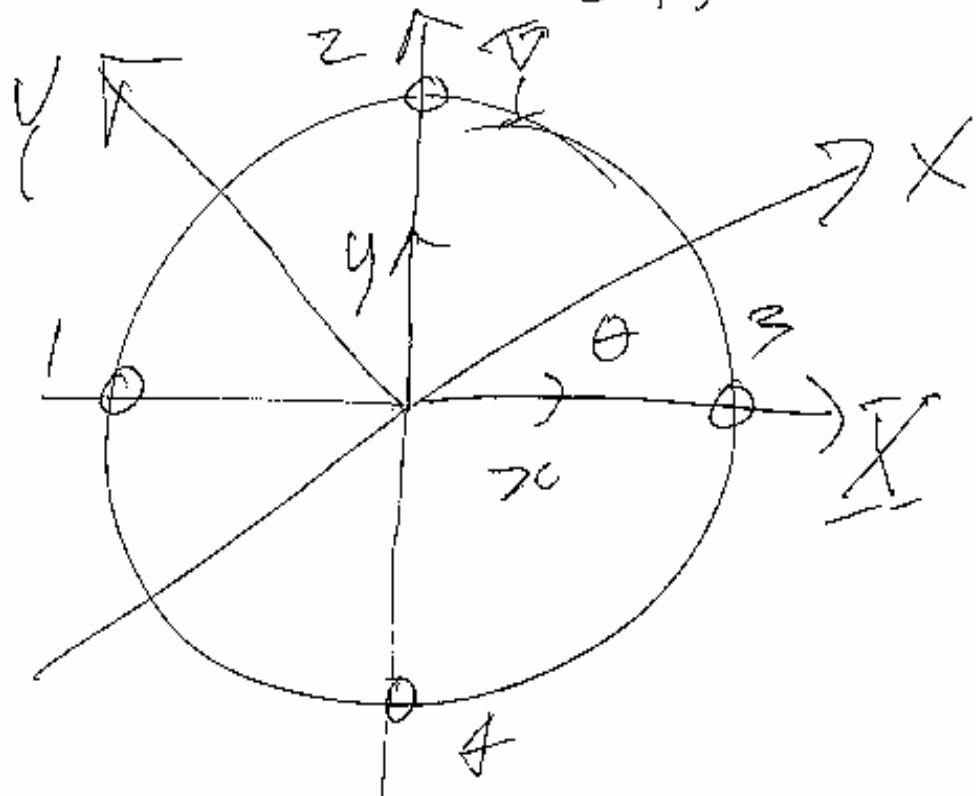
C) Answer TRUE or FALSE to each of the following and briefly explain each answer: 1) Conservation Laws are ODEs. 2) Shock waves cannot occur in water. 3) Lubrication flow is high Reynolds Number flow. 4) Eddies in a flow make it appear more dense locally. 5) A potential vortex is a rotational flow. 6) Expansion shock waves are impossible. 7) The wave equation governs creeping flows. 8) Boundary layers occur in ideal flows. 9) A single Mach wave cannot be heard. 10) Capillary flow is flow of an inviscid fluid.

(A1) Geometry of Coil

Mapping Function

$$\alpha = x + \frac{x a^2}{x^2 + y^2}$$

$$\beta = y - \frac{y a^2}{x^2 + y^2}$$



$$a = R = r$$

$$x^2 + y^2 = R^2 = 1$$

① $\alpha = x + y = -2,0$

$$\beta = y - y = 0,0$$

② $\alpha = x + y = 0,0$

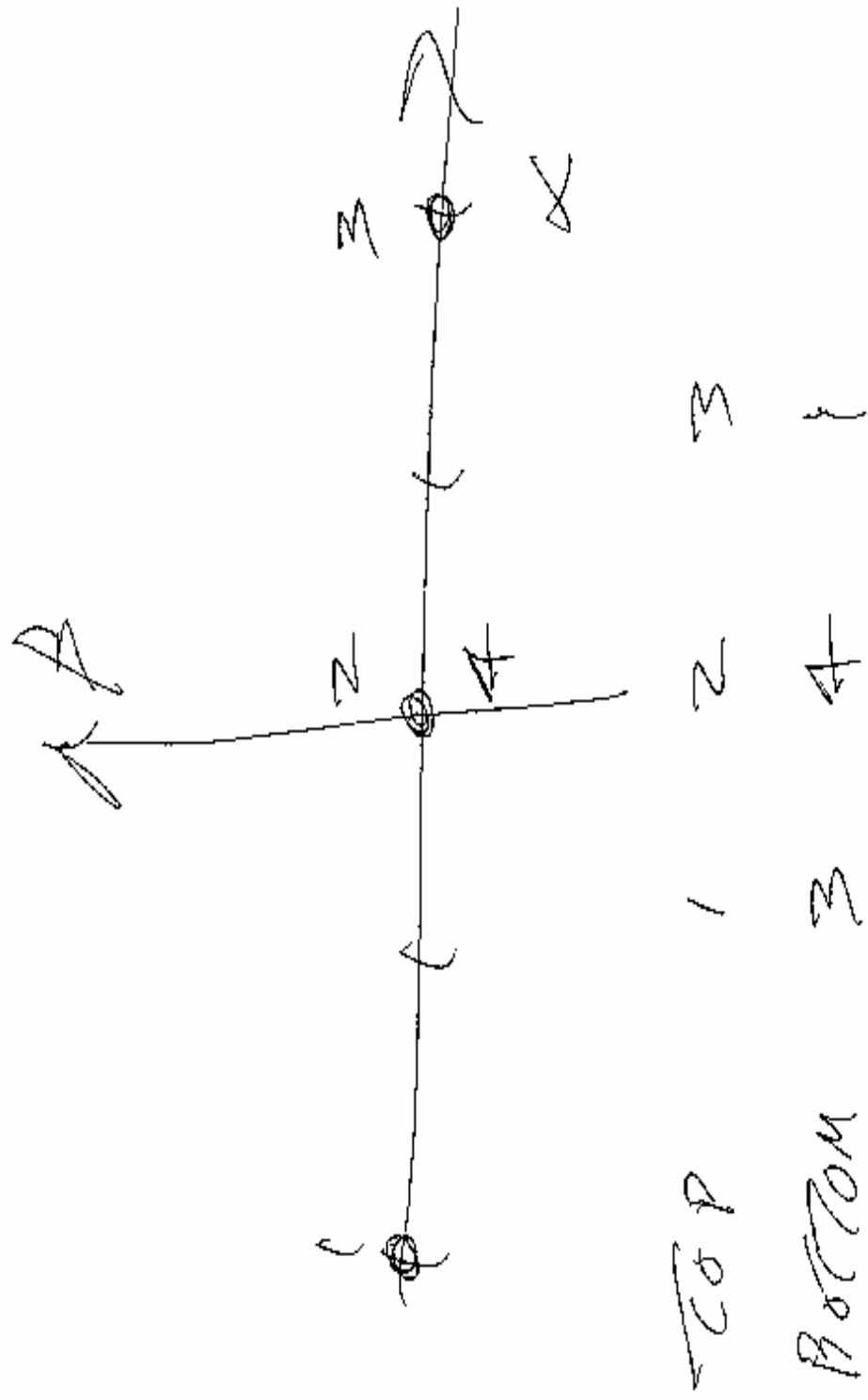
$$\beta = y - y = 0,0$$

③ $\alpha = x + y = +2,0$

$$\beta = y - y = 0,0$$

④ $\alpha = x + y = 0,0$

$$\beta = y - y = 0,0$$



(A2) Pressure on FeTi

$$P = \frac{P}{2} \left(S^2 - \left(\frac{\partial \phi}{\partial c} \right)^2 \right)$$

$$= \frac{P}{2} \left(S^2 - \left(\frac{\partial \phi}{\partial c} S^2 \right) \right)$$

$$\Delta \phi = 2 S \Delta x + \frac{P}{2\pi} \Delta \Gamma$$

$$X = \vec{S} \cos \theta + \vec{P} \sin \theta$$

$$\Delta c = \sqrt{(\Delta \alpha)^2 + (\Delta \beta)^2}$$

$$\Delta \Gamma = \frac{\pi}{2}$$

$$X_1 = -0,98 \quad X_2 = +0,17$$

$$X_3 = +0,98 \quad X_4 = -0,17$$

$$① \rightarrow ② \quad \Delta X = X_2 - X_1 = +1,15$$

$$② \rightarrow ③ \quad \Delta X = X_3 - X_2 = +0,81$$

$$③ \rightarrow ④ \quad \Delta X = X_4 - X_3 = -1,15$$

$$④ \rightarrow ① \quad \Delta X = X_1 - X_4 = -0,81$$

$$\Gamma = 2\pi SR \sin \theta$$

$$f\epsilon = \phi + \epsilon = \Theta$$

$$\Rightarrow 10$$

$$\begin{aligned}\Gamma &= 4\pi \times 500 \times 1 + 9a/10 \\ &\cong 1068\end{aligned}$$

$$① \rightarrow ② \quad \delta\phi = 2\pi 500 \times 1.15 + \frac{1068 \pi}{2\pi f} \frac{\pi}{2}$$

$$= 1150 + 267 = +1417$$

$$② \rightarrow ③ \quad \delta\phi = 2\pi 500 \times 0.81 + \frac{1068 \pi}{2\pi f} \frac{\pi}{2}$$

$$= 810 + 267 = 1077$$

$$③ \rightarrow ④ \quad \delta\phi = 2\pi 500 \times (-1.15) + \frac{1068 \pi}{2\pi f} \frac{\pi}{2}$$

$$= -1150 - 267 = -1417$$

$$④ \rightarrow ① \quad \delta\phi = 2\pi 500 \times (-0.81) + \frac{1068 \pi}{2\pi f} \frac{\pi}{2}$$

$$= -810 - 267 = -1077$$

$$P = \frac{1.2}{2} \left[500^2 - \left(\frac{1417}{2} \right)^2 \right]$$

$$④ \rightarrow ① = \frac{1.2}{2} (250000 - 501972)$$

$$= -15183$$

$$P = \frac{1.2}{2} \left(500^2 - \left(\frac{1077}{2} \right)^2 \right)$$

$$\begin{aligned} ② \rightarrow ③ \\ &= \frac{1.2}{2} (250000 - 289982) \\ &= -23987 \end{aligned}$$

$$\begin{aligned} P &= \frac{1.2}{2} \left(500^2 - \left(\frac{883}{2} \right)^2 \right) \\ ③ \rightarrow ④ \\ &= \frac{1.2}{2} (250000 - 194922) \\ &= +33307 \end{aligned}$$

$$\begin{aligned} P &= \frac{1.2}{2} \left(500^2 - \left(\frac{543}{2} \right)^2 \right) \\ ④ \rightarrow ⑤ \\ &= \frac{1.2}{2} (250000 - 73712) \\ &= +105773 \end{aligned}$$

Ⓐ Left on R0J1

Left Pdc Em ($\Theta - \theta$)

$$\Theta \rightarrow \Theta_2 - 15483 \times 2 + \text{Sum}(270-10) \\ = +297772$$

Left Pdc Sn ($\Theta - \theta$)

$$\Theta \rightarrow \Theta_2 - 23989 \times 2 + \text{Sum}(270-10) \\ = +47249$$

Left Pdc Sn ($\Theta - \theta$)

$$\Theta \rightarrow \Theta_2 = +33307 \times 2 + \text{Sum}(90-10) \\ = +65602$$

Left Pdc Em ($\Theta - \theta$)

$$\Theta \rightarrow \Theta_2 = +105723 \times 2 + \text{Sum}(90-10) \\ = +208234$$

$$lift \approx L_{ff} \approx 619857$$

$$lift \quad \rho R^3$$

$$\approx 1.2 \times 1069 \times 900$$

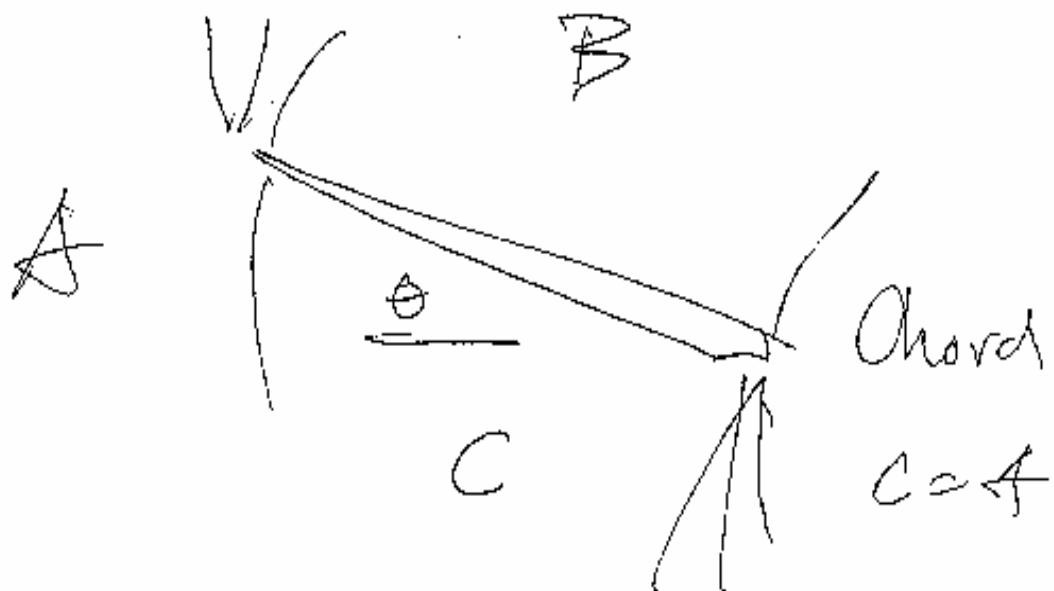
$$\approx 640800$$

(A) ^c
Realistic lift

Speed of Boil is supersonic

Subsonic lift Invalid

$$M = \frac{900}{343} = 1.46$$



Oblique Shock
Theory gives P_C

Expansion Fan
Theory gives P_B

$$left = (P_c - P_B) \cdot f \cdot 60 \cdot 6$$

Shock Plot with known

M_A and θ gives β , then

gives $N_A = M_A \sin \beta$ and

$$P_c = P_A \left[1 + \frac{2k}{R + k} (N_A^2 - 1) \right]$$

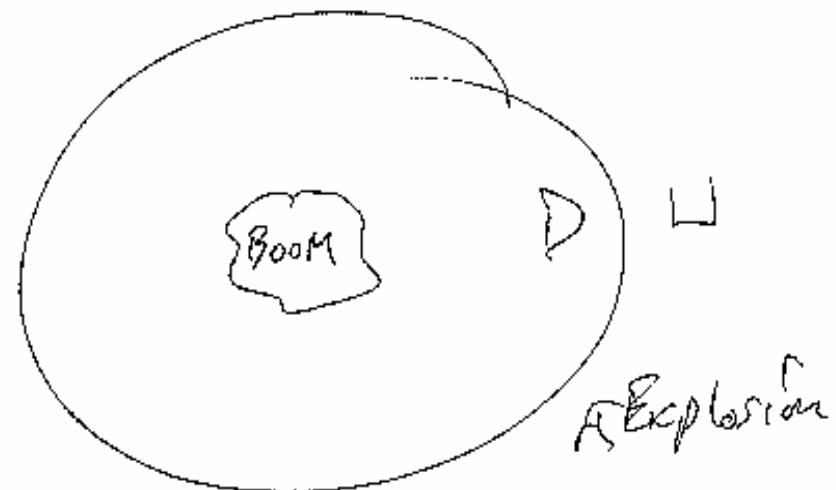
Expansion Plot with known

M_A and θ gives $V_B = V_A + \theta$,

thus gives M_B and

$$\frac{P_B}{P_A} = \left(\frac{\left(1 + \frac{k-1}{2} M_A^2 \right)^{\frac{R}{k-1}}}{1 + \frac{R-1}{2} M_B^2} \right)$$

6) Supersonic Flow



Pressure Ratio equation for
Normal Shock Wave is

M_w in shock frame,

$$\frac{P_0}{P_\infty} = 1 + \frac{2\gamma}{\gamma+1} \left(M_w^2 - 1 \right)$$

$$\frac{P_0}{P_\infty} \text{ known}$$

Speed of Sound equation

with known T_D gives C_D .

$$C_D = \sqrt{k R T_D}$$

Mach Number equation gives U_D .

$$M_D = \frac{U_D}{C_D} \Rightarrow U_D = M_D C_D$$

Mach Number connection gives

M_D in shock frame

$$M_D^2 = \frac{(k-1) M_D^2 + 2}{2k M_D^2 - (k-1)}$$

Temperature Ratio equation

gives T_D

$$\frac{T_D}{T_U} = \frac{\left(1 + \frac{(k-1)}{2} M_U^2\right)}{\left(1 + \frac{(k-1)}{2} M_D^2\right)}$$

Speed of Sound equation

gives C_D

$$C_D = \sqrt{\kappa R T_D}$$

Mach Number equation

gives U_D in shock frame.

$$M_D = \frac{U_D}{C_D} \Rightarrow U_D = M_D C_D$$

Shock moves outward at U_s :

flow moves back from shock

at speed U_0 ; So speed of
supersonic flow behind shock U

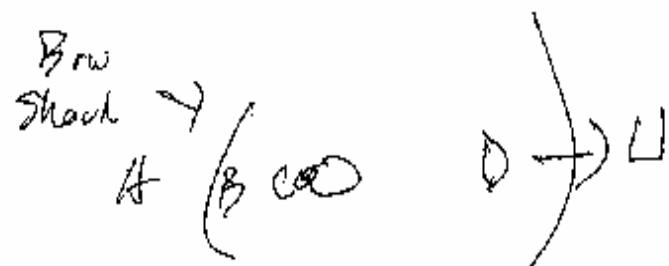
$$U_s - U_0$$

(B2) Stagnation Point Pressure

Blunt object in supersonic

flow behind expansion shock

generates bow shock



$$U_A = U_\infty - U_D$$

$$T_A = T_D \quad C_A = C_D$$

$$M_C = 0$$

Mach Number of Supersonic
flow ahead of object is:

$$M_A = \frac{U_A}{C_A}$$

Pressure Ratio equation for
normal shock wave gas B:

$$\frac{P_B}{P_A} = 1 + \frac{2k}{R+1} (M_A^2 - 1)$$

Mach Number Connection for

normal shock wave gives M_B

$$M_B^2 = \frac{(k-1) M_A^2 + 2}{2k M_A^2 + (k-1)}$$

Barometric pressure Ratio -

equation gives P_C / P_B

$$\frac{P_C}{P_B} = \frac{\left(1 + \frac{(k-1)}{2} M_B^2\right)^{\frac{k}{k-1}}}{\left(1 + \frac{(k-1)}{2} M_C^2\right)^{\frac{k}{k-1}}}$$

③

Choked Flow

Conservation laws give

$$\frac{dp}{\rho} + \frac{dh}{A} + \frac{dU}{U} = 0$$

$$U dU + c^2 \frac{dp}{\rho} = 0$$

Manipulation gives

$$dU = \frac{U dA}{A(M^2 - 1)}$$

This equation shows
that for a nozzle

$M < 1$ $U \uparrow$ as $A \downarrow$

$M > 1$ $U \uparrow$ as $A \uparrow$

$M = 1$ Throat

B4 Choked Flow Applications

Valve Flow

$$\dot{m} = \rho_f A_f U_f$$

Rocket Nozzle

$$\dot{m} U_f \quad \dot{m} = \rho_f A_f U_f$$

Isentropic Ratio gws

P_T and T_T at throat,

$$P_T = \frac{P_T}{R T_T}$$

Temperature gws C_T

$$C_T = \sqrt{R T_T} \quad D_T = C_T$$

Equation gws M_D

then T_D then C_D then U_D .

⑥ TRUE OR FALSE

① FALSE: Conservation Laws

are PDEs not ODEs.

② FALSE: Shock wave can

occur in any fluid with
a speed of sound.

③ FALSE: Lubrication flow is

low Re flow because gap
is small & $Re = \frac{U h}{\nu}$.

④ FALSE: Eddies in a flow

tend to appear more viscous
locally, like molecules eddies
diffuse momentum.

⑤ FALSE; A potential vortex like any potential flow is rotational; fluid particles in vortex do not spin.

⑥ TRUE; Second law shows that for expansion shock $D < 0$ which is impossible.

⑦ FALSE; wave equation governs wave propagation in enclosure, viscosity not important for wave propagation but it is dominant for creeping flow.

⑧ FALSE; Boundary layers are a viscous phenomenon, Ideal flows have zero viscosity,

⑨ TRUE; A single Mach Wave is generated by an infinitesimal disturbance, Sound generated is infinitesimal so it cannot be heard.

⑩ FALSE; Capillary flow or flow of a viscous fluid through a small tube, An inviscid fluid has zero viscosity,