FLUIDS NOTES

These notes give an overview of basic
fluid mechanics. They cover Fluids at
Rest or Fluid Statics and Fluids 1n

Motion or Fluid Dynamics.



FLUIDS AT REST

CONCEPTS



PRESSURE DEPTH LAW

Consider an imaginary vertical cylinder of water extending
down from an interface between air and water. A schematic 1is
shown on the next page. Let the cross sectional area of the
cylinder is A and let its height be h. Let the pressure at

the top be P, and the pressure at the bottom be P.

The weight of the cylinder is

W=pgV=pghAh

The pressure load on the cylinder is

PA- P, A

A load balance gives

PA-P,A-pgAh = 0

AP = P - P, = p gh

This is the pressure depth law for water.






BUOYANCY

Consider an imaginary vertical cylinder of water extending
down from an interface between air and water. A schematic 1is
shown on the previous page. Let the cross sectional area of
the cylinder be A and let its height be h. Let the pressure

at the top be P, and the pressure at the bottom be P.

The pressure load on the cylinder is

B

PA- P, A

AP A

Il
=

pgh A = pg V

The pressure load is known as the buoyancy. It is equal to
the weight of the displaced volume of water. A floating
cylinder would have a part below water and a part above
water. A schematic is shown on the next page. The part below
water would displace a volume of water with a buoyancy force

equal to the body weight.






BUOYANCY SPRING

The buoyancy force can be written as

B = pgA h

This resembles a spring

The buoyancy spring constant is

K = pgA

A schematic of the analogy is on the next page.

Pushing the cylinder downwards increases the buoyancy force.
It compresses the buoyancy spring. It pushes the bottom down
to a level where the pressure is higher and that creates an

increase in the force upwards.






STABILITY

To study the concept of stability, consider a rig with 4 legs
that are spaced far apart. A schematic is shown on the next
page. Let the spacing of the legs be 2H. Let the area of each
leg be A and let the depth of submergence be h. Because H is
large, when the rig rolls an angle 6, the displaced volume at
the bottom of each leg is approximately a cylinder with area

A and height HB. The torque due to buoyancy is

AT = 4 H pg A HE

The rotation causes a shift S in the center of the displaced

volume and the torque due to this is

AT = S 4 pg Ah

A torque balance gives

S 4 pg Ah = 4 H pg A HE

S = H/h 6 = R B8






This suggests that the center of buoyancy has moved along a
circular arc with radius R. A schematic of this shift is
shown in the sketch on the next page. The radius is known as
the metacentric radius. The center of rotation is known as
the metacenter. The 1line of action of the buoyancy force
always passes through this point. Knowing the location of the
metacenter allows us to locate the line of action of the
buoyancy force. If the center of gravity 1s below the
metacenter, the weight and buoyancy forces create a restoring
moment and the rig is stable. If the center of gravity is
above the metacenter, the weight and buoyancy forces create

an overturning moment and the rig is unstable.






FLUIDS AT REST

SUBMERGED

SURFACES



HYDRAULIC GATES

To get loads on hydraulic gates one can break its surface up
into an infinite number of infinitesimal bits of surface. The

force on an infinitesimal bit of surface is:

dF = P ds n

where N is the inward normal on the surface and P 1is the

pressure acting on it. The normal N is:

where 1JK indicates unit normal vectors. The force can be

broken down into xyz components

dF = dF, 1 + dF, J + dF, K

Pdsn, 1 + Pdsn,J + Pdsn, Kk

The pressure depth law gives



The total force <can be obtained by integration of the

component forces over the total surface:

F, =[] P n, ds F, =] P n, ds F, =[P n, ds

The total force is

Moment balances give the location of the forces.

The panel method for hydraulic gates starts by subdividing
the surface of the gate into a finite number of finite size
flat panels. The pressure depth law gives the pressure at the
centroid of each panel. Pressure times panel area gives the
force at the centroid. The unit normal pointing at the panel
allows one to break the force into components. Summation

gives the total force on the gate in each direction.



Fr = 2 P ny As F, = 2 P ny, As F, = 2 P n, As

The total force is

Moment balances give the location of the forces.

The pressure/weight method for hydraulic gates starts by
boxing the gate with vertical and horizontal surfaces. The
fluid within these surfaces is considered frozen to the gate.
Then the horizontal and vertical pressure forces on the box
surfaces are calculated. Force balances, which subtract the
weight frozen to the gate, then give the horizontal and

vertical forces on the gate. The total force is

Moment balances give the location of the forces.



HORIZONTAL FLAT GATE

The pressure acting on the gate is

eg H

The total force on the gate is:

og H A

VERTICAL RECTANGULAR FLAT GATE

For a horizontal slice of the gate, the pressure is

cg (H + r)

The area the pressure acts over is:

The total force on the gate is:

+G
) W pg (H+ r) dr









Evaluation of the integral gives

og H 2G W

VERTICAL CIRCULAR FLAT GATE
For a horizontal slice of the gate the pressure is
pg (H + r)
The area the pressure acts over is:
2 V[G*-r’] dr
The total force on the gate is:

+G

[ pg (H + r) 2 V[G*-r’] dr
-G

Evaluation of the r integral gives

og H nG?






HEMISPHERICAL SIDE GATE

For a horizontal slice of the gate the pressure is
og (H - G Cos0)

Angle 0 is measured from top to bottom (like latitude

earth). The area the pressure acts over is:

G do G Sin® =

The total vertical force on the gate is:
II
[ [ pg (H-GCos®) G G Sin0 m [-CosO] ] dO
0

Evaluation of the integral gives

og [4/3 m G / 2

The horizontal force on the gate is:

+11/2 I
[ [ [ pg (H- G CosB) G G Sin® [+SinB] dO ] Cosc
-11/2 0

Angle o is measured around the slice (like longitude

earth). Evaluation of the integral gives

pg H = G?

on

do

on






HEMISPHERICAL WATER TANK

A certain hemispherical water tank sits on a concrete
foundation. The tank diameter is bm. At the top of the
tank, there is a small diameter vertical fill tube that is
open at the bottom to the tank and open at the top to the
atmosphere. The water level in the tube is 5m above the top
of the tank. Using the Pressure Weight Method, calculate
the wvertical force in wall at the base of the tank needed
to counteract hydrostatic pressure load. Check your answer
using the Panel Method and also using Analytical
Integration. The tank wall is lcm thick and is made out of

steel. Calculate the force on the concrete foundation.

Pressure Weight Method: Imagine the tank wall is cut just
where it Jjoins the bottom plate. A free body diagram shows
that the force balance on tank and water above the cut

gives: wall force plus pressure force minus water weight

minus wall weight must total to zero. The forces are:

pressure force : pg H m G°

water weight : og [4/3 ©m G°] / 2

wall weight : og [4m G*] t / 2






Analytical Integration Method: For a horizontal slice of

the tank the pressure is:

og (H - G Cos0)

Angle 0 is measured from top to bottom (like latitude on

earth). The area the pressure acts over is:

G do G SinB® 2=

The vertical direction is +CosO. The vertical force is:

+11/2

[ pg (H - G CosB) G G Sin® 2n CosO dO
0

Evaluation of the integral gives:

og Hm G° - pg [4/3 1 G’] / 2

Panel Method: The panel method replaces the integral with a
sum. The tank is broken into flat panels. The pressure 1is

evaluated at the centroid of each panel. The area of each
panel is the length of the panel times 27w times the radius

out to the centroid. The panel normal is +Cos0.

Force on Concrete Foundation: This is just the weight of the

steel in the tank walls plus the weight of the water.
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HEMISPHERICAL WATER TANK

PANELS=20;PI=3.14159;
RADIUS=2.5;DEPTH=5.0;
LENGTH=DEPTH+RADIUS;
CHANGE=[PI/2]/PANELS;
FLAT=2.0*RADIUS*sin (CHANGE/2.0) ;
OUT=sqrt (RADIUS"2- (FLAT/2)"2) ;
GRAVITY=9.81;DENSITY=1000.0;
WEIGHT=GRAVITY*DENSITY;

INTEGRATION METHOD
ONE=+WEIGHT*LENGTH*PI*RADIUS"2;
TWO=-WEIGHT*PI*RADIUS"3*2/3;
INTEGRAL=ONE+TWO

PANEL METHOD

LIFT=0.0;

ANGLE=CHANGE/2.0;

for STEPS=1:PANELS
HEIGHT=LENGTH-OUT*cos (ANGLE) ;
AREA=FLAT*QUT*sin (ANGLE) *2*PI;
PRESSURE=WEIGHT*HEIGHT;
NORMAL=+cos (ANGLE) ;
BIT=PRESSURE*AREA*NORMAL;
LIFT=LIFT+BIT;
ANGLE=ANGLE+CHANGE;

end

PANEL=LIFT

PRESSURE WEIGHT METHOD
LOAD=+WEIGHT*LENGTH*PI*RADIUS"2;
WATER=+WEIGHT*PI*RADIUS"3*2/3;
BOX=LOAD-WATER



FLUIDS AT REST

HYDROSTATIC

STABILITY



METACENTER

When a neutrally buoyant body is rotated, it will return to
its original orientation if buoyancy and weight create a
restoring moment. For a submerged body, this occurs when
the center of gravity is below the center of buoyancy. The
center of buoyancy will act like a pendulum pivot. For a
floating body, a restoring moment 1s generated when the
center of gravity is below a point known as the metacenter.
In this case, the metacenter acts like a pendulum pivot.
The moments of the wedge shaped volumes generated by
rotation is equal to the moment due to the shift in the

center of volume. These moments are:

Equating the two moments gives

S=K®6/V

The shift in the center of volume can also be related to

rotation about the meta center:



BM ©

n
Il

Equating the two shifts gives

BM 6 = K©6/V

BM = K / V

For a general case, the moment of the wedges is

+G
f X X6 wdx = KO
-G
+G
2 I X X6 wdx = K B6
0
This gives
+G +G
K:IXZWdX:2IX2WdX
-G 0
+G +G

Y x*wAx = 2 Y %% w Ax

=~
Il



2G




The metacenter M occurs at the intersection of two lines. One
line passes through the center of gravity or G and the center
of buoyancy or B of a floating body when it is not rotated:
the other line is a vertical line through B when the body is
rotated. Inspection of a sketch of these lines shows that, if
M is above G, gravity and buoyancy generate a restoring
moment, whereas 1f M is below G, gravity and Dbuoyancy
generate an overturning moment. One finds the location of M
by finding the shift in the center of volume generated during
rotation and noting that this shift could result from a
rotation about an imaginary point which turns out to be the
metacenter. The distance between B and the center of gravity

G is BG. Geometry gives GM:

GM = BM - BG

If GM is positive, M is above G and the body is stable. If GM

is negative, M is below G and the body is unstable.



STABLE



UNSTABLE



SINGLE HULL BODIES

+G
S pg Vv = [ x pg xO w dx
-G
+G
S pg V=2 [ x pg xO w dx
0

Slice volume is: dV = xO® w dx

Slice Weight is: dW = pg dVv

Slice Moment is: x dW

Integration gives: pg K O

Manipulation gives: S = K/V @ =

Metacentric Radius: R



2G




SINGLE BOX RECTANGULAR BARGE

For roll of the barge the wedge factor is

+G
K= 2 I x? w dx
0

= 2 * 21 x G3/3

The volume of the barge is

V. =2L * 2G * h

Manipulation gives

So the roll metacentric radius 1s

R = G?/[3h]






GBS RIG

For roll of the GBS the wedge factor is

+G
K= 2] %% 2V[G*°-x?] dx
0

=1 G'/4
The volume of the GBS rig is

V = nG? * h

Manipulation gives

= G’/4n O
So the roll metacentric radius is

R = G?/4h






DOUBLE HULL BODIES

H+G
S pg V=2 [ X pg xO® w dx
H-G
+G
Spg V= 2 | [Hfr] pg [H+r] © w dr

-G

Slice volume is: dV = xO® w dx

Slice Weight is: dW = pg dVv

Slice Moment is: x dW

Integration gives: pg K O

Manipulation gives: S = K/V ® = R 0O

Metacentric Radius: R



2G

2H




DOUBLE BOX RECTANGULAR BARGE

For roll of the barge the wedge factor is

+G
K= 2 I (H+r)2 2L dr
-G

21, (4G>/3 + 4H?G)

The volume of the barge is

V=2*2L * 2G * h

Manipulation gives

= (G?/3h + H?/h) O

So the roll metacentric radius 1is

R = G?/3h + H?/h






OIL RIG

For roll of the rig the wedge factor is

+G
K =4 ] (H+r)? 2V[G*-1r?]

The volume of the rig is

V=4 * nG> * h

Manipulation gives

= (G°/4n + H?’/h) O

So the roll metacentric radius is

R = G?/4h + H?/h

dr






When the spacing of the 1legs 1is 1large relative to the
diameter of the legs, the wedge shaped volumes can be taken

to be cylinders with total volume

4 nG? HO

The moment of these volumes is

H 4 nG> HO = K O

Manipulation gives

= H°/h ©

So the roll metacentric radius is

R = H’/h



INTEGRALS

+G
[ Nie*-r?] dr = r/2 V[G*-r?] + G?/2 Sin'[r/G]
-G

+G
[ r N[G*-r?] dr = - [G*-r?]%%2 / 3
-G
+G
[ r?2 N[G*-r?] dr = - r [G*-r?1%¥%2 / 4
-G

+ r G°/8 V[G*-r?’] + G*/8 sin’! [r/G]
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OIL RIG ROLL STABILITY

PANELS=10000;PI=3.14159;
RADIUS=5.0;DEPTH=5.0;
CHANGE=2.0*RADIUS/PANELS;
GRAVITY=9.81;DENSITY=1000.0;
VOLUME=4.0*DEPTH*PI*RADIUS"2;
CENTROID=10.0;

APPROXIMATE METACENTER
BM=CENTROID”"2/DEPTH
EXACT METACENTER
BM=CENTROID”"2/DEPTH
+RADIUS"2/DEPTH/4.0

PANEL METHOD

WEDGE=0.0;
LOCATION=-RADIUS+CHANGE/2.0;
for STEPS=1:PANELS
ARM=CENTROID+LOCATION;
WIDTH=2.0*sqgrt (RADIUS"2-LOCATION"2) ;
WEDGE=WEDGE+4 . 0*ARM"2*WIDTH*CHANGE;
LOCATION=LOCATION+CHANGE;

end

BM=WEDGE /VOLUME



FLUIDS IN MOTION

CONCEPTS



OVERVIEW OF FLUID FLOWS

MOLECULAR NATURE OF LIQUIDS AND GASES
The molecules of a liquid are on average much closer together
than those in a gas. This leads to significant intermolecular
forces in a 1liquid and a high resistance to compression.
Intermolecular forces in a gas are much less significant and the
resistance to compression is much smaller. In a liquid,
intermolecular forces give rise to wavy molecular trajectories
whereas the lack of such forces in a gas causes trajectories to
be Dbasically straight. In a gas, pressure is due mainly to
rebound forces associated with the high speed motion of its
molecules. In a liquid, intermolecular forces also contribute.
When pressure in a liquid, at 20°C say, 1s lowered sufficiently,
vapor bubbles form in it. When such bubbles collapse inside a
pump, they can damage its blades: the phenomenon 1is known as
cavitation. In both ligquids and gases, temperature is basically
a measure of the kinetic energy of molecular motion. In a gas,
viscosity is due mainly due to the high speed random motion of
its molecules. In a flow, these cause a lateral transfer of
momentum. In a liquid, this transfer is due mainly to

intermolecular forces.



TURBULENT FLOWS
At low speeds, fluid particles move along smooth streamline
paths: motion has a laminar or layered structure. At high
speeds, particles have superimposed onto their basic streamwise
observable motion a random walk or chaotic motion. Particles
move as groups 1in small spinning bodies known as eddies. The
flow pattern is said to be turbulent. The small eddies 1in a
turbulent flow diffuse momentum. This is basically what
viscosity does 1in a laminar gas flow. So, to solve practical
flow problems, engineers often try to model turbulence as an
extra or eddy viscosity. Turbulent flows are too complex to deal

with analytically: one must use CFD.

BOUNDARY LAYER FLOWS
When a body moves through a wviscous fluid, the fluid at 1its
surface moves with it. It does not slip over the surface. When a
body moves at high speed, the transition between the surface and
flow outside is known as a boundary layer. In a relative sense,
it is a very thin layer. Within it, viscosity plays a dominant
role because normal velocity gradients are very large. Gradients
are responsible for skin friction drag on things like the wings
and fuselage of aircraft. Boundary layers can separate from
surfaces and radically alter the surrounding flow pattern. This

is what happens when a wing stalls.



LOW REYNOLDS NUMBER FLOWS
When fluid moves through narrow spaces, the Reynolds Number of
the flow 1is very low because the gap between the spaces, which
is the characteristic dimension for such a flow, is very small.
Low Reynolds Number means that viscous forces on the fluid are
much greater than inertia forces. High pressures are needed to
push fluid through such spaces. Hydrodynamic lubrication devices

use the high pressures to support loads.

IDEAL OR POTENTIAL FLOWS
Well away from fluid boundaries, viscous forces are often small
relative to inertia and pressure forces. Flows without viscosity
are known as ideal or potential flows. The governing equations
for such flows give a very accurate description of water waves.
When they are applied to flow around a wing, they predict =zero
lift! Also, they give an unrealistic flow pattern around the
wing. Something can be added to the formulation which mimics
viscosity. When this 1s done, 1lift and flow patterns become

realistic. So, without viscosity, planes could not fly!

COMPRESSIBLE FLOWS
When a fluid moves at around the local speed of sound, fluid
compressibility becomes important. This 1is especially the case

for high speed gas flows such as that in a rocket nozzle.



Subsonic flows have a local flow speed which is everywhere less
than the local speed of sound. Most commercial jets fly at speed
around 0.75 times the local speed of sound. Aircraft are said to
fly at supersonic speeds when the local flow speed is everywhere
greater than the local speed of sound. When one flies at
supersonic speeds, the air ahead of it is unaware it 1is coming
because disturbance waves generated by the craft are all swept
downstream by the high speed flow: none can propagate upstream.
Shock waves form near the craft: one is usually attached to its
nose. Shock waves are very thin surfaces in a flow, usually only
around 0.00025mm thick, across which there is a large increase

in temperature and pressure. They cause very high drag.

UNSTEADY FLOWS IN PIPE NETWORKS
Unsteady flow 1in pipe networks can be caused by a number of
factors. A turbomachine with blades can send pressure waves down a
pipe. If the period of these waves matches a natural period of the
pipe wave speed resonance develops. Sudden changes in valves or
turbomachines cause pressure waves 1in pipe networks. These can
cause pipes to explode or implode. In some cases interaction
between pipes and devices 1is such that oscillations develop
automatically. Examples 1include oscillations set up by leaky

valves and those set up by slow turbomachine controllers.



FLOWS IN STREAM TUBES

CONSERVATION LAWS IN INTEGRAL FORM

Conservation of Mass states that the time rate of change of
mass of a specific group of fluid particles in a flow is
zero. Conservation of Momentum states that the time rate of
change of momentum of a specific group must balance with the
net load acting on it. Conservation of Energy states that the
time rate of change of energy of a specific group must
balance with heat and work interactions of the group with its

surroundings. Mathematically one can write:

Conservation of Mass

D/Dt | p dv = Jop/ot av + [pwv.ndS = 0
v % S

Conservation of Momentum

p/pt | [pv] v = [ dlpvl/ot &V + [ [pv] v.n dS
Vv Vv S
= Jods + [ ob av
s v

Conservation of Energy

D/Dt | [pe] &V = [ dlpel/ot dv + | [pe] w.n dS
v v s

= - | q.n dS + [ v.o ds
S S



In these equations, V is fluid volume, S is fluid surface
area, t 1s time, n 1s outward wunit normal on S, v 1is
velocity, p is density, o denotes surface stresses such as
pressure and viscous traction, b denotes body forces such as

gravity, e is energy density and q denotes heat flux.

CONSERVATION LAWS IN STREAM TUBE FORM

Conservation of Mass for a stream tube is:

2 [pCAlour — 2[pCAly = O

In this equation, p is density, C is flow speed and A is pipe

area. Letting pCA equal M allows one to rewrite mass as

ZMOUT_ZMIN:O ZMOUTZZMIN

Conservation of Momentum for a stream tube is:

2 [pvCAlour — X[pVCA]1N

= - X[PAn]our - 2X[PAn]m + R

Expansion gives

2 [MU]ogr — 2 [MU]ln = - 2PAnx + Rx
Y MV]osr - X [MV]w = - XPAny + Ry

> MWloor - % [MWlm = - XPAn, + R,



In these equations, P 1is pressure, U V W are velocity

components and R is the wall force on the fluid.
Conservation of Energy for a stream tube is

> M (C2/2 + gz)lovr - X [M (C2/2 + gz)lm =

~ Y[PACJour + X[PAClm + xT - XL

Manipulation gives

Y [Mghlosr - X [Mghlmw = + XF - Xf

where h is known as head and is given by

h = C?2/2g + P/pg + z

It represents each energy as an equivalent height of fluid.

One can represent shaft power and lost power as
T. ZﬁghT f. =l\7lghL

The head loss is given by

hy = (fL/D +¥K) C2/2g

where f is pipe friction factor, L is pipe length, D is pipe
diameter and K accounts for losses at constrictions such as

bends. The Moody Diagram gives f as a function of Reynolds

Number Re=CD/v and pipe relative roughness g=e/D.
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BERNOULLI EQUATION

When there is no shaft work and friction is insignificant,
conservation of energy for a stream tube shows that hour is

equal to him, which implies that h is constant:

C?/2g + P/pg + z = K

This equation is known as the Bernoulli Equation. It can also
be derived from conservation of momentum. For a short stream

tube, a force balance gives:

p DC/Dt = p (0C/ot + CoC/0s) = - OP/Os - pg 0z/0s

For steady flow this becomes

p CdC/ds = p d[C?/2]/ds = - dP/ds - pg dz/ds

Integration of this gives the Bernoulli equation:

c2/2 + P/p + gz = K

This equation shows that, when pressure goes down 1in a
flow, speed goes up and visa versa. From an energy
perspective, flow work causes the speed changes. From a

momentum perspective, it is due to pressure forces.



SYSTEM DEMAND

For a system where a pipe connects two reservoirs, the head H

versus flow Q system demand equation has the form:

H=X+Y Q2

X = A [P/pg + z] Y = [fL/D + XK]/[2gA?]

X accounts for pressure and height changes between the

reservoirs and Y accounts for losses along the pipe.

PUMP SELECTION

To pick a pump, one first calculates the specific speed N
based on the system operating point. This is a nondimensional

number which does not have pump size in it:

N = [N \Q]/[H¥4]

This allows one to pick the appropriate type of pump. Axial
pumps have high Q but low H which gives them high M. Radial

pumps have lower Q but higher H which gives them lower WN.
Positive Displacement pumps have the lowest Q but highest H
which gives them the lowest INI. Next one scans pump catalogs
of the type indicated by specific speed and picks the size of
pump that will meet the system demand, while it is operating
at its best efficiency point (BEP) or best operating point
(BOP) . Finally, to prevent cavitation, the pump is located in
the system at a point where it has the Net Positive Suction

Head or NPSH recommended by the manufacturer:
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NPSH = Ps/pg + CsCs/29 - Pv/pg

In this equation, Py 1is the absolute wvapor pressure of the
fluid being pumped, and Ps and Cs are the absolute pressure
and speed at the pump inlet. For a system where a pipe
connects a low reservoir to a high reservoir, conservation of

energy from the low reservoir to the pump inlet gives:

Po/pg - [Ps/pg + CsCs/2g + d] = hi

where P, is the absolute pressure of the air above the low
reservoir and d is the height of the pump above the surface

of the low reservoir. Manipulation gives

This shows that d might have to be negative.

ELECTRICAL ANALOGY

Electrical power P is V I where V is volts and I 1is current.
By analogy, fluid power P is P Q where P is pressure and Q is
volumetric flow rate. Note that power is force F times speed
C. In a flow, force F is pressure P times area A. So power is
P times A times C. Now volumetric flow rate Q is C times A.
So power becomes P times Q. One can write pressure P in terms

of head H as: P=pgH. Power Dbecomes: P=pgHQ. Voltage drop

along a wire is AV=RI where R is the resistance of the wire.

By analogy, the pressure drop along a pipe due to losses 1is

AP=RQ? where R is the resistance of the pipe.



FLUIDS IN MOTION

TURBOMACHINES



TURBOMACHINE POWER

Swirl 1is the only component of fluid velocity that has a
moment arm around the axis of rotation or shaft of a
turbomachine. Because of this, it is the only one that can

contribute to shaft power. The shaft power equation is:

P =12 [T o] =A [pQ VI R ]

The swirl or tangential component of fluid velocity is Vr.
The symbol A indicates we are looking at changes from inlet
to outlet. The tangential momentum at an inlet or an outlet
is pQ Vr. Multiplying momentum by moment arm R gives the
torque T. Multiplying torque by the speed w gives the power
X®. The power equation is good for pumps and turbines. Power
is absorbed at an inlet and expelled at an outlet. If the
outlet power 1is greater than the inlet power, then the
machine is a pump. If the outlet power is less than the inlet
power, then the machine is a turbine. Geometry can be used to

connect Vr to the flow rate Q and the rotor speed w.

Theoretical analysis of turbomachines makes use of a number
of velocities. These are: the tangential flow velocity Vrg;
the normal flow velocity Vy; the blade or bucket velocity Vs;

the relative velocity Vr; the jet velocity Vs.









ELECTRICAL ANALOGY

Electrical power P is V I where V is volts and I is current.
By analogy, fluid power P is P Q where P is pressure and Q is
volumetric flow rate. Note that power is force F times speed
C. In a flow, force F is pressure P times area A. So power is
P times A times C. Now volumetric flow rate Q is C times A.
So power becomes P times Q. One can write pressure P in terms
of head H as: P=pgH. Power becomes: P=pgHQ. Voltage drop
along a wire is AV=RI where R is the resistance of the wire.

By analogy, the pressure drop along a pipe due to losses is

AP=RQ? where R is the resistance of the pipe.

TURBOMACHINE SCALING LAWS

Scaling laws allow us to predict prototype behavior from
model data. Generally the model and prototype must look the
same. This is known as geometric similitude. The flow
patterns at both scales must also look the same. This is
known as kinematic or motion similitude. Finally, certain
force ratios in the flow must be the same at both scales.
This is known as kinetic or dynamic similitude. Sometimes
getting all force ratios the same 1is impossible and one

must use engineering judgement to resolve the issue.



SCALING LAWS FOR TURBINES

For turbines, we are interested mainly in the power of the
device as a function of its rotational speed. The simplest
way to develop a nondimensional power is to divide power I
by something which has the units of power. The power in a
flow 1is equal to its dynamic pressure P times its

volumetric flow rate Q:

P Q

So, we can define a power coefficient Cp:

Ce = X® / [P Q]

To develop a nondimensional version of the rotational speed

of the turbine, we can divide the tip speed of the blades

Ro by the flow speed U, which is wusually equal to a jet

speed Vg. So, we can define a speed coefficient Cs:

Cs :R(,O/VJ



SCALING LAWS FOR PUMPS

For a pump, it is customary to let N be the rotor RPM and D
be the rotor diameter. All flow speeds U scale as ND and all
areas A scale as D2. Pressures are set by the dynamic
pressure pU2/2. Ignoring constants, one can define a
reference pressure [pN2D?] and a reference flow [ND3]. Since
fluid power is just pressure times flow, one can also define
a reference power [pN3D®]. Dividing dimensional quantities by

reference quantities gives the scaling laws:

Pressure Coefficient Ce = P / [pN2D?]

Flow Coefficient Co = Q / [ND?]

Power Coefficient Co = 3® / [pN3D]

On the pressure versus flow characteristic of a pump, there
is a best efficiency point (BEP) or best operating point
(BOP) . For geometrically similar pumps that have the same
operating point on the Cp versus Co curve, the coefficients
show that if D is doubled, P increases 4 fold, Q increases 8

fold and X increases 32 fold, whereas 1f N 1s doubled, P

increases 4 fold, Q doubles and X increases 8 fold.



PELTON WHEEL TURBINE THEORY

The power output of the turbine is: I® = T w where T is the
torque on the rotor and ® 1is the rotational speed of the

rotor. The torque is:

T = A (pQ VrR)

The tangential flow velocities at inlet and outlet are:

Vin = Vg Vour = (Vg — Ve) K Cosf + Vs

where [ is the bucket outlet angle and K is a loss factor.

The blade and jet velocities are:

Vs = R ® Vs = k V[2P/p]

So power becomes:

P = pQ (Vs - Vs) (L — K CosB) Vs






FRANCIS TURBINE THEORY

The power output of the turbine is: I® = T w where T is
the torque on the rotor and w is the rotational speed of

the rotor. The torque is:

T = A (pQ VrR)

The tangential flow velocities at inlet and outlet are:

Vin = Vy Cot[a] Vour = Vs + Vy Cot[B]

where o 1s the inlet guide vane angle and [ is the blade

outlet angle. The blade and normal velocities are:

Vs = R ® Vy = Q / [m 2R h]

where h is the depth of the rotor. So power becomes:

PP = o0 (Vix Rin = Vour Rour)

= poQ ( [VrVeln — [VrVe]lour )






KAPLAN TURBINE THEORY

The power output of the turbine is: I® = T w where T is
the torque on the rotor and w is the rotational speed of

the rotor. The torque is:

T = A (pQ VrR)

The tangential flow velocities at inlet and outlet are:

Vin = Vy Cot[o] Vour = Vs + Vy Cot[R]

where o is the inlet guide wvane angle and B is the blade

outlet angle. The blade and normal velocities are:

Vs = (RotR1) /2 Vi = Q / [m (Ro Ro = Rr Ri1)]

where Rp and R:r are outer radius and inner radius of the

blade respectively. So power becomes:

PP = o0 (Vix Rin = Vour Rour)

= poQ ( [VoVelin — [VrVe]lour )
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CENTRIFUGAL PUMP THEORY

The power output of the pump is:

P =Tw =A (pQ VIR) ®

The tangential flow velocities at inlet and outlet are:

Vin = Vy Cot[a] Vour = Vg + Vy Cot[B]

The blade and normal velocities are:

Vs = R ® Vy = Q / [m 2R h]

Power output is also

Manipulation gives

P=2 /0 =A (p ViR) o
= 0 (Vour Rour — Vin Rin) ©

= o0 ( [VrVelour — [VrVs]In )






PROPELLOR PUMP THEORY

The power output of the pump is:

P =Tw=A (pQ VT R)

The tangential flow velocities at inlet and outlet are:

Vin = Vy Cot[o] Vour = Vs + Vy Cot[R]

The blade and normal velocities are:

Vs = (RotR1) /2 Vi = Q / [m (Ro Ro = Rr Ri1)]

Power output is also

Manipulation gives

P=2 /0 =A (pVIR) ®
= 0 (Vour Rour — Vin Rin) o

= o0 ( [VrVelour — [VrVs]in )
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FLUIDS IN MOTION

SCALING

LAWS



PREAMBLE

Scaling laws allow us to predict prototype behavior from
model data. Generally the model and prototype must look the
same. This is known as geometric similitude. The flow
patterns at both scales must also look the same. This is
known as kinematic or motion similitude. Finally, certain
force ratios in the flow must be the same at both scales.
This is known as kinetic or dynamic similitude. Sometimes
getting all force ratios the same is impossible and one must

use engineering judgement to resolve the issue.

The simplest way to derive scaling laws 1is to use common
sense. If vyou need to develop a nondimensional power
coefficient, you need to divide power by a reference power.
The reference power could be based on things 1like the
properties of the fluid and conditions imposed by the
surroundings. One could also derive the scaling laws using a
more formal procedure known as the Method of Indices. Most
fluids texts call this the Buckingham n Theorem. For this,
the variables and parameters of interest are divided into
primary and secondary categories. When using the Buckingham

n Theorem, each nondimensional coefficient is known as a 1I.



FLUID FORCE RATIOS

Many flow situations depend on the strength of one type of
fluid force relative to another type of fluid force. The
ratio of the forces is used to define the flow. Every flow
situation will have a characteristic dimension which defines
the size of the geometry. Let this dimension be D. All areas
in the flow scale as D’ and all volumes scale as D°. Every
flow situation will have a characteristic flow speed. Let
this speed be C. Inertia forces in a flow scale as dynamic
pressure times area: pC?/2 D?. Viscous forces scale as
shear stress times area: p C/D D?. Gravity forces scale as
weight density times volume: pg D’. Surface tension forces
scale as o D where o is surface tension. Fluid elastic or

compressibility forces scale as K D? or p a® D°.

Ignoring the constant 2, the ratio of pressure forces to

inertia forces gives the Euler Number: AP/ [pC?].

Ignoring the constant 2, the ratio of inertia forces to

viscous forces gives the Reynolds Number: oCD/nu.

Ignoring the constant 2, the ratio of inertia forces to

gravity forces gives the Froude Number: C?/[gD] or C/N[gD].

Ignoring the constant 2, the ratio of inertia forces to

surface tension forces gives the Weber Number: pC?D/oc.

The ratio of inertia forces to elastic or compressibility

forces gives the Mach Number: C?/a® or C/a.



ILLUSTRATION : WAKE DRAG ON BODIES

For a body moving through a fluid, the wake drag on it can be

represented nondimenionally as a drag coefficient:

Co = D / [[pU®/2] A]
The reference drag is the dynamic pressure associated with
the motion of the body times its profile area as seen from
upstream. Usually Cp is a function of Reynolds Number:

Re = UD/v

This is inertia forces divided by wviscous forces.

ILLUSTRATION : LIFT ON WINGS

The 1lift force on a wing can be represented nondimenionally

as a lift coefficient:

C. =1L / [[pU?/2] A]

The reference 1ift 1is the dynamic pressure associated with
the motion of the wing times its planform area as seen from
above. Below stall, Cp is a weak function of Reynolds Number.

It is a strong function of the wing angle of attack.



ILLUSTRATION : WAVE DRAG ON SHIPS

The drag on a ship due to wave generation can be represented

nondimensionally as a drag coefficient:

Cpb = D / [[pU?/2] A]

In this case Cp is a function of Froude Number:

Fr = U/VI[gL]

This is inertia forces divided by gravity forces.

ILLUSTRATION : OSCILLATORY MOTION

Sometimes flows are oscillatory. In this case we need to
nondimensionalize the flow period T with a reference period
T. For a body with characteristic dimension D in a flow with

speed U, the reference period is the transit time:

T = D/U

So the nondimensional period is:

Co = T/T



ILLUSTRATION : VORTEX SHEDDING

Vortices are often shed from structures 1in an asymmetric

pattern. The Strouhal Number for such flows is the transit
time T divided by the vortex shedding period T: St = T/T. For

a circular cylinder St is around 0.2 so T is around 5 times

T. One can form a period ratio
CT:T/T

where T is a natural period of vibration of the structure.
Resonance would occur when Cr; is equal to unity.

ILLUSTRATION : HARBOR RESONANCE
Consider a harbor with a surface area S and a neck with area
A and length L. The motion of the water in the neck causes
the water level in the harbor to 1rise or fall. The
hydrostatic force due to this level moves the water in the

neck. This is basically a mass on a spring. Analysis shows

that the natural period of vibration is

T = 2n/o = 2m V([SL]/[gA])

Dividing this by the tide period T gives

Cr=T/T

Resonance would occur when Cr; is equal to unity.



ILLUSTRATION : HEAD LOSS IN PIPES

The pressure drop AP due to friction for flow along a pipe
is a function of the pipe diameter D, the pipe length L, the
roughness size e, the density of the fluid p, the wviscosity
of the fluid p and the speed of the flow C. Manipulation of

the variables gives the nondimensional coefficients

Pressure Coefficient AP / [pC?/2]
Reynolds Number o CD/ qu
Length to Diameter Ratio L / D

Roughness to Diameter Ratio e / D

An equation for pressure drop is

AP = f L/D pC?/2

This can be written as a head loss

Ah = £ L/D C?/2g

The friction factor f would be a function of the Reynolds

Number and the Relative Roughness Ratio.



ILLUSTRATION: PUMPS

For a pump, it is customary to let N be the rotor RPM and D
be the rotor diameter. All flow speeds U scale as ND and all
areas A scale as D’. Pressures are set by the dynamic
pressure pU?/2. Ignoring constants, one can define a
reference pressure [pNQDﬁ and a reference flow [ND3]. Since
fluid power 1is just pressure times flow, one can also define
a reference power [pN°D°]. Dividing dimensional quantities by

reference quantities gives the scaling laws:

Pressure Coefficient Ce = P / [pN°D?]

Flow Coefficient Co = Q / [ND’]

Power Coefficient Cp = P / [pN°’D’]

On the pressure versus flow characteristic of a pump, there
is a best efficiency point (BEP) or best operating point
(BOP). For geometrically similar pumps that have the same
operating point on the Cp versus Cq curve, the coefficients
show that if D is doubled, P increases 4 fold, Q increases 8
fold and P increases 32 fold, whereas if N is doubled, P

increases 4 fold, Q doubles and P increases 8 fold.



ILLUSTRATION: TURBINES

For a turbine, we are interested mainly in the power output
of the device as a function of its rotational speed. The
simplest way to develop a nondimensional power is to divide
power P Dby something which has the units of power. The
power in a flow 1is its dynamic pressure P times volumetric

flow rate Q. For a flow, the dynamic pressure P is

P = pvi/2
where p denotes the density of fluid and V is the speed of
the flow. Volumetric flow Q is the speed of the flow V times
its flow area A. So, a reference power is

pvZ/2 VA
So, we can define a power coefficient Cp

cp = P/ [pVY/2 B]

To develop a nondimensional version of the rotational speed,
we can divide the tip speed of the blades Row by the flow

speed V. So, we can define a speed coefficient Csg
Cs = Rw / V
One could derive the power and rotor speed coefficients

using the Buckingham n Theorem. Power and speed would be

primary variables. The flow speed and area and the density



of the fluid would be secondary variables. For power, the

goal is to find mp where

mp = P Vv® pP® A°

We need to find the a b ¢ that make the right hand side
dimensionless. In terms of the basic units of mass M and
length L and time T, one can write
MLOT? = M L/T? L /T [L/T]® [M/L°]°  [L?]¢
Inspection shows that
a=-3 b=-1 c=-1
With this, mp becomes

mp = P/ [pV A]

Similarly, for rotor speed, the goal is to find mg where

Manipulation shows that

a=-1 b

I
(@)
Q
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With this, 1ns becomes

Is = R / V

As can be seen, each m is basically the same as a C.
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