
 

 

 
 

ENGINEERING 6961 
 

FLUID MECHANICS II 
 
 

HOMEWORK #0 
 
Write brief summaries of any three of the following 

efluids videos: (1) Waves in Fluids (2) Flow 

Instabilities (3) Low Reynolds Number Flows (4) 

Rotating Flows. Each summary should be 6 pages long, 

not counting sketches or screen shots. 

 
 
 
 

 
ENGINEERING 6961 

 
FLUID MECHANICS II 

 
 

LAB #0 
 
Develop a FLOW-3D simulation of a propeller wind 

turbine. Use SOLIDWORKS to create the turbine. Use 

thick elliptic cross section blades. 
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FLUID MECHANICS II 
 

HOMEWORK #1 
 
A dentist drill has 16 blades and 16 jets. A typical 
blade is shown in the sketch below: R stands for 
relative speed, B stands for blade speed and A stands 
for absolute speed.  The jets are angled at 15o relative 
to the direction of motion of the blades. The inlet 
angle of the blades relative to the blade direction is 
45o while the outlet angle of 135o. The mean radius out 
to the jets is 4mm. The jet diameter is 1mm. The 
nominal flow rate per jet is 0.1 l/s and the density of 
air is 2kg/m3. Determine the power output of the drill 
as a function of its rotational speed.  
 

 



 

 

 

The power output of a turbine is 

 
              P = T ω = Δ [ ρQ VT VB ]  

 
For a dentist drill this reduces to 

 
              P  =  T ω  =  ρQ VB  Δ[VT]  

 
The absolute velocity at the inlet is 

 
                     V = Q/A 

 
The components of this are 

 
               VT = V Cosα    VN = V Sinα 

 
Assuming same inlet and outlet areas, the normal 

component is the same at the inlet and the outlet. The 

tangential component at the outlet is 

 
VT = VB + VN Cotβ 

 
So the power is 

 
ρQ VB  [ Q/A Cosα  - [VB + VN Cotβ] ] 
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HOMEWORK #2 
 

 

A pipe connects two pressurized water tanks and has a length 

L=1000m and diameter D=0.5m. There is a positive displacement 

pump at the downstream end of the pipe. Initially the pump is 

stopped and the conditions in the pipe upstream of it are 

Po=30BAR Uo=0m/s. At time t=0, the pump starts and generates a 

flow U=A+B*Cos(2πt/T] where A=1 B=0.25 T=4. Water density ρ is 

1000kg/m3 and the pipe wave speed a is 1000m/s. The transit time 

T of the pipe is 1s. The pipe period T is 4T or 4.  

 

Using wave propagation concepts, explain what happens in the 

upstream pipe following a sudden pump start up. 

 

Using algebraic water hammer analysis, determine the pressure 

and velocity at the ends of the pipe for 6 steps in time. 

 

Using graphical waterhammer analysis, determine the pressure and 

velocity at the ends of the pipe for 6 steps in time, 

 

A check valve at the upstream end of the pipe would allow flow 

into the pipe but stop flow out. Determine the pressure and 

velocity at the ends of the pipe for 6 steps in time, 

 

 



 

 

 

 

 

Pipe and pump flow mismatches at the pump cause a 

series of pressure waves at the pump and flow waves at 

the tank which gradually build up. The pump and pipe 

periods are the same which causes resonance.    

 



 

 

 

 

 

UN = A + B Cos[2πt/T] 
 

PN – Pm = - [ρa] [UN – Um] 
 

PN = Pm - [ρa] [UN – Um] 
 
 

PM – Pn = + [ρa] [UM – Un] 
 

UM = Un + [PM – Pn] / [ρa] 
 

 

#0  UN = 0.0  PN = 30.0  PM = 30   UM = 0.0 

#1  UN = 1.25  PN = 17.5  PM = 30   UM = 0.0 

#2  UN = 1.0  PN = 20.0  PM = 30   UM = 2.5 

#3  UN = 0.75  PN = 47.5  PM = 30   UM = 2.0 

#4  UN = 1.0  PN = 40.0  PM = 30   UM = -1.0 

#5  UN = 1.25  PN = 7.5  PM = 30   UM = 0.0 

#6  UN = 1.0  PN = 20.0  PM = 30   UM = 3.5 

 



 

 

 

 

 

 

NO VALVE CASE 

 

 

 



 

 

 

 

 

 

VALVE CASE 
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HOMEWORK #3 
 

 

A certain steel rod has a 5cm diameter and a 1m length. 
It falls like a spear under gravity in standard 
atmosphere. Determine its terminal speed. Determine its 
terminal Mach number. Assume it has a wake drag 
coefficient of 1 for the wake at the back. Assume that 
stagnation pressure acts over its front area.   
 
A certain divers air bottle has a pressure of 20 MPa 
and a temperature of 20 oC when fully charged. It weighs 
18 kg. Imagine it has a valve with a throat diameter of 
1.27 cm. How much thrust would the bottle generate if 
the valve was suddenly opened. Note that there is no 
cone downstream of the throat. Would it be able to lift 
its own weight if oriented vertically? 
 
A certain air pipe has a diameter of 15cm. Its friction 
factor is 0.01. The Mach number at one location in the 
pipe is 5. The pressure at this location is 50 BAR. At 
what location downstream would the flow become sonic? 
Do adiabatic and isothermal cases? Repeat for a 
starting Mach number of 0.2. Use space stepping on the 
M2 and P equations to find how pressure varies from the 
starting location to the final location.   

 

 



 

 

QUESTION #1 
 
 

One could use stagnation point flow theory to get an 
accurate estimate of the load on the bottom face. One 
could use conical expansion wave theory to get the 
pressure in the wake. Both are beyond the scope of this 
homework. Here we assume the stagnation pressure acts 
over the bottom face and we assume the wake contains 
standard atmosphere air. We can calculate the weight of 
the rod. We assume a terminal speed. Knowing the 
temperature of air, we can calculate the sound speed. 
This allows us to calculate a Mach Number. If it is 
less than 1, we use isentropic equations to get 
pressure at the stagnation point. If it is greater than 
1, we use the blunt object equations to get the 
pressure. We iterate on terminal speed until the 
pressure load balances the weight.  
 
  

 
Isentropic Equations 

 
TS/TU = [ (1 + [(k-1)/2] MUMU) / (1 + [(k-1)/2] MSMS) ] 

 
PS/PU = [TS/TU]

x        x = k/(k-1) 
 

 
Blunt Object Equations 

 
PD/PU = 1 + [2k/(k+1)] (MUMU - 1) 

 
MDMD  = [(k-1) MUMU + 2]  / [2k MUMU - (k-1)] 

 
TS/TD = [ (1 + [(k-1)/2] MDMD) / (1 + [(k-1)/2] MSMS) ] 

 
PS/PD = [TS/TD]

x        x = k/(k-1) 



 

 

 
 

QUESTION #2 
 
 
Flow through an ideal rocket nozzle is isentropic. The 
equations connecting an upstream point G to a 
downstream point H are:  

 
 

TH/TG = [ (1 + [(k-1)/2] MGMG) / (1 + [(k-1)/2] MHMH) ] 
 
 

PH/PG = [TH/TG]
x        x = k/(k-1) 

 
 
The thrust of a nozzle with no cone is: 
 

F  =  M
.
 UT + (PT – PA) AT 

 
 
It contains a momentum part and a pressure part.  
 
 
At the throat where M=1 the mass flow rate is 
 

M
.
 = ρT  AT UT = [PT/RTT]  AT [kRTT]         

 
 
The isentropic equations with G equal to the combustion 
chamber and H equal to the throat give PT and TT. 

 
 
 
 
 
 

 



 

 

 
QUESTION #3 

 
 
Thermodynamics gives for pipe flow with friction 
 
 

M2/M2 = + kM2[1+[(k-1)/2]M2] /[1-M2] fx/D 
 

P/P = - kM2[1+(k-1) M2]/[2(1-M2)] fx/D 
 
 
Each equation is of the form 
 
 

G = H x         
 
 
Simple space stepping gives 
 
 

[GNEW - GOLD] = HOLD [xNEW – xOLD] 
 

GNEW = GOLD + x HOLD  
 

 
For adiabatic flow, the distance to M=1 follows from 

 
 

fL*/D = (1-M2)/(kM2)+[(k+1)/(2k)] ln[(k+1)M2/(2+(k-1)M2)] 
 

 
while for isothermal flow it follows from 
 
 

fL*/D = (1-kM2)/(kM2) + ln[kM2] 
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HOMEWORK #4 
 

 

 

 

 

Map 16 evenly spaced points on a circle with radius R=0.25 and 

horizontal offset n=0.05 and vertical offset m=0 to a foil plane 

using the Joukowsky mapping function. The foil is moving through 

water at a speed S equal to 10km/hr. The angle of attack of the 

foil θ is 15o. Calculate the pressure midway between consecutive 

points on the foil. Use the pressures to estimate the lift on 

the foil. Do the calculations using Matlab m code. Compare the 

estimated lift with the theoretical lift. 

 

 

A long green house has radius R equal to 5m and length L equal 

to 50m. A strong wind with speed S equal to 100km/hr is blowing 

perpendicular to the long axis of the green house.  Assume that 

the flow separation angle σ is 110o. Determine the lift and drag 

on the green house. Check the answers using numerical 

integration. Do the calculations using Matlab m code. 

 

 

 

 



 

 

 

The coordinates of each point in the standard frame are: 

 

X = -R Cos[γ]         Y = + R Sin[γ] 

 

The coordinates in the offset frame are: 

 

x = X – n        y = Y + m 

 

The foil coordinates are:  

 

α = x + xa2/(x2+y2)     β = y - ya2/(x2+y2) 

 

where 

a = [R2-m2] - n      

 

Application of Bernoulli gives  

 

ρ/2 [ S2 - (φ/c)2 ] 

 

An approximation of this 

 

ρ/2 [ S2 - (Δφ/Δc)2 ] 

 

where 

Δc =  [Δα2 + Δβ2] 

                             

The potential for the flow around the circle is 

 

 



 

 

 

φ = S X + S XR2/[X2+Y2]  +  Γ/[2π] σ 

 

where 

X = X CosΘ + Y SinΘ      

 

On the circle the potential is 

 

φ = 2 S X +  Γ/[2π] σ 

 

When a point on the circle is mapped to the foil plane, it 

carries its φ with it. This implies 

 

Δφ = 2 S ΔX +  Γ/[2π] Δσ 

 

The pressure lift is 

 

Σ  PΔc Sin(θ-Θ) 

 

The circulation needed to make the flow look realistic at the 

trailing edge of the foil is 

 

Γ = 4πSR Sinκ 

where 

 

κ = Θ + ε      ε = tan-1 [m/(n+a)] 

 

The theoretical lift is:  ρ S Γ. 

 

 



 

 

 

The potential function for the greenhouse flow is 

 

φ = S X + S XR2/[X2+Y2] 

 

On the cylinder this reduces to  

 

φ = 2 S X 

 

On the cylinder, geometry gives  

 

X = - R Cosσ     c=Rσ 

 

This allows us to rewrite the potential function as 

 

φ = -2 S R Cos[c/R] 

 

The speed of the fluid over the cylinder is 

 

φ/c = 2 S Sinσ 

 

Application of Bernoulli gives 

 

P/ρ  +  (φ/c)2/2  =  S2/2 

 

Manipulation gives 

 

P = ρ/2 [ S2 - (φ/c)2 ] 

 
P = ρ/2 S2 [ 1 – 4 Sin2 ] 



 

 

 

This is only good up to the separation angle . In the wake 

downstream, the pressure is approximately constant and is: 

 

P = ρ/2 S2 [ 1 – 4 Sin2 ] 

 

Pressure acts over the incremental area:  

 

dA = L Rdσ 

 

This gives the incremental force:  

 

dF = P dA = P L R dσ 

 

The incremental lift is: 

 

- dF Sinσ  =  - P L R Sinσ dσ   

 

and the incremental drag is: 

 

+ dF Cosσ  =  + P L R Cosσ dσ 

 

Integration gives the total lift  

 

 -  P L R Sinσ dσ 

 

and the total drag 

 

  +  P L R Cosσ dσ 
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HOMEWORK #5 

 

 

A certain hydrodynamic lubrication thrust bearing has 3 pads. 

Each pad has a 60o wedge angle. The outer radius of each pad is 

2m and the inner radius is 1m. The front gap is 2mm and the back 

gap is 1mm. The shaft speed is 500 RPM. The oil viscosity is 0.1 

Ns/m2.  Use a 9 point CFD scheme to determine the load supported 

by the bearing. Check load using code pad. Repeat for the case 

where the sides of the bearing are blocked.  

 

A certain slab of porous rock is very wide but just 1 kilometer 

long. Its depth is 10m. One can assume that its sides and top 

and bottom are blocked. The slab contains oil with viscosity 

1Ns/m2. The permeability of the slab rock is 10-12 m2. The 

hydrostatic pressure at the inlet to the slab is 60BAR and at 

its outlet is 30BAR. Determine the flow rate of oil through a 

kilometer wide section of the slab in barrels per minute.   

 

The die of a certain wire coating machine is long and has a 

diameter 5mm. The wire diameter is 2mm. The speed of the wire is 

1m/s. What is the diameter of the coating?  

 

Derive the viscosity equation for a disk viscosity meter. Derive 

the viscosity equation for a drum viscosity meter. Derive the 

viscosity equation for a capillary tube viscosity meter.   

 

 



 
HYDRODYNAMIC LUBRICATION THRUST BEARING 

 
 
 
Reynolds Equation for a cylindrical geometry is 

 
 

r /c (h3 P/c) + /r (rh3 P/r) =  6μS h/    
 

 
Application of a North South East West CFD scheme gives 

 

rP [ [(hE+hP)/2]3 (PE-PP)/c - [(hW+hP)/2]3 (PP-PW)/c ] / c 

+ 

[ [hP]3[rN+rP]/2 (PN-PP)/r – [hP]3[rS+rP]/2 (PP-PS)/r ] / r 

 
=  6μS (hE – hW)/[2] 

 
 

Manipulation gives the template 

 

PP = (A PE + B PW + C PN + D PS + H) / (A + B + C + D) 

 

where 

 
A = [(hE+hP)/2]3  rP / c]2 

 
B = [(hW+hP)/2]3  rP / c]2 

 
C = [hP]3  [(rN+rP)/2] r]2     

 
D = [hP]3  [(rS+rP)/2] r]2 

 
H = - 6μ rP (hE-hW)/[2] 

 

 

 



 

 

 

 



% 
%     HYDRODYNAMIC THRUST BEARING 
% 
      clear all 
      NR=5;NA=5;NIT=222; 
      MR=NR-1;MA=NA-1; 
      PI=3.14159; DENSITY=880.0; 
      GRAVITY=9.81; VISCOSITY=0.1;  
      RPM=500.0; RPS=RPM/60.0; 
      RIN=1.0;ROUT=2.0; 
      AIN=+60.0;AOUT=+120.0; 
      AIN=AIN/180.0*PI; 
      AOUT=AOUT/180.0*PI; 
      ONE=0.002;TWO=0.001; 
      DELR=(ROUT-RIN)/MR; 
      DELA=(AOUT-AIN)/MA; 
      GAP=TWO-ONE; 
      SPAN=AOUT-AIN; 
      SLOPE=GAP/SPAN; 
      PRESSURE=0.0; 
      RNODE=RIN; 
      for JJ=1:NR 
      ANODE=AIN; 
      for II=1:NA   
      R(II,JJ)=RNODE; 
      HEAD(II,JJ)=0.0;  
      CHANGE=ANODE-AIN;   
      P(II,JJ)=PRESSURE; 
      X(II,JJ)=-RNODE*cos(ANODE); 
      Y(II,JJ)=+RNODE*sin(ANODE); 
      H(II,JJ)=ONE+SLOPE*CHANGE; 
      ANODE=ANODE+DELA; 
      end 
      RNODE=RNODE+DELR; 
      end 



      
 
      THRUST=0.0; 
      for IT=1:NIT 
      for JJ=2:MR 
      for II=2:MA 
      DELC=DELA*R(II,JJ); 
      AREA=DELR*DELC; 
      SPEED=RPS*2.0*PI*R(II,JJ); 
      A=((H(II+1,JJ)+H(II,JJ))/2.0)^3/DELC^2; 
      B=((H(II,JJ)+H(II-1,JJ))/2.0)^3/DELC^2; 
      C=((H(II,JJ+1)+H(II,JJ))/2.0)^3/DELR^2; 
      D=((H(II,JJ)+H(II,JJ-1))/2.0)^3/DELR^2; 
      C=C*(R(II,JJ+1)+R(II,JJ))/2.0; 
      D=D*(R(II,JJ)+R(II,JJ-1))/2.0; 
      A=A*R(II,JJ); B=B*R(II,JJ); 
%     if(JJ==2) D=0.0;end; 
%     if(JJ==MR) C=0.0;end; 
      S=-6.0*VISCOSITY*SPEED*SLOPE; 
      AA=A*P(II+1,JJ); BB=B*P(II-1,JJ); 
      CC=C*P(II,JJ+1); DD=D*P(II,JJ-1); 
      P(II,JJ)=(S+AA+BB+CC+DD)/(A+B+C+D); 
      DELP=P(II,JJ)-PRESSURE; 
      HEAD(II,JJ)=DELP/DENSITY/GRAVITY; 
      FORCE=(P(II,JJ)-PRESSURE)*AREA; 
      if(IT==NIT) THRUST=THRUST+FORCE;end; 
      end 
      end 
      end 
      THRUST=THRUST*3.0 
      surf(X,Y,HEAD) 
      P 
  
 



 

 

 

POINT #1 

A = 5.0086e-08 

B = 7.6941e-08 

C = 1.1791e-07 

D = 9.6469e-08 

S =  0.0375 

 

 

POINT #2 

A = 3.0343e-08 

B = 5.0086e-08 

C = 7.4250e-08 

D = 6.0750e-08 

S =  0.0375 

 

 

POINT #3 

A = 1.6619e-08 

B = 3.0343e-08 

C =  4.2969e-08 

D = 3.5156e-08 

S = 0.0375 

 

 

 

 

 



 

 

 

POINT #4 

A = 4.1738e-08 

B = 6.4117e-08 

C = 1.3934e-07 

D = 1.1791e-07 

S = 0.0450 

 

 

POINT #5 

A = 2.5286e-08 

B = 4.1738e-08 

C = 8.7750e-08 

D = 7.4250e-08 

S = 0.0450 

 

 

POINT #6 

A = 1.3849e-08 

B = 2.5286e-08 

C = 5.0781e-08 

D = 4.2969e-08 

S = 0.0450 

 

 

 

 

 



 

 

 

POINT #7 

A = 3.5775e-08 

B = 5.4958e-08 

C = 1.6078e-07 

D = 1.3934e-07 

S = 0.0525 

 

 

POINT #8 

A = 2.1674e-08 

B = 3.5775e-08 

C = 1.0125e-07 

D = 8.7750e-08 

S = 0.0525 

 

 

POINT #9 

A = 1.1871e-08 

B = 2.1674e-08 

C = 5.8594e-08 

D = 5.0781e-08 

S = 0.0525 

 

 

 

 

 



 

 

 

 

 

>> pad 

 

THRUST = 

 

   1.8489e+06 

 

 

P = 

 

   1.0e+06 * 

 

         0         0         0         0         0 

         0    0.3798    0.4904    0.3692         0 

         0    0.6858    0.8822    0.6565         0 

         0    0.8473    1.1096    0.8611         0 

         0         0         0         0         0 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

>> pad 

 

THRUST = 

 

   6.2074e+06 

 

 

P = 

 

   1.0e+06 * 

 

         0         0         0         0         0 

         0    1.3684    1.4718    1.5569         0 

         0    2.4782    2.6625    2.8129         0 

         0    2.6233    2.8676    3.0724         0 

         0         0         0         0         0 

 

 

 

 

 

 

 

 

 



 

 

POROUS MEDIA FLOWS 

 

The Darcy Law gives 

 
v = - k/ μ P = - K P                 

 
 
where v is the velocity vector, P is pressure, k is permeability 

and μ is viscosity.  Conservation of Mass gives  

 
. v = 0 

 

Substitution into Mass gives  

 

. [K P] = 0 

 
/x [K P/x] + /y [K P/y] + /z [K P/z] = 0 

 

For a rectangular slab with blocked sides v is constant. This 

implies that the pressure gradient is also constant. So the 

pressure at the midpoint is an average of the inlet and outlet 

pressures. The flow rate is   

 

Q = v A = - K [PO–PI]/L  [H W] 

 
 
 
 

 

 

 



 

WIRE COATING 

 

Assume that the die is long and there is no axial variation 

inside it. In this case Conservation of Momentum is: 

 

0 =  1/r d/dr [ r µ dU/dr ]  

 

Integration gives 

 

U = W ln[r/RD] / ln[RW/RD] 

 

The volumetric flow rate within the die is 

 

Q =  2πr U dr 

 

The volumetric flow rate far downstream is 

 

Q = W ( π RC RC  –  π RW RW ) 

 

Equating these flow rates gives 

 

RC RC  = [ RD RD  –  RW RW ] / [ 2 ln[RD/RW] ] 

 

 

 



 

 

 



 

 

DISK VISCOMETER 

 

A disk viscometer consists of a disk which rotates inside a can. 

A liquid fills the gap between them. Let the gap be h. The 

torque required to rotate the disk is: 

 

T = r µ rω/h 2π r dr 

 

With known geometry and measured torque, one gets   

 

µ = [ 2 T h ] / [π R4 ω]  

 
 
 
 
 

DRUM VISCOMETER 
 

 
A drum viscometer consists of a drum which rotates inside a 

sleeve. A liquid fills the gap between them. Let the gap be h. 

The torque required to rotate the drum is: 

 

T = R µ Rω/h 2π RL 

 

With known geometry and measured torque, one gets  

  

µ = [ T h ] / [ 2π R3 L ω ] 

 

 
 

 



 
 
 

CAPILLARY TUBE VISCOMETER 
 
 

 

Conservation of Mass considerations give 

 
U/s = 0 

 
Conservation of Momentum considerations give   

 
P/s = 1/r /r (r µ U/r) 

 

Integration gives 

 

U = - [R2-r2]/[4µ] P/s 

 

The volumetric flow rate 

 

Q =   U 2πr dr   = - [πR4]/[8µ]P/s 

 

Q = - [πR4]/[8µ][-ρgH]/L  = [πR4]/[8µ][ρgH]/L 

 

Manipulation gives 

 

µ = [ρgH][πR4] / [8QL] 

 



TURBOMACHINE TUTORIAL 

 

A certain water sprinkler has 4 pipes each with 

length 0.5m. The diameter of each pipe is 2cm. Each 

pipe has a 90o bend at its outlet. This bend makes 

an angle of 45o up from the horizontal. The overall 

flow rate Q is 8 L/s. Derive an equation for the 

power of the turbine and the peak power RPM. 

Determine the RPM for peak power. Determine the no 

load or free wheel RPM of the turbine. Plot the 

power versus RPM of the turbine? 

 
 

Conservation of Rotational Momentum for fluid moving 

in an inertial reference frame gives for each pipe: 

  
Δ [ρQ* VT R] = T 

 
where ρ is the density of water, Q* = Q/4 is the 

flow rate, VT is the tangential flow velocity and R 

is the distance out from the axis of rotation. At 

the outlet, the tangential velocity is  

 
Q*/A Cosβ Cos + R ω 

 
where A is the pipe area, ω is the rotational speed, 

β is 180o and  is 45o. At the inlet, the tangential 

velocity is zero. So torque becomes 

 



 

- ρQ* [ Q*/A Cosβ Cos + R ω ] R  =  T 

 

The power output of one pipe is 

 

P = T ω = - ρQ* [ Q*/A Cosβ Cos + R ω ] R ω 

 

P = T ω = ρQ* [VJ - VB] VB 

 

VJ = Q
*/A Cos   VB = R ω 

 

Differentiation of the power equation with respect 

to VB shows that power peaks when VB is half VJ. So 

the peak power of one pipe is 

 
P* = ρQ* [VJ]

2/4  

 
The power and peak power of the turbine are: 

 

P = ρQ [VJ - VB ] VB      P
* = ρQ [VJ]

2/4  

 
The free wheel speed of the turbine  

 

P = 0    VJ = VB 
 

ω = Q*/A Cos / R   

 

 



 
 

 
 
 
 
 



 

 
 



 
WATERHAMMER TUTORIAL 

 
 
A small dead end pipe is attached to a large water 
pipe as shown in the sketch. The initial pressure 
in the large pipe and the dead end pipe is 20 BAR. 
The initial flow speed in the large pipe is 1 m/s 
and in the dead end pipe is 0 m/s. The ρa for each 
pipe is 10 BAR/[m/s] The large pipe undergoes a 
sudden valve closure. It generates a surge wave 
followed by a back flow wave followed by a suction 
wave followed by an inflow wave. As these waves 
pass the entrance of the small pipe, they generate 
waves inside the small pipe. Because of friction 
these waves decay very quickly. The small pipe is 
so small it does not influence the waves in the 
large pipe. Using graphical water hammer analysis 
determine the pressure and velocity at the ends of 
the small pipe as each wave passes by.   
 
 

 
 



 

 
 
 
 

F WAVE 
 

[PN – Pm] = + ρa [UN – Um] 
 

UN = Um + [PN – Pm]/[ρa] 
 
 

f WAVE 
 

[PM – Pn] = - ρa [UM – Un] 
 

PM = Pn - ρa [UM – Un] 
 
 



 
 
 
 

 
 
 
 



 
 
 
 

SURGE WAVE 
 
 
When the surge wave in the large pipe passes the 
entrance of the small pipe, it causes an inflow 
wave into the small pipe. The surge wave in the 
large pipe also moves into the small pipe.   
 
When the inflow wave hit the dead end of the small 
pipe, it generates an extra surge wave. 
 
When this surge wave reaches the entrance of the 
small pipe, it generates a back flow wave.   
 
When the back flow wave reaches the dead end of the 
small pipe, it creates a suction wave. 
 
When the suction wave reaches the entrance of the 
small pipe, it creates an inflow wave.  
 
If there was no friction, the cycle would repeat 
over and over. However, because of friction, the 
waves quickly decay. The velocity becomes zero and 
the pressure becomes the surge pressure level.   
    



 
 

 
 
 

BACKFLOW WAVE 
 
 
When the backflow wave in the large pipe passes the 
entrance of the small pipe, the pressure drops to 
its initial level and this causes a backflow flow 
wave from the small pipe. 
 
When the backflow wave hit the dead end of the 
small pipe, it generates a suction wave. 
 
When the suction wave reaches the entrance of the 
small pipe, it generates an inflow wave.   
 
When the inflow wave reaches the dead end of the 
small pipe, it creates a surge wave. 
 
When the surge wave reaches the entrance of the 
small pipe, it creates a back flow wave. 
 
If there was no friction, the cycle would repeat 
over and over. However, because of friction, the 
waves quickly decay. The velocity becomes zero and 
the pressure becomes the initial pressure level.   
    



 
 

 
 
 

SUCTION WAVE 
 
 
When the suction wave in the large pipe passes the 
entrance of the small pipe, it causes a backflow 
flow wave from the small pipe. The suction wave in 
the large pipe also moves into the small pipe.   
 
When the backflow wave hit the dead end of the 
small pipe, it generates an extra suction wave. 
 
When this suction wave reaches the entrance of the 
small pipe, it generates an inflow wave.   
 
When the inflow wave reaches the dead end of the 
small pipe, it creates a surge wave. 
 
When the surge wave reaches the entrance of the 
small pipe, it creates a backflow wave. 
 
If there was no friction, the cycle would repeat 
over and over. However, because of friction, the 
waves quickly decay. The velocity becomes zero and 
the pressure becomes the suction pressure level.   
    



 
 
 
 
 

INFLOW WAVE 
 
 
When the inflow wave in the large pipe passes the 
entrance of the small pipe, the pressure rises to 
its initial level and this causes an inflow wave 
into the small pipe. 
 
When the inflow wave hit the dead end of the small 
pipe, it generates a surge wave. 
 
When the surge wave reaches the entrance of the 
small pipe, it generates a backflow wave.   
 
When the backflow wave reaches the dead end of the 
small pipe, it creates a suction wave. 
 
When the suction wave reaches the entrance of the 
small pipe, it creates an inflow wave. 
 
If there was no friction, the cycle would repeat 
over and over. However, because of friction, the 
waves quickly decay. The velocity becomes zero and 
the pressure becomes the initial pressure level.   
    
 
 



 
GAS DYNAMICS TUTORIAL 

 
 

The pressure ratio across a shock wave generated by 

an explosion was measured to be 4.5. The explosion 

took place in standard atmosphere. Determine: the 

Mach number of the shock wave; the absolute flow 

speed behind the shock wave; the stagnation point 

pressure on an object placed in the flow.  

 

The normal shock plot gives the Mach number to be 

around 2.0. It gives the ratio of the temperature 

behind the shock wave over the temperature in front 

of it to be around 1.6. It gives the ratio of the 

velocity in front over the velocity behind to be 

around 2.6. It gives the relative Mach number 

behind to be around 0.55. Calculations give: 

 

TU = 293K      aU = √[kRTU] = 343 m/s 

TD = 1.6 TU = 468K    aD = √[kRTD] = 443 m/s 

UU = MU aU = 686 m/s    UD = MD aD = 238 m/s 

UF = UU – UD = 448 m/s   TF = TD    aF = aD     

MF approx 1     PF approx 4.5 BAR      

TS/TF = (1 + 0.2 * 1
2) / (1 + 0.2 * 02) = 1.2 

PS/PF = [TS/TF]
x        x = k/(k-1) 

PS = PF [1.2]
3.5 = 8.5 BAR  
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