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AUTOMATIC CONTROL ENGINEERING

FEEDBACK CONTROL CONCEPT
The sketch on the next page shows a typical feedback or error
driven control system. What has to be controlled is generally
referred to as the plant. What the plant is doing is known as its
response. What it should be doing is known as the command. The
plant receives a control signal from a drive and a disturbance
signal from the surroundings. The goal is to pick a controller
that can make the response follow closely command signals but
reject disturbances. The controller acts on an error signal: this
is command minus some measure of the response. This is why it is
usually called error driven control. Two types of error driven
control are PID and Switching. PID stands for proportional
integral derivative. Proportional generates a signal which 1is
proportional to error. Integral generates a signal which is
proportional to the integral of the error. Derivative generates a
signal which is proportional to the rate of change of error.

Switching generally gives out signals with constant levels.

AUTONOMOUS UNDERWATER VEHICLE DEPTH CONTROL
To illustrate some error driven control strategies we will
consider the task of controlling the submergence depth of a small
autonomous underwater vehicle or auv. According to Newton's Second

Law of Motion, the equation governing its up and down motion is:

M d?rR/dt? = B + D - W
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where R is the depth of the auv, M is its overall mass, B is the
control force from the propulsion system, D is a disturbance load
caused for example by sudden weight changes and W is a drag load.

Drag load has two components: wake drag and wall drag:

W = X dr/dt |dR/dt| + Y dR/dt

where X and Y account mainly for the size and shape of the auv.

A simple model of the propulsion system is:

J dB/dt + I B = Q

where Q 1s the control signal. There are two basic types of
propulsion systems that could be used to move the auv up and down.
One 1s an air/water ballast tank. In this case, the control signal
Q would produce a change in buoyancy and J would account for the
fact that this is caused by a flow: I would be zero. If J was very
large, the control force B would build up very slowly. The other
type of propulsion system uses motor driven propellors to generate
B. Usually, for protection, these would be located inside a duct.
In this case, I would account for the size and shape of the blades
and duct, while J would account for things 1like rotor inertia.
Again, if J was very large, the control force B would build up

very slowly. One could determine J and I experimentally.

The PID error driven strategy lets the control signal Q be:



O = Kpr E + Kr: JEdT + Kp dE/dt

where E = C - R is the depth error and Kp K: Kp are gains: C is the
command depth. Usually, gains are constants. However, they can be
made a function of the state of the system or its surroundings. In

this case, control is said to be adaptive.

Imagine the auv is at the water surface and it suddenly commanded
to go to some constant command depth C. Assume that there is a
disturbance with a constant level D acting downward. Also assume

the auv is using motor driven propellors for propulsion.

Proportional by itself would cause the propellors to spin in such
a way that the auv would move towards the command depth. The
amount of spin would be proportional to depth error. When the auv
reaches the command depth, the proportional control signal would
be zero. If the auv was held at the command depth, its propellors
would stop spinning. The disturbance would cause the auv to stop
below the command depth. This offset would be such that the
propellors generate Jjust enough upward force to balance the
downward disturbance. The offset would be DI/Kp. When D is known,
something called feedforward compensation can be used to get rid
of the offset. Basically, we measure D and subtract ID from Q in
the drive equation. When motions settle down, the drive gives out
an extra signal minus D which cancels D. But we must know D.

Another way to get rid of the offset is to give the auv a false



command C*. If the false command C* was set at [C-DI/Kp], the auv
would end up at C. It would hang below C* by DI/Kp and thus end up
at C. If the gain Kr was very large, offsets such as DI/Kp would
probably be tolerable. However, large gain would generate very
large Q when the depth is well away from the command depth. Very
large Q could burn out drives. To avoid this, a limit is usually
put on the magnitude of Q. In this case, the control is referred
to as proportional with saturation. If the disturbance was greater

than the saturation limits, then control would be impossible.

Integral by itself would cause the propellors to spin in such a
way that the auv would move towards the command depth. The amount
of spin would be proportional to the integral of depth error. As
the auv moves towards the command depth, the propellors would spin
faster and faster. Obviously, this would cause the auv to
overshoot the command depth. Because of these overshoots, integral
cannot be used alone. The good thing about integral is, if the
system is stable, it gives zero offsets. If the auv was held with
positive depth error, the integral control signal would get bigger
and bigger. This is known as integral windup. If it was released
after a long time, it would take a very large integrated negative
error to cancel out the windup due to integrated positive error. A
simple way to avoid integral windup is to activate integral only
within a band surrounding the command depth. All we need is for
the band to be wide enough for proportional to get the auv within
the band so that integral can then home it into the command depth.

Derivative like integral cannot be used alone. Assume that the



command C is a constant, and let the auv be stopped far away from
the command depth. In this case, dE/dt would be zero. So, the
controller would not generate a force to move the auv to the
command depth. Derivative mimics drag load and helps motions
settle down. It generates a control signal which opposes motion.
Something called rate feedback could also be used to help make
motions settle down. The controller would act on depth error E
minus a constant times the depth rate dR/dt. Substitution into the
governing equations shows that rate feedback mimics drag. Note
that derivative could be used to make the auv move at a constant
speed: dC/dt is made a constant. Drag and the dR/dt part of dE/dt

would tend to limit speed.

With all three components of PID acting together, as soon as the
auv passes through the command depth, proportional would tend to
counteract integral. Also, proportional would get the auv closer
to the command depth faster, so it would limit integral windup.
Derivative would help counteract overshoots. The auv would home in
quickly on the command depth with minimal overshoots. So, we get

the good characteristics of all three controllers.

There are many types of switching control. They often have trouble
with overshoots. Basic relay switching is the simplest. It would
try to make the propellors rotate at a constant speed: the
direction of rotation would depend on the sign of depth error.
Relay with deadband would allow the auv to drift once it gets

inside a band surrounding the command depth. The propulsion device



would be shut down and drag load would cause the auv to slow down.
Relay with hysteresis would reverse the direction of control
before the auv gets to the command depth. In this case, the
propulsion device would act as a brake. A bias signal could be

added to counteract disturbances.

Propulsion system dynamics would cause the control force to lag
the control signal. The amount of lag depends on how large J 1is
relative to I. Consider the case where proportional control is
acting alone and the error is initially positive. For a slowly
reacting propulsion system, positive error would cause a positive
control force to gradually build up. As it builds up, this force
would move the auv towards the command depth. However, when the
auv gets to the command depth, because of lag, the control force
would still be positive, and this would cause overshoot. In some
cases, these overshoots would settle down. In other cases, they

would not settle down but would limit because of wake drag.

Control signals for an auv would be generated within a computer
control loop. The loop period must be much smaller than the basic
period of auv motion: otherwise severe overshoots could develop.
If the auv was controlled remotely by a computer onboard a ship,
the time taken for the depth signal to travel from the auv to the
ship and the time taken for the drive signal to travel back from
the ship to the auv could cause overshoots, because the auv would

be responding to past error not present error.



SUBSEA ROBOT SPRING/DASHPOT PID ANALOGY

Equations governing subsea robot depth motion are:

M d°R/dt? + X dR/dt|dR/dt| + Y dR/dt = B + D

J dB/dt + I B =0Q

O = K»(C-R) + K (C-R)dt + Kp(dC/dt-dR/dt)

Let the drive be a propellor in a duct driven by a DC motor. For
most of what follows, we will assume that the drive is fast acting,

so that J is approximately zero. In this case,

B = K/I (C-R) + K;/I J[(C-R)dt + Kp/I (dC/dt-dR/dt)

B = K, (C-R) + K; [(c-R)dt + Kp (dC/dt-dR/dt)

We will also assume that the robot is initially at one depth and it
is suddenly commanded to go to another depth. When proportional
control is acting alone, the control force B is a linear function
of depth error. This pulls the robot towards the command depth. As
the robot approaches the command depth, the propellor slows down.
Note that a spring with its ends attached to the robot and the
command depth would move the robot the same way. Because the drive
is spring like, disturbances D cause the robot to settle down away
from the command depth. When integral control is acting alone, the
control force B gradually builds up and pulls the robot towards the
command depth. As the robot approaches the command depth, the

propellor goes faster and faster. This causes the robot to



overshoot the command depth. As soon as it overshoots, the control
force starts to decrease: meaning the propellor starts to slow
down. It takes time for the control force to go to zero. Beyond
this point, the control force changes sign and acts initially like
a brake and causes the robot to stop and then start back towards
the command depth. Again, when it reaches the command depth, it
overshoots it. These overshoots do not settle down. If they did, B
would equal minus D and R would equal C. One could replace the
integral drive with a spring with one end attached to the robot and
the other end free to move. Initially the free end moves towards
the command depth. This causes the spring to stretch and pull the
robot towards the command depth. The spring stretching mimics the
integration of error. The spring keeps stretching until the robot
overshoots the command depth. Then, it gradually slackens. It takes
time for the spring to totally slacken so it pulls the robot beyond
the command depth. When the spring is totally slack, the free end
starts back towards the command depth. In this case, the spring
acts initially like a brake and causes the robot to stop and then
start back towards the command depth. With proportional and
integral acting together it is possible for the robot to settle at
the command depth. Proportional suppresses the overshoots caused by
integral and integral gets rid of offsets. Derivative control is
not spring like. The equation for B shows that it instead mimics a
dashpot. When the drive is slow acting, control actions are not

instantaneous. This can cause severe overshoots.



CAR/DRIVER PID ANALOGY

Imagine a car at position A on a straight road that is
suddenly commanded to go to position B on the same road. A
proportional driver would suddenly depress the gas peddle
down to some level. This would cause the car to gradually
pick up speed. As the car moves towards B, the driver would
depress the gas peddle 1less and less. The amount of
depression would be a linear function of position error or
distance between B and the car position. When the car
reaches B, peddle depression would be zero. Because of its
momentum, the car would overshoot B. As soon as it does so,
the driver would suddenly put the car into reverse and
depress the gas peddle an amount again dependent on position
error. This would cause the car to gradually come to a stop
and reverse direction back towards B. If there was no wind
and the road was horizontal, wake drag and drive friction
would gradually make the car come to rest at B. Otherwise,
it would come to rest away from B. An integral driver
starting at A would gradually depress the gas peddle based
on the integral of position error. This would move the car
towards B but at a faster and faster speed. When the car
reaches B, peddle depression would be maximum. Obviously,
the car would overshoot B. As soon as it does so, the driver
would gradually depress the gas peddle less and less.

Basically, the position error would now be negative, and



integrated error would gradually decrease. When it reaches
zero, the peddle depression would also be zero, and the
driver would suddenly put the car into reverse and gradually
depress the gas peddle again based on the integral of
position error. This would cause the car to gradually come
to a stop and reverse direction back towards B. When the car
reaches B, it would again overshoot. The car would never
settle at B but would oscillate back and forth at an
amplitude dependent on wake drag and drive friction. The
mean position error would be zero, even when there was wind
or the road was not horizontal. A proportional plus integral
driver could make the car settle at B, even when there was
wind or the road was not horizontal. The proportional part
would bring the car close to B before the integral part
could build up too much signal. The integral part would then
home the car into B. Whereas the proportional plus integral
driver would work only the gas peddle, a proportional plus
integral plus derivative driver would also use the brake.
The derivative part would apply the brake an amount based on
speed. This would help control overshoots if they are a
problem. Driver reaction time could cause severe overshoots.

Its control is based on past error not present error.



ZIEGLER NICHOLS GAINS

Ziegler and Nichols, through a series of experiments on simple
systems, developed criteria for picking gains in a controller
that would give good tracking performance. For a system that can
be made unstable with proportional acting alone, the procedure
they recommend is as follows. With proportional acting alone,
increase its gain until the system becomes borderline stable. Let
the borderline gain be Kp: let its period be Tp. According to

Ziegler and Nichols, reasonable PID gains are:

Ke = 0.6*Kp K: = Kp/T: Kp = Kp*Tp

TI = O.5*Tp TD = 0125*Tp

When only proportional and integral are acting, they recommend

the following PI gains:

Kp = 0.45*Kp Kr = Kp/T1

Tr = 0.83*Tp

When only proportional is acting, they recommend:

Kp = 0.5*Kp



AUTONOMOUS UNDERWATER VEHICLE

ZIEGLER NICHOLS GAINS

To illustrate a procedure for getting Ziegler Nichols gains,
we will consider the task of controlling the submergence
depth of a small autonomous underwater vehicle or auv.
According to Newton's Second Law of Motion, the equation

governing the up and down motion of the auv is:

M d?R/dt2 = B + D - W
where R is the depth of the auv, M is its overall mass, B is
the control force from the propulsion system, D is a
disturbance load caused for example by sudden weight changes
and W is a drag load consisting of wake drag and wall drag:

W = X drR/dt |dR/dt| + Y dR/dt

where X and Y account for the size and shape of the auv. Here

we linearize the drag to get:

W = N dr/dt

A simple model of the propulsion system is:

J dR/dt + I B = 0O

where Q is the control signal: J and I are drive constants.



The PID error driven strategy lets the control signal Q be:

O = Kr E + K: JEdT + Kp dE/dt

where E = C - R 1s the depth error and Ky Kir Kp are the

controller gains: C is the command depth.
To get Ziegler Nichols gains, we start by assuming only
proportional is active. Manipulation of the governing
equations gives:

J [ M d3R/dt3® + N d2R/dt?2 - dD/dt]

+ I [ M d?R/dt? + N dR/dt - D ] = Kp C - KpR

We then assume that C and D are both constants and that the

auv is undergoing a limit cycle oscillation for which

R = R, + AR Sin [ot]

Substitution into the modified drive equation gives

- J M ® AR Cos[wt] - J N o AR Sin[ot]
- I M ® AR Sin[wt] + I N ® AR Cos[ot]

- I Do = KP CO - KP Ro - KP AR Sin [(Dt :|

This equation is of the form:



i Sinfet] + J Cos[wt] + k = 0

Mathematics requires that i=0 j3=0 k=0:

- J N ®? - IMm®w + Ke = 0
-J M + I N = 0
+ I Do + KP Co - KP Ro = O

Manipulation of these equations gives

R, = Co + I Do / Kp
®> = [I N] / [J M]
Ke = [JN + I M ®?

= [JN + IM] [IN] / [JM]

For the illustration we let : M=50 N=50 J=0.5 I=0.1. The
above equations give ®=0.447, Kp=6 and Tp=14. Substitution
into the Ziegler Nichols gains equations gives: Kp = 3.6; K1
= 0.54; Kp = 6.3. An m code for the auv is given below. This
is followed by a Ziegler Nichols response generated by the
code. A SIMULINK Block diagram follows the m code response.

It gives basically the same response as the code.



e

LT DEPTH COMNTROL
rold=0.0:;vold=0.0:;kbhold=0.0;
Ccold=0.0;mwm=50.0; load=0.0;_;
walke=0.0:;wall=50.0;=1n=0.0;
d=0.5:;i=0.1l:wrorng=0.0;:
gp=o.0:;:gi=0.0:;gd=0.0:
gp=3.6:ggi=0.5d3:gd=6.35:
Adelt=0.01:tcargetc=10.0;
for k=1:10000
error=target—rold:
rate=(error—wrong) fFdelt
control=gp¥ errar::
control=controld4gi =urm:
control=controld4gd¥*frate
if(control>-4+12.0] - .-
control=+4+12.0;:=nd:
if(control<—12.0) - = om
contcrol=—1=2.0:=end:
Sum==um+de lt Fferror 2
drag=wake *uold*abh=s(uold) -
drag=drag-4+wsll Fuaold:
abe=hold4+load—draor:
xwves=control-lkhold*i:
ronew=rold+deltc*uold:
unew=uold+de ltc Falkem:
hnew=hold+delt*xy=,"7":
Chnew=k*de lt; wrong=errol
rold=rnew:uold=unew;:
bold=hnew: cold=tnew;
rik)=rnew:t (k) =tnew:
ercd; plot (t,r)
=label( ' tCiton=" ]
Tilalbhel ([ 'deptlhi!' ]
Citle (' @aws!' )
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PIPE FLOW SETUP

ZIEGLER NICHOLS GAINS

To illustrate a procedure for getting Ziegler Nichols gains,
we will consider the task of controlling the temperature of
the air flowing down the pipe in the lab pipe flow setup.
Basically the setup consists of a fan which draws air from
atmosphere and sends it down a pipe. A heater just downstream
of the fan is used to heat the air. It receives a signal from
a controller. The temperature of the air at the pipe exit 1is

measured by a thermistor. The governing equations are:

X dR/dt + YR =H + D

A dH/dt + B H =120

O = Kp E + Kr JEdT + Kp dE/dt

where R 1is the temperature of the air at the heater, R 1is
the temperature of the air at the sensor, C is the command
temperature, E 1s the temperature error, Q 1is the control
signal, H 1is the heat generated by the heater, D is a
disturbance heat and Kep Ki Kp are the controller gains. Note
that R is what R was T seconds back in time: T is the time

it takes for the air to travel down the pipe.



To get Ziegler Nichols gains, we start by assuming only
proportional is active. Manipulation of the governing

equations gives:

A [ X d?R/dt? + Y dR/dt - dD/dt]

+ B (XdrR/dt + YR -D) = ZEKpeC - ZKprR

We then assume that C and D are both constants and that the

setup is undergoing a limit cycle oscillation for which

R = R, + AR Sin [mt] R = R, + AR Sin [®(t-T)]

Substitution into the modified drive equation gives

- A X ® AR Sin[wt] + A Y ® AR Cos[mt]

+ B X ® AR Cos[ot] + B Y Rs + B Y AR Sin[wt]

- B Do = Z Kp Co — Z Kp Ro - Z Kp AR Sln[w(t_T)]

A trigonometric identity gives

Sin[@w(t-T)] = Sin[wt] Cos[®WT] - Cos[wt] Sin[®T]

Substitution into the modified drive -equation gives an

equation of the form

i Sin[et] + J Cos[wt] + k = 0



Setting i=0 and j=0 and k=0 gives

-AX® + BY + Z Kp Cos[aT] = 0
AY o + BXo® - Z Kp Sin[®wT] = 0
BYR, - B Do - Z Kp Co + Z Ke Roe = 0

Manipulation of the first two equations gives

Ke = [A X ® - B Y] / [Z Cos[®T]]
Ke = [AY®+ BXo®] / [Z Sin[®T]]
Sin[®T]/Cos[®T] = Tan[®T]

= [AY®w+BXo /[AX® -BY]

The last equation gives ®. Once ® is known we can then solve
for Kp. For the illustration, we let: X=0.25 Y=1.0 A=0.1
B=1.0 Zz=1.0 T=0.5. The above equations give ®=3.97, Kp=1.5
and Tp=1.58. Substitution into the Ziegler Nichols gains
equations gives: Kp=0.9; Ki=1.2; Kp=0.17. An m code for the
setup is given below. This is followed by a Ziegler Nichols
response. A SIMULINK Block diagram follows the response. It

gives basically the same response as the code.



¥ PIPE FLOW TEMPERATURE CONTROL
ROLD=0.0;HOLD=0.0; 3ENSCOR=ROLD;
TARGET=5.0;LOAD=0.0;DUMF=10.0;
E=0.2Z5;¥=1.0;4=0.1;B=1.0;:2=1.0;
WRONG=TARGET-3ENZOR; 3UM=0.0;
NIT=10000;MIT=500; TIME=0.0;
GP=1.5;GI=0.0;GDh=0.0;
FP=0.9;:I=1.2;cDh=0.17;
DELT=0.001;
for IT=1:NIT
TIME=TIME+DELT:
if (IT=-MIT)

SENSOR=R(IT-MIT):; end:
ERROR=TARGET-SENIOR;

RATE= [(EEROR-WRONG) /DELT:
CCNTROL=GP*EREOR;
CONTROL=CONTROL+GI *3TUHM;
CONTROL=CONTROL+GD*RLTE;
SUN=3UTH+DELT*ERROR;

if (CONTROL>DUME)

CONTROL=DUMF; end:
if (COWNTROL<O,.0O)

CONTROL=0.,0; end;
ABEC=Z*CCONTROL-EBE*HOLD;
EYEZ=HOLD4+LOAD-Y*ROLD;
HNEW=HOLD+LDELT*ABC/ L;
EMEW=ROLD+DELT*XYZ/X;
T(IT)=TIME:R(IT)=ENEW:
ROLD=FNEW: HOLD=HNEW:
WRONG=EREROR.;
end; plot(T,R)
¥1label|'time')
vilabel ('wolts')
title('pipe setup')
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COMPUTER SIMULATION OF CONTROL SYSTEMS

PREAMBLE
Simulation allows one to study the behavior of a system
before it is actually constructed. This can serve as an aid
to system design. Simulations are inexpensive and easy to
put together. They can handle all sorts of phenomena. These
include transport lag and computer loop rate phenomena.
Simulations can also handle multiple strong nonlinearities.
They are often wused as a check on more conventional
analysis. However, simulations are 1like experiments. For
complex systems, it 1s hard to make sense of responses.
Before digital computers were developed, systems were
simulated using analog electronics. When digital computers
became common place, simulations made use of time stepping
procedures. Basically, these follow local slopes or rates
step by step in time. Special software packages based on
these procedures have been developed. Probably, the popular

package is SIMULINK under MATLAB.



AUTONOMOUS UNDERWATER VEHICLE

TIME STEPPING SIMULATION

To illustrate time stepping we will consider the task of
controlling the submergence depth of a small autonomous

underwater vehicle or auv. The governing equations are:

M d?R/dt?2 = B + D - W
W = X dr/dt |dR/dt| + Y dR/dt
JdB/dt + I B = O
Q = Ke E + K JEdt + Kp dE/dt
E = C-R

where R is the depth of the auv, M is its overall mass, B is
the control force from the propulsion system, D 1is a
disturbance load caused for example by sudden weight changes,
W is a drag load consisting of wake drag and wall drag, E is
the depth error, C 1is the command depth, M X Y J I are

process constants and Kp K: Kp are the controller gains.



Manipulation of the governing equations gives

drR/dt = U
du/dt = (B + D - W / M
W = XU |U + YU
dB/dt = (Q - IB) / J
Q = Ke E + K JEdt + Kp dE/dt
E=C-R

Application of time stepping gives

Rvew = Rowp + At * Uowp
Uxew = Uowp + At * (Bowp + Dowp - Wowp) /M
Worpo = X Uowp  |Uown| + Y Uowp
Bwew = Bowp + At * (Qop = I Bow) / J
Qorp = Kp Eow + K: ¥ Eoto At + Kp AEown/At
Eoro = Cowp  — Rowp

An m code for the auv is given below. This is followed by a

Ziegler Nichols response generated by the code.



e

LT DEPTH COMNTROL
rold=0.0:;vold=0.0:;kbhold=0.0;
Ccold=0.0;mwm=50.0; load=0.0;_;
walke=0.0:;wall=50.0;=1n=0.0;
d=0.5:;i=0.1l:wrorng=0.0;:
gp=o.0:;:gi=0.0:;gd=0.0:
gp=3.6:ggi=0.5d3:gd=6.35:
Adelt=0.01:tcargetc=10.0;
for k=1:10000
error=target—rold:
rate=(error—wrong) fFdelt
control=gp¥ errar::
control=controld4gi =urm:
control=controld4gd¥*frate
if(control>-4+12.0] - .-
control=+4+12.0;:=nd:
if(control<—12.0) - = om
contcrol=—1=2.0:=end:
Sum==um+de lt Fferror 2
drag=wake *uold*abh=s(uold) -
drag=drag-4+wsll Fuaold:
abe=hold4+load—draor:
xwves=control-lkhold*i:
ronew=rold+deltc*uold:
unew=uold+de ltc Falkem:
hnew=hold+delt*xy=,"7":
Chnew=k*de lt; wrong=errol
rold=rnew:uold=unew;:
bold=hnew: cold=tnew;
rik)=rnew:t (k) =tnew:
ercd; plot (t,r)
=label( ' tCiton=" ]
wilabel (' deptlhi' ]
Citle (' @aws!' )






PIPE FLOW SETUP

TIME STEPPING SIMULATION

To illustrate time stepping we will consider the task of
controlling the temperature of air flowing down a pipe. The

setup i1s shown on the next page. The governing equations are:

X dR/dt + YR =H + D

A dH/dt + B H=22Q

O = Kp E + Kr JEdT + Kp dE/dt

where R 1s the temperature of the air at the heater, R 1is
the temperature of the air at the sensor, C is the command
temperature, E 1s the temperature error, Q 1is the control
signal, H 1is the heat generated by the heater, D is a
disturbance heat (plus or minus), X Y A B Z are process
constants and Kp K: Kp are the controller gains. Note that R
is what R was T seconds back in time: T is the time it

takes for the air to travel down the pipe.
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Manipulation of the governing equations gives

drR/dt = (H +D-YR) /X
di/dt = (2 Q - B H) / A
Q = K E + K;JEdt + Kp dE/dt
E=C-R

Application of time stepping gives

Ruew = Rowtp + At * (Howo + Dotp - Y Rown) / X
Hyew = Howo + At * (Z Qoo — B How) / A
Qorp = Kp Eomp + Kr X Eoro At  +  Kp AEown/At

Eorp = Cop — Romwp

An m code for the setup is given below. This is followed by

a Ziegler Nichols response generated by the code.



¥ PIPE FLOW TEMPERATURE CONTROL
ROLD=0.0;HOLD=0.0; 3ENSCOR=ROLD;
TARGET=5.0;LOAD=0.0;DUMF=10.0;
E=0.2Z5;¥=1.0;4=0.1;B=1.0;:2=1.0;
WRONG=TARGET-3ENZOR; 3UM=0.0;
NIT=10000;MIT=500; TIME=0.0;
GP=1.5;GI=0.0;GDh=0.0;
FP=0.9;:I=1.2;cDh=0.17;
DELT=0.001;
for IT=1:NIT
TIME=TIME+DELT:
if (IT=-MIT)

SENSOR=R(IT-MIT):; end:
ERROR=TARGET-SENIOR;

RATE= [(EEROR-WRONG) /DELT:
CCNTROL=GP*EREOR;
CONTROL=CONTROL+GI *3TUHM;
CONTROL=CONTROL+GD*RLTE;
SUN=3UTH+DELT*ERROR;

if (CONTROL>DUME)

CONTROL=DUMF; end:
if (COWNTROL<O,.0O)

CONTROL=0.,0; end;
ABEC=Z*CCONTROL-EBE*HOLD;
EYEZ=HOLD4+LOAD-Y*ROLD;
HNEW=HOLD+LDELT*ABC/ L;
EMEW=ROLD+DELT*XYZ/X;
T(IT)=TIME:R(IT)=ENEW:
ROLD=FNEW: HOLD=HNEW:
WRONG=EREROR.;
end; plot(T,R)
¥1label|'time')
vilabel ('wolts')
title('pipe setup')






SIMULINK CONTROL SYSTEM SIMULATION

SIMULINK makes use of a block diagram representation of the
system. One activates SIMULINK by typing SIMULINK and
pressing enter in the main MATLAB window. Blocks are formed
by picking Dblocks from groups of Dblocks 1in the main
SIMULINK window. The group labeled SOURCES contains blocks
that could be used for commands and disturbances. The group
labeled SINKS contains Dblocks that could be wused for
display of responses. The group labeled CONTINUOUS contains
many common transfer functions and state space blocks. The
group labeled DISCRETE contains blocks that could be used
to mimic loop rate phenomena. The group labeled MATH
contains Dblocks for things 1like summation Jjunctions and
gains. The group labeled NONLINEAR contains wvarious types
of nonlinearities and switching controllers. Many of the
switching controllers can be formed using LOOK UP TABLE
under the group of blocks labeled FUNCTIONS & TABLES. The
PID controller can be found under ADDITIONAL LINEAR under

SIMULINK EXTRAS under BLOCK SETS & TOOL BOXES.



Block diagram construction makes extensive use of the click
and drag functions of the left and right buttons of the
mouse. To illustrate the construction, imagine you have an
empty MINE window open on the screen. From the SIMULINK
window, double left click on the SOURCES icon. Then, from
its window, left click on the STEP block and drag it to the
MINE window. All other blocks can be moved this way. You
can also use COPY and PASTE. To move blocks around in the
MINE window, Jjust left click and drag them. You can also
use CUT and PASTE. To join blocks with lines, you again use
left click and drag. To create break lines, you use right
click on the break point and drag. To change parameters,

double left click on the block to activate a block menu.

To run a simulation, first pick PARAMETERS under SIMULATION
to set things like ODE integration scheme. Then, pick START

under SIMULATION to run the simulation.

SIMULINK block diagrams for AUV Depth Control and Pipe Flow
Temperature Control are attached. Also attached are Ziegler

Nichols responses of each system to a step in command.



AUTONOMOUS UNDERWATER VEHICLE

To 1llustrate SIMULINK we will consider the task of

controlling the submergence depth of a small autonomous

underwater vehicle or auv. The governing equations are:

M d’R/dt? + N dR/dt = B + D

JdB/dt + I B = 0
O = Ke E + K: JEdt + Kp dE/dt
E = C-R

Laplace transformation gives

[MS2+NS]R=B+D
[ S+ I 1 B=020
Q= [Ke + Ki/S + Kp S ] E

Transfer functions are

R/ [ B+D] = 1/ [ M S2 + N S ]
B/ Q=1/ [ J S + I]
Q / E=[Ke + Ki/S + Kp S ]
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PIPE FLOW SETUP

To illustrate SIMULINK we will consider the task of

controlling the temperature of air flowing down a pipe.

The
governing equations are:

X drR/dt + Y R

A dH/dt + B H

Z Q
O = Kp E + Kr JEdT + Kp dE/dt

E=C-R

Laplace transformation gives

[ X S+Y]R

H+ D

[ AS+B 1 H Z Q
Q [Kp + Ki/S + Kp S ] E
E=C-R

R =eT R

Transfer functions are

1/ [ XS+ Y]
H/ Q=2 / [AS+B]
[KP+KI/S+ Kp S

R/ R =e¢eT8
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CONTROL SYSTEM STABILITY

The standard form block diagram is

This gives the transfer function

O/ I=G/ [l + GH]

A unit impulse jars a system from a rest state and the
motion thereafter is nonforced. It is a good input to
test stability. For a unit impulse input I=1 and the

response becomes



O=H=G/ [l +GH] =N/D

where N and D are polynomials. The characteristic

equation is D=0. Partial Fraction Expansion (PFE) gives
O=>T7/ [s - Al
where each A is a root of the characteristic equation.

Inverse Laplace Transformation (ILT) gives

The G and H transfer functions can be written as
G = A/B H=X/Y
GH = A/B X/Y = AX/BY = N/D
where A B X Y N D are polynomials. In this case

O =G/ [1+GH] = A/B / [1+A/B X/Y]
=AY / [BY + AX] = N/ D



This shows that

The [1+GH] function is:

1 +GH =1+ N/D = [N+D] / D=D / D

Setting D equal to 0 gives the overall characteristic
equation. Setting D equal to 0 gives the characteristic

equation for the sub systems.

The [1+GH] function can be factored to give:

I' m [S-Z2] / m [S-P]

where the symbol mn indicates product. Zeros Z are
values of S which make [1+GH] zero. Poles P are values
of S which make [1+GH] infinite. Note that each [S-7Z]
factor 1is basically a vector with 1its origin at Z.
Similarly each [S-P] factor is basically a vector with

its origin at P.



NYQUIST CONCEPT

The Nyquist Concept starts by surrounding the entire
unstable half of the S plane with a clockwise contour.
The [1+GH] function is basically a vector made from

zero and pole factors which are also vectors:

I'n [S-Z2] / m [S-P] = RZO

When the tip of the S vector moves clockwise around the
Nyquist contour, zeros Z 1nside it cause clockwise
rotations of [1+GH] while poles P 1inside it cause
counter clockwise rotations. Only =zeros and poles
inside cause such rotations: zeros and poles outside
only cause [1+GH] to nod up and down. The sketches on
the next page show a complex conjugate pair of roots
inside the Nyquist contour and the corresponding [1+GH]
plot. As can be seen, the [1+GH] vector rotates twice
clockwise as the tip of the S vector moves clockwise
around the Nyquist contour. These clockwise rotations
are caused Dby the two unstable zeros 1inside the
contour. Subtracting one from [1+GH] and its origin
gives GH and minus one. One can use a GH plot with a

radius drawn from minus one to determine rotations.
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ROOT LOCUS CONCEPT

When S 1is a Z or root of the overall characteristic
equation, [1+GH] is equal to zero. This implies that GH
is equal to minus unity: GH = -1. This means 1its
magnitude 1s unity and its angle is plus or minus 180
degrees. So any S which satisfies these constraints is
a root of the overall characteristic equation. To
determine Dborderline proportional gain and period the
angle constraint 1s used to determine the period and
the magnitude constraint is used to determine the gain.

Consider the GH function

GH = KX [ (S-v) (S-w) ] / [ (S-a) (S-b) (S-c) ]

Its poles and zeros are shown 1n the sketch. The
location of the square point in the sketch is adjusted

to satisfy the angle constraint:

a +pB -€ -k -0 = £180

The magnitude constraint requires that

K [X VW] / [ABC] =1

where the lengths V W A B C can be measured.

Manipulation gives

K= [ABC] / [XV W]
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CONTROL SYSTEM DESIGN

STABILITY MARGINS

The degree of stability of a control system depends on
how close the GH plot 1s to the minus one point. Two
measures of closeness are the gain margin GM and the
phase margin PM. Engineering experience suggests that

GM should be at least 2 and PM should be at least 30°.

WEDGE CIRCLE REGION

Most systems have a dominant pair of roots which
control how stable it is. Theory shows that the damping
factor associliated with these roots 1s constant along
radial lines drawn from the origin in the S plane while
the undamped natural frequency 1is constant along semi
circles with center at the origin of the S plane. The
wedge circle region is where roots should be located to

get good damping and speed of response.



GM
1/|GH|

GH|=1 =7






OVERVIEW OF NYQUIST

The Nyquist procedure is based on the 1+GH function:

1 + GH = 1 +N/D = (N+D)/D = D/D
I' (S=-Z1) (S=2,) ::::: (S-Zn)
= = RZO
(S=P1) (S=Py) ::::: (S—=Pp)

It is basically a vector made from zero and pole
factors which are also vectors. When the tip of the
S vector moves clockwise around the Nyquist contour,
zeros Z 1nside 1t cause clockwise rotations of 1+GH
while poles P 1nside 1t cause counterclockwise
rotations. Only zeros and poles 1nside cause such
rotations: zeros and poles outside only cause 1+GH
to nod up and down. In the 1+GH plane R is drawn
from the origin. In the GH plane, R is drawn from
the minus one point. We want to find the number of
unstable zeros N;. From the GH plot, one gets the
net clockwise rotations of the GH wvector N. The net
clockwise rotations N must be equal to the number of
unstable zeros N; minus the number of unstable poles
Np. From the GH function, one gets the number of

unstable poles Np. Manipulation gives Ngz:

N:NZ—NP NZ=N+NP









NYQUIST ILLUSTRATION

Consider the case where there two unstable zeros in
the right half of the S plane and all other zeros
and poles are far into the left half of the S plane.
Now surround the unstable zeros by a clockwise
contour as shown on the next page. When we map
points on this contour to the 1+GH plane, we get the
contour two pages over. When we draw a vector with
radius R and angle ©® to the contour in the 1+GH
plane and count the number of times it rotates
clockwise as we move around the contour in the S
plane, we get two <clockwise rotations. These
rotations are caused by the unstable zeros. Nyquist
allows us to determine the number of unstable zeros

without having to find their exact locations.
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SIGNIFICANCE OF GH EQUAL TO MINUS ONE

Consider the case where only proportional control is
being used and the GH plot passes through the minus
one point in the GH plane. If GH=-1 then 1+GH=O0.
This implies that at this point S=Z: in other words,
it is a root of the overall characteristic equation.
But along the GH plot S=tjw. So Z=tjw. So there is a
complex conjugate palir of roots of the overall
characteristic equation on the imaginary axis 1in the
S plane. This means the system is borderline stable
and the gain K is the borderline stable gain K and
the frequency o 1s the borderline stable frequency

®w. The borderline stable period is T=2II/w.



GH PLOT



OPEN LOOP FREQUENCY RESPONSE

A GH plot 1is basically a polar open loop frequency
response plot. Consider  the case where only
proportional control is being used. When GH=-1, a
command sine wave produces a response which has the
same magnitude as the command but is 180° out of
phase. If the command was suddenly removed and the
loop was suddenly closed, the negative of the
response would take the place of the command and
keep the system oscillating. The system would be
borderline stable with gain K. If the gain was
bigger than K, the command would produce a response
bigger than itself. When this takes over, it would
produce growing or unstable oscillations. If the
gain was smaller than K, the command would produce a
response smaller than itself. When this takes over,

it would produce decaying or stable oscillations.






AUTONOMOUS UNDERWATER VEHICLE
NYQUIST APPLICATION

To illustrate application of the Nyquist Procedure we will
consider the task of controlling the submergence depth of a
small autonomous underwater vehicle or auv. The equations

governing the motion of the auv are:

M d?R/dt?2 + N dR/dt = B + D
J dB/dt + I B = 0O
Q = Kp E E=C-R

Laplace Transformation of the governing equations gives
(M S22+ NS) R=B + D

(J S+ 1I)B=2¢0

The GH function for the auv is:

Ke / [ (M S22+ NS) (JS + I)]
To give a numerical example we will let the parameters be:

M = 50.0 N = 50.0 J =20.5 I

Il
o
'_l

In this case the GH function reduces to

GH = Kp / [ (50.0 S2 + 50.0 8) (0.5 8 + 0.1) ]

Ke / [25.0 S3 + 30.0 S2 + 5.0 9]



Letting S=jo this can be written as:
GH = Kp / [-25.0 ®°] - 30.0 o> + 5.0 ®j]

As o tends to 0 GH tends to -oj while as ® tends to o it

tends to +07j. There 1s a real axis <crossover when
w?=5/25=1/5. With this ®? the term in square brackets
reduces to -30/5 or -6. This implies that the Dborderline
stable gain Kp which makes the crossover GH=-1 is 6. The

matlab GH plot for the borderline case is given below.
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PIPE FLOW SETUP

NYQUIST APPLICATION

To illustrate application of the Nyquist Procedure we will

consider the task of controlling the temperature of

flowing down a pipe. The governing equations are:

X dR/dt + Y R =H + D

H=7220Q Q Ke E

Laplace Transformation of the governing equations gives

(X S+ Y) R = H + D
H = Z 0 Q = Kep E
E = C-R R = e™R

The GH function for the setup is:

Kp Z elTSI  / (X S + Y)

To give a numerical example we will let the parameters be:

X = 0.25 Y = 1.0 Zz =1.0 T = 0.5

In this case the GH function reduces to:

GH = Kp el70:381  / (0.25 S + 1.0)

Letting S=jo this can be written as:

air



GH = Kp [Cos(0.5m) - J Sin(0.5m)] / (0.25 jo + 1.0)

=Ke [P+QJ] /W

where

v}
Il

- 0.25 ® Sin(0.5m) + Cos(0.5wm)
QO =-0.25 ® Cos(0.5m) - Sin(0.5w)
W= (0.25m)2 + 1.0

As ® tends to 0 GH tends to Kp while as o tends to o it tends
to 0. Real axis crossovers occur when Q is equal to O.
Iteration shows that the first crossover occurs when ®=4.58.

This gives P/W=-0.66. This implies that the borderline stable
gain Kp which makes the crossover GH=-1 is 1.52. The matlab

GH plot for the borderline case is given below.

GH PLOT

[MAG




NONLINEAR PHENOMENA

Linear theory predicts that, when an unstable system 1is
disturbed from a rest state, the transients which develop grow
indefinitely. For example, when transients are oscillatory, the
oscillation amplitude tends to o as time tends to . In reality,
infinite amplitudes are never observed. Sometimes large
amplitudes cause the system to break down. Often nonlinearities
limit amplitudes to some finite level before breakdown can
occur. These finite amplitude oscillations are known as limit
cycles. Sometimes limit cycle amplitudes are very small: in this
case, system 1is often considered to Dbe practically stable.
Nonlinearities can also cause systems which are stable in a

linear sense to be practically unstable.

When a system has strong multiple nonlinearities, simulation is
the only option. When a system has only one strong nonlinearity,
such as a switching controller, one can use 1its Describing
Function DF. In some texts, the letter N is used to denote it

instead of DF. The DF replaces the nonlinear controller.



When a system with a nonlinear controller is undergoing a limit
cycle, its behavior resembles a borderline stable linear system:
no growth or decay. The controller seems to be able to adjust
its gain to make the system borderline stable. The describing
function DF for a nonlinear controller approximates this
adjustable gain. To get DF, the system 1s assumed to be
undergoing a limit cycle and to be nonforced. Also the signal
fedback to the controller is taken to be a pure sinusoid. This
is usually a good assumption because the linear elements which
follow the controller generally act as a low pass filter: they
let only the fundamental component out of the controller get
back to the controller. When the input into the nonlinear

controller is:

In = Eo Sinwt

its output is generally of the form:

On = O + Os Sinwt + Oc Coswt + Higher Harmonics

With the same input:



Ipr = Eo Sinwt

the describing function gives out:

Opr = Or + Os Sinwt + Oc Cosont

So a describing function analysis ignores higher harmonics. This
is appropriate because they are filtered away anyhow. For most

control situations, the bias term O is zero.

When a system is undergoing a limit cycle, 1its linear elements
are forced sinusoidally by the limit cycle. In this case, each

transfer function reduces to the form:

0/I = TF = A + Bj

where

I = Sinwt O = A Sinot + B Coswt

By analogy, the DF for a nonlinear controller is:

Opr / Ik = DF = O0s/Esc + Oc/Eo j

where



Ipr = Eo Sinot Opr = Os Sinwt + Oc Coswt

As an illustration of the development of a describing function,

consider the ideal relay controller. When it has a sinusoidal

input, its output is a square wave. A Fourier Series analysis of

a square wave gives the components:

T
Os = 2/T | 0o(t) sinet dt = 40./m
0
T
Oc = 2/T | 0(t) Cosmot dt = 0
0
T
Og = 2/T [ o) dat = o0
0
So the fundamental output is:
Opr = [4Qo./Tm] Sinwt

The input is

Ior = Eo Sinwt

So the Describing Function is

DF

[4Q0]/ [TE.]



RELAY CONTROLLERS

AUTONOMOUS UNDERWATER VEHICLE

To illustrate nonlinear phenomena, we will consider the task
of controlling the submergence depth of a small autonomous
underwater vehicle or auv. The schematic of the system is
shown on the next page. Relay controllers resemble the
proportional controller. For the proportional controller

case, the governing equations for the auv are:

M d’°R/dt? = B + D - W
W = X drR/dt |dR/dt| + Y dR/dt
J dB/dt + I B = Q
Q = Kp E E = C-R

where R is the depth of the auv, M is its overall mass, B is
the control force from the propulsion system, D is a
disturbance load caused for example by sudden weight changes,
W is a drag load consisting of wake drag and wall drag, E is
the depth error, C 1is the command depth, M X Y J I are

process constants and Kp is the controller gain.
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Linearization allows us to write W as:

W = N drR/dt

To give a numerical example we will let the parameters be:

M = 50.0 N

50.0

Theory shows that the borderline proportional gain Kp for the

auv is 6 and the borderline period Tp is 14.

The describing function for an ideal relay controller is:

DF = [4 Qo] / [mEo]

At a limit cycle this 1s equal to the borderline

proportional gain Kp. Setting DF equal to Kp gives:

E, = [4 Qo] / [mDF] = [4Qc] / [mKe]

The saturation limit for the controller is 12. Substitution

into the amplitude equation gives Eo, equal to 2.5.

An m code for the auv for the ideal relay controller case
is given below. This is followed by a response generated by

the code. As can be seen, it agrees with DF predictions.



L AUTONOMOUS UNDERWALATER WEHICLE

% BRELAY DEPTH CONTROLLERS
clear all
rold=0.0:uold=0.0:khaold=0.0;
told=0.0;:w=50.0;: load=0.0;
wake=0.0;wall=50.0;
Junp=12Z .0:;band=0.0;
J=0.5;i=0.1;
delt=0.01;
target=10.0;
for k=1:10000
control=0.0;
error=target—rold:
ifierror>+khand) ...
control=4+jump;end:;
ifierror<-hand) ...
control=-—Jjunp;end:;
drag=wake*uold*abhs=s (uold) ;
drag=drag4+wall*uold;
abe=hold+load-drag;
xyeE=control-bhold*i;
ronew=rold+delt® uold:;
unew=uold+de lt *abe/m:
bhnew=hold+delc*=xves/]:
thnew=k*delt:
rold=rnew;uold=unew:
bold=hnew:told=tnew:
rikl=rnew:;t(k)=tneuw;
end; plotit,r)
xlabel('tCim="']
vilabel (' depth!'])
title|('auvw relay control'])
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PIPE FLOW SETUP

To illustrate nonlinear phenomena, we will consider the task
of controlling the temperature of air flowing down a pipe.
The setup 1is shown on the next page. Relay controllers
resemble the proportional controller. For the proportional

controller case, the governing equations for the setup are:

X dR/dt + YR =H + D

A dH/dt + B H =220

where R 1is the temperature of the air at the heater, R 1is
the temperature of the air at the sensor, C is the command
temperature, E 1s the temperature error, Q 1is the control
signal, H 1is the heat generated by the heater, D is a
disturbance heat (plus or minus), X Y A B Z are process
constants and Kp is the controller gain. Note that R is what
R was T seconds back in time: T is the time it takes for

the air to travel down the pipe.
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To give a numerical example we will let the parameters be:

X =10.25 Y =1.0

Theory shows that the borderline proportional gain Kep for the

setup is 1.5 and the borderline period Tp is 1.58.

The describing function for an ideal relay controller is:

DF = [4 Qo] / [mE.]

At a limit cycle this 1is equal to the borderline

proportional gain Kp. Setting DF equal to Kp gives:

E, = [4 Qo] / [mDF] = [4Qc] / [mKe]

The saturation limit for the controller is 5. Substitution

into the amplitude equation gives Eo, equal to 4.2.

An m code for the setup for the ideal relay controller case
is given below. This is followed by a response generated by

the code. As can be seen, it agrees with DF predictions.



% PIPE FLOW 3IETUFP

¥ BRELAY CONTROLLERS
FOLD=0.0;HOLD=0.0; 3ENSOR=ROLD;
TARGET=5.0;LOAD=0.0; DUMF=10.0;
X=0.25;¥=1.0;4=0.1:B=1.0;2=1.0:;
NIT=1000;HMIT=100;TIME=0.0;
BEIAZ=5.0;JUMP=5.0;EBAND=0.0;
DELT=0.005;
for IT=1:NIT
TIME=TIME+DELT:
if(IT>-HMIT)

SENISOR=R[(IT-MIT): end:
ERROR=TARGET-3ENZOR:
CONTROL=ETIAS;
if (ERROR>+EAND)

CONTROL=EIAZ+JIUME: end:;
if (ERROR<-EAND)

CONTROL=EIAZ-JUMF:end;
ABC=Z+*CONTROL-E*HOLD:;
XY Z=HOLD4+LOAD-Y+*ROLD;
HMNEW=HOLD+DELTYABC/ 4;
FNEW=ROLD+DELT*EVZ/X:
T(IT)=TIME:R(IT)=RNEW;
ROLD=FNEW; HOLD=HMNEW;
end; plotc(T,ER]
*xlabeli('time"')
vilakbel ('wvoltz')
title('pipe relay control')
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