
 

 

 

 

 

 

FLUIDS NOTES 

 

 

These notes give an overview of basic 

fluid mechanics. They cover Fluids at 

Rest or Fluid Statics and Fluids in 

Motion or Fluid Dynamics.   



 

 

 

 

FLUIDS AT REST 

 

 

CONCEPTS 



 

PRESSURE DEPTH LAW 

 

Consider an imaginary vertical cylinder of water extending 

down from an interface between air and water. A schematic is 

shown on the next page. Let the cross sectional area of the 

cylinder is A and let its height be h. Let the pressure at 

the top be Po and the pressure at the bottom be P.  

 

The weight of the cylinder is 

 

W = ρ g V = ρ g A h 

 

The pressure load on the cylinder is 

 

P A – Po A 

 

A load balance gives 

 

P A – Po A - ρ g A h  =  0 

 

ΔP = P – Po = ρ g h   

 

This is the pressure depth law for water. 

 

 



 

 

 

 

 

 



 

BUOYANCY 

 

Consider an imaginary vertical cylinder of water extending 

down from an interface between air and water. A schematic is 

shown on the previous page. Let the cross sectional area of 

the cylinder be A and let its height be h. Let the pressure 

at the top be Po and the pressure at the bottom be P.  

 

The pressure load on the cylinder is 

 

B = P A – Po A = ΔP A  

= ρgh A = ρg V = W 

 

The pressure load is known as the buoyancy. It is equal to 

the weight of the displaced volume of water. A floating 

cylinder would have a part below water and a part above 

water. A schematic is shown on the next page. The part below 

water would displace a volume of water with a buoyancy force 

equal to the body weight.   

 

 

 

 



 

 



 

BUOYANCY SPRING 

 

The buoyancy force can be written as 

 

B = ρgA h 

 

This resembles a spring 

 

F = K x 

 

The buoyancy spring constant is  

 

K = ρgA 

 

A schematic of the analogy is on the next page.  

 

Pushing the cylinder downwards increases the buoyancy force. 

It compresses the buoyancy spring. It pushes the bottom down 

to a level where the pressure is higher and that creates an 

increase in the force upwards.  

 

 

 

 

 



 

 

 



 

STABILITY 

 

To study the concept of stability, consider a rig with 4 legs 

that are spaced far apart. A schematic is shown on the next 

page. Let the spacing of the legs be 2H. Let the area of each 

leg be A and let the depth of submergence be h. Because H is 

large, when the rig rolls an angle θ, the displaced volume at 

the bottom of each leg is approximately a cylinder with area 

A and height Hθ. The torque due to buoyancy is   

 

ΔT =  4 H ρg A Hθ 

 

The rotation causes a shift S in the center of the displaced 

volume and the torque due to this is 

 

ΔT =  S 4 ρg Ah 

 

A torque balance gives 

 

S 4 ρg Ah =  4 H ρg A Hθ 

 

S  =  H2/h θ  =  R θ 

 

 

 



 

 

 

                   

 



 

 

This suggests that the center of buoyancy has moved along a 

circular arc with radius R. A schematic of this shift is 

shown in the sketch on the next page. The radius is known as 

the metacentric radius. The center of rotation is known as 

the metacenter. The line of action of the buoyancy force 

always passes through this point. Knowing the location of the 

metacenter allows us to locate the line of action of the 

buoyancy force. If the center of gravity is below the 

metacenter, the weight and buoyancy forces create a restoring 

moment and the rig is stable. If the center of gravity is 

above the metacenter, the weight and buoyancy forces create 

an overturning moment and the rig is unstable.       

 

 

 

 

 

 

 

 

 

 



 

 

 



 

 

 

 

 

 

 

FLUIDS AT REST 

 

 

SUBMERGED 

SURFACES 



 

 

HYDRAULIC GATES 

 

To get loads on hydraulic gates one can break its surface up 

into an infinite number of infinitesimal bits of surface. The 

force on an infinitesimal bit of surface is: 

 

dF = P ds n 

 

where n is the inward normal on the surface and P is the 

pressure acting on it. The normal n is: 

 

n  =  nx i  +  ny j  +  nz k 

 

where ijk indicates unit normal vectors. The force can be 

broken down into xyz components  

 

dF = dFx i + dFy j + dFz k 

=  P ds nx i  +  P ds ny j  +  P ds nz k 

   

The pressure depth law gives 

 

 



 

P = ρg h 

 

The total force can be obtained by integration of the 

component forces over the total surface:  

 

Fx  =  P nx ds     Fy  =  P ny ds     Fz  =  P nz ds 

 

The total force is 

 

               F  =  Fx i  +  Fy j  +  Fz k 

|F| = √ [ [Fx]2 + [Fx]2 + [Fx]2 ] 

 

Moment balances give the location of the forces. 

 

The panel method for hydraulic gates starts by subdividing 

the surface of the gate into a finite number of finite size 

flat panels. The pressure depth law gives the pressure at the 

centroid of each panel. Pressure times panel area gives the 

force at the centroid. The unit normal pointing at the panel 

allows one to break the force into components. Summation 

gives the total force on the gate in each direction.  

 

 



 

Fx =  P nx s    Fy =  P ny s    Fz =  P nz s 

 

The total force is 

 

               F  =  Fx i  +  Fy j  +  Fz k 

|F| = √ [ [Fx]2 + [Fx]2 + [Fx]2 ] 

 

Moment balances give the location of the forces. 

 

The pressure/weight method for hydraulic gates starts by 

boxing the gate with vertical and horizontal surfaces. The 

fluid within these surfaces is considered frozen to the gate. 

Then the horizontal and vertical pressure forces on the box 

surfaces are calculated. Force balances, which subtract the 

weight frozen to the gate, then give the horizontal and 

vertical forces on the gate. The total force is 

 

               F  =  Fx i  +  Fy j  +  Fz k 

|F| = √ [ [Fx]2 + [Fx]2 + [Fx]2 ] 

 

Moment balances give the location of the forces. 

 

 



 
 

HORIZONTAL FLAT GATE 
 

 

The pressure acting on the gate is 

 

ρg H  

 

The total force on the gate is:  

 

ρg H A 

 
 
 
 

VERTICAL RECTANGULAR FLAT GATE  
 

 

For a horizontal slice of the gate, the pressure is 

 

ρg (H + r) 

 

The area the pressure acts over is: 

 

W dr   

 

The total force on the gate is:  

 

                        +G 

    W  ρg (H + r) dr 
                     -G 
 

 

 

 



 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 



 

Evaluation of the integral gives 

 

ρg H 2G W 

 

 

 
VERTICAL CIRCULAR FLAT GATE 

 
 

For a horizontal slice of the gate the pressure is 

 

ρg (H + r) 

 

The area the pressure acts over is: 

 

2 √[G2-r2]  dr  

 

The total force on the gate is:  
 
 
                +G 

   ρg (H + r) 2 √[G
2-r2]   dr 

                -G 
 
 

Evaluation of the r integral gives 

 

ρg H πG2 

 

 

 

 

 

 



 

 

 

 
 



HEMISPHERICAL SIDE GATE 
 

 
 

For a horizontal slice of the gate the pressure is 

 

ρg (H - G Cos) 

 

Angle  is measured from top to bottom (like latitude on 

earth). The area the pressure acts over is: 

 

G d  G Sin   

 

The total vertical force on the gate is:  

 
       π 

  [  ρg (H - G Cos)  G  G Sin   [-Cos] ] d 
       0 
    
Evaluation of the integral gives 

 

ρg [4/3  G3] / 2 

 

The horizontal force on the gate is: 

 
 +π/2    π 

          [ ρg (H - G Cos) G  G Sin  [+Sin] d ] Cos d 
 -π/2    0 
 

Angle  is measured around the slice (like longitude on 

earth). Evaluation of the integral gives  

 

ρg H  G2 

 



 

 

 

 

 

 

 



 

HEMISPHERICAL WATER TANK 

 

 

A certain hemispherical water tank sits on a concrete 

foundation. The tank diameter is 5m. At the top of the 

tank, there is a small diameter vertical fill tube that is 

open at the bottom to the tank and open at the top to the 

atmosphere. The water level in the tube is 5m above the top 

of the tank. Using the Pressure Weight Method, calculate 

the vertical force in wall at the base of the tank needed 

to counteract hydrostatic pressure load. Check your answer 

using the Panel Method and also using Analytical 

Integration. The tank wall is 1cm thick and is made out of 

steel. Calculate the force on the concrete foundation. 

 

Pressure Weight Method: Imagine the tank wall is cut just 

where it joins the bottom plate. A free body diagram shows 

that the force balance on tank and water above the cut 

gives: wall force plus pressure force minus water weight 

minus wall weight must total to zero. The forces are: 

 

pressure force : ρg H  G2 

 

water weight :   ρg [4/3  G3] / 2 

 

wall weight : g [4 G2] t / 2 

 

 

 

 



 

 

 

 

 

 

 

 



 

Analytical Integration Method: For a horizontal slice of 

the tank the pressure is: 

 

ρg (H - G Cos) 

 

Angle  is measured from top to bottom (like latitude on 

earth). The area the pressure acts over is: 

 

G d  G Sin  2 

 

The vertical direction is +Cos. The vertical force is: 

 
         +π/2 

  ρg (H - G Cos)  G  G Sin  2 Cos  d 
          0 
 

Evaluation of the integral gives: 

       

ρg H  G2  -  ρg [4/3  G3] / 2 

 

 

Panel Method: The panel method replaces the integral with a 

sum. The tank is broken into flat panels. The pressure is 

evaluated at the centroid of each panel. The area of each 

panel is the length of the panel times 2 times the radius 

out to the centroid. The panel normal is +Cos. 

 

Force on Concrete Foundation: This is just the weight of the 

steel in the tank walls plus the weight of the water.  

 

 



% 

%   HEMISPHERICAL WATER TANK 

% 

    PANELS=20;PI=3.14159; 

    RADIUS=2.5;DEPTH=5.0; 

    LENGTH=DEPTH+RADIUS; 

    CHANGE=[PI/2]/PANELS; 

    FLAT=2.0*RADIUS*sin(CHANGE/2.0); 

    OUT=sqrt(RADIUS^2-(FLAT/2)^2); 

    GRAVITY=9.81;DENSITY=1000.0; 

    WEIGHT=GRAVITY*DENSITY; 

% 

%   INTEGRATION METHOD 

    ONE=+WEIGHT*LENGTH*PI*RADIUS^2; 

    TWO=-WEIGHT*PI*RADIUS^3*2/3; 

    INTEGRAL=ONE+TWO 

% 

%   PANEL METHOD 

    LIFT=0.0;  

    ANGLE=CHANGE/2.0; 

    for STEPS=1:PANELS 

    HEIGHT=LENGTH-OUT*cos(ANGLE); 

    AREA=FLAT*OUT*sin(ANGLE)*2*PI; 

    PRESSURE=WEIGHT*HEIGHT; 

    NORMAL=+cos(ANGLE); 

    BIT=PRESSURE*AREA*NORMAL; 

    LIFT=LIFT+BIT; 

    ANGLE=ANGLE+CHANGE; 

    end 

    PANEL=LIFT 

% 

%   PRESSURE WEIGHT METHOD 

    LOAD=+WEIGHT*LENGTH*PI*RADIUS^2; 

    WATER=+WEIGHT*PI*RADIUS^3*2/3; 

    BOX=LOAD-WATER 
  



 

 

 

 

FLUIDS AT REST 

 

 

HYDROSTATIC 

STABILITY 

 



 

METACENTER 

 
When a neutrally buoyant body is rotated, it will return to 

its original orientation if buoyancy and weight create a 

restoring moment. For a submerged body, this occurs when 

the center of gravity is below the center of buoyancy. The 

center of buoyancy will act like a pendulum pivot. For a 

floating body, a restoring moment is generated when the 

center of gravity is below a point known as the metacenter. 

In this case, the metacenter acts like a pendulum pivot. 

The moments of the wedge shaped volumes generated by 

rotation is equal to the moment due to the shift in the 

center of volume. These moments are: 

 
MW = K θ          MV = V S  

 
Equating the two moments gives 

 
S = K θ / V 

 
The shift in the center of volume can also be related to 

rotation about the meta center: 

 
 

 

 



 

S = BM θ 

 
Equating the two shifts gives 

 
BM θ  =  K θ / V        

 

BM = K / V    

 
For a general case, the moment of the wedges is 

 
                    +G 

     x xθ w dx  =  K θ 
                    -G 
 
                      +G 

2     x xθ w dx  =  K θ 
                      0 
 

This gives 

 

                     +G              +G   
K =    x2 w dx  =  2  x2 w dx  

                     -G              0 
  

                    +G               +G    
K =    x2 w x =  2   x2 w x 

                    -G               0   
 

 

 

 



 

 

 

 

 



 

 

The metacenter M occurs at the intersection of two lines. One 

line passes through the center of gravity or G and the center 

of buoyancy or B of a floating body when it is not rotated: 

the other line is a vertical line through B when the body is 

rotated. Inspection of a sketch of these lines shows that, if 

M is above G, gravity and buoyancy generate a restoring 

moment, whereas if M is below G, gravity and buoyancy 

generate an overturning moment. One finds the location of M 

by finding the shift in the center of volume generated during 

rotation and noting that this shift could result from a 

rotation about an imaginary point which turns out to be the 

metacenter. The distance between B and the center of gravity 

G is BG. Geometry gives GM: 

 

GM =  BM - BG 

 

If GM is positive, M is above G and the body is stable. If GM 

is negative, M is below G and the body is unstable. 

 

 

 

 



 

 

 

 

 

 

 

 

STABLE 

 

 

 



 

 

 

 

UNSTABLE 

 



 

 

 

SINGLE HULL BODIES 

 

 

                            +G             
S g V =    x g x w dx 

                           -G 

 

 

                             +G             
S g V = 2    x g x w dx 

                             0 

 

 

 

Slice volume is: dV = x w dx 
 
 

Slice Weight is: dW = g dV 
 
 

Slice Moment is: x dW 
 
 

Integration gives: g K  
 
 

Manipulation gives: S = K/V  = R  
 
 

Metacentric Radius: R 
 

 

 

 

 



 

 

 

 

 

 

 



 

 

 

SINGLE BOX RECTANGULAR BARGE 

 

 

For roll of the barge the wedge factor is 

 
                              +G 

K =  2    x2 w dx 
                              0 

 
=  2 * 2L * G3/3 

 

The volume of the barge is  

 

V = 2L * 2G * h 

 

Manipulation gives  

 

S = K/V   =  R  

 

= G2/[3h]  

 

So the roll metacentric radius is 

 

R  =  G2/[3h] 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 



 
 

GBS RIG 
 

 

For roll of the GBS the wedge factor is 

 
 
                         +G 

K =  2   x2 2√[G2-x2]  dx 
                         0 

 
= π G4/4  

 

 

The volume of the GBS rig is  

 

V = πG2 * h 

 

Manipulation gives  

 

S = K/V   =  R  

 

= G2/4h   

 

So the roll metacentric radius is 

 

R  =  G2/4h  

 

 

 

 

 

 



 

 

 
 
 
 
 
 
 
 
 



 

 

DOUBLE HULL BODIES 

 

 

                             H+G             
S g V = 2    x g x w dx 

                             H-G 

 

 

                          +G             
S g V =  2    [H+r] g [H+r]  w dr 

                         -G 

 

 

 

Slice volume is: dV = x w dx 
 
 

Slice Weight is: dW = g dV 
 
 

Slice Moment is: x dW 
 
 

Integration gives: g K  
 
 

Manipulation gives: S = K/V  = R  
 
 

Metacentric Radius: R 
 

 

 

 

 



 

 

 



 

 

DOUBLE BOX RECTANGULAR BARGE 

 

 

For roll of the barge the wedge factor is 

 

 
                           +G 

K =  2    (H+r)2 2L dr 
                          -G 

 
= 2L (4G3/3 + 4H2G) 

 

 

The volume of the barge is  

 

V = 2 * 2L * 2G * h 

 

Manipulation gives  

 

S = K/V   =  R  

 

= (G2/3h + H2/h)   

 

So the roll metacentric radius is 

 

R  =  G2/3h + H2/h   

 

 

 

 

 



 

 

 

 

 

 
 
 
 



 
 

OIL RIG 
 

 

For roll of the rig the wedge factor is 

 
                       +G 

K = 4   (H+r)2 2√[G2-r2]  dr 
                       -G 

 
= πG4 + 4πG2H2 

 

 

The volume of the rig is  

 

V = 4 * πG2 * h 

 

Manipulation gives  

 

S = K/V   =  R  

 

= (G2/4h + H2/h)   

 

So the roll metacentric radius is 

 

R  =  G2/4h + H2/h   

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

 

 

 

When the spacing of the legs is large relative to the 

diameter of the legs, the wedge shaped volumes can be taken 

to be cylinders with total volume 

 

4 πG2 H 

 

The moment of these volumes is 

 

H 4 πG2 H  = K  

 

Manipulation gives  

 

S = K/V   =  R  

 

= H2/h   

 

So the roll metacentric radius is 

 

R  =  H2/h   

 

 



 

 

 

 

INTEGRALS 

 

 

       +G 
  √[G2-r2]  dr  = r/2 √[G2-r2] + G2/2 Sin-1[r/G] 

       -G 

 

 

 

 

            +G 
  r √[G2-r2]  dr  = - [G2-r2]3/2 / 3 

            -G 

 
 
 
 
            
            +G 

  r2 √[G2-r2]  dr  = - r [G2-r2]3/2 / 4 
            -G 

 
+ r G2/8 √[G2-r2]  +  G4/8 Sin-1 [r/G] 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
% 
%   OIL RIG ROLL STABILITY 
% 
    PANELS=10000;PI=3.14159; 
    RADIUS=5.0;DEPTH=5.0; 
    CHANGE=2.0*RADIUS/PANELS; 
    GRAVITY=9.81;DENSITY=1000.0; 
    VOLUME=4.0*DEPTH*PI*RADIUS^2; 
    CENTROID=10.0; 
% 
%   APPROXIMATE METACENTER 
    BM=CENTROID^2/DEPTH 
%   EXACT METACENTER 
    BM=CENTROID^2/DEPTH .... 
     +RADIUS^2/DEPTH/4.0 
% 
%   PANEL METHOD 
    WEDGE=0.0; 
    LOCATION=-RADIUS+CHANGE/2.0; 
    for STEPS=1:PANELS 
    ARM=CENTROID+LOCATION; 
    WIDTH=2.0*sqrt(RADIUS^2-LOCATION^2); 
    WEDGE=WEDGE+4.0*ARM^2*WIDTH*CHANGE; 
    LOCATION=LOCATION+CHANGE; 
    end 
    BM=WEDGE/VOLUME 

 
 

 

 



 

 

 

 

FLUIDS IN MOTION 

 

 

CONCEPTS 

 



 

OVERVIEW OF FLUID FLOWS 

 

MOLECULAR NATURE OF LIQUIDS AND GASES 

The molecules of a liquid are on average much closer together 

than those in a gas. This leads to significant intermolecular 

forces in a liquid and a high resistance to compression. 

Intermolecular forces in a gas are much less significant and the 

resistance to compression is much smaller. In a liquid, 

intermolecular forces give rise to wavy molecular trajectories 

whereas the lack of such forces in a gas causes trajectories to 

be basically straight. In a gas, pressure is due mainly to 

rebound forces associated with the high speed motion of its 

molecules. In a liquid, intermolecular forces also contribute. 

When pressure in a liquid, at 20oC say, is lowered sufficiently, 

vapor bubbles form in it. When such bubbles collapse inside a 

pump, they can damage its blades: the phenomenon is known as 

cavitation. In both liquids and gases, temperature is basically 

a measure of the kinetic energy of molecular motion. In a gas, 

viscosity is due mainly due to the high speed random motion of 

its molecules. In a flow, these cause a lateral transfer of 

momentum. In a liquid, this transfer is due mainly to 

intermolecular forces.  

 



TURBULENT FLOWS 

At low speeds, fluid particles move along smooth streamline 

paths: motion has a laminar or layered structure. At high 

speeds, particles have superimposed onto their basic streamwise 

observable motion a random walk or chaotic motion. Particles 

move as groups in small spinning bodies known as eddies. The 

flow pattern is said to be turbulent. The small eddies in a 

turbulent flow diffuse momentum. This is basically what 

viscosity does in a laminar gas flow. So, to solve practical 

flow problems, engineers often try to model turbulence as an 

extra or eddy viscosity. Turbulent flows are too complex to deal 

with analytically: one must use CFD.  

 

BOUNDARY LAYER FLOWS 

When a body moves through a viscous fluid, the fluid at its 

surface moves with it. It does not slip over the surface. When a 

body moves at high speed, the transition between the surface and 

flow outside is known as a boundary layer. In a relative sense, 

it is a very thin layer. Within it, viscosity plays a dominant 

role because normal velocity gradients are very large. Gradients 

are responsible for skin friction drag on things like the wings 

and fuselage of aircraft. Boundary layers can separate from 

surfaces and radically alter the surrounding flow pattern. This 

is what happens when a wing stalls.  



LOW REYNOLDS NUMBER FLOWS 

When fluid moves through narrow spaces, the Reynolds Number of 

the flow is very low because the gap between the spaces, which 

is the characteristic dimension for such a flow, is very small. 

Low Reynolds Number means that viscous forces on the fluid are 

much greater than inertia forces. High pressures are needed to 

push fluid through such spaces. Hydrodynamic lubrication devices 

use the high pressures to support loads.  

 

IDEAL OR POTENTIAL FLOWS 

Well away from fluid boundaries, viscous forces are often small 

relative to inertia and pressure forces. Flows without viscosity 

are known as ideal or potential flows. The governing equations 

for such flows give a very accurate description of water waves. 

When they are applied to flow around a wing, they predict zero 

lift! Also, they give an unrealistic flow pattern around the 

wing. Something can be added to the formulation which mimics 

viscosity. When this is done, lift and flow patterns become 

realistic. So, without viscosity, planes could not fly! 

 

COMPRESSIBLE FLOWS 

When a fluid moves at around the local speed of sound, fluid 

compressibility becomes important. This is especially the case 

for high speed gas flows such as that in a rocket nozzle. 



Subsonic flows have a local flow speed which is everywhere less 

than the local speed of sound. Most commercial jets fly at speed 

around 0.75 times the local speed of sound. Aircraft are said to 

fly at supersonic speeds when the local flow speed is everywhere 

greater than the local speed of sound. When one flies at 

supersonic speeds, the air ahead of it is unaware it is coming 

because disturbance waves generated by the craft are all swept 

downstream by the high speed flow: none can propagate upstream. 

Shock waves form near the craft: one is usually attached to its 

nose. Shock waves are very thin surfaces in a flow, usually only 

around 0.00025mm thick, across which there is a large increase 

in temperature and pressure. They cause very high drag.  

 

UNSTEADY FLOWS IN PIPE NETWORKS 

Unsteady flow in pipe networks can be caused by a number of 

factors. A turbomachine with blades can send pressure waves down a 

pipe. If the period of these waves matches a natural period of the 

pipe wave speed resonance develops. Sudden changes in valves or 

turbomachines cause pressure waves in pipe networks. These can 

cause pipes to explode or implode. In some cases interaction 

between pipes and devices is such that oscillations develop 

automatically. Examples include oscillations set up by leaky 

valves and those set up by slow turbomachine controllers.  

 



FLOWS IN STREAM TUBES 

 

 

CONSERVATION LAWS IN INTEGRAL FORM 

 

Conservation of Mass states that the time rate of change of 

mass of a specific group of fluid particles in a flow is 

zero. Conservation of Momentum states that the time rate of 

change of momentum of a specific group must balance with the 

net load acting on it. Conservation of Energy states that the 

time rate of change of energy of a specific group must 

balance with heat and work interactions of the group with its 

surroundings. Mathematically one can write: 

 

Conservation of Mass 

 

D/Dt  ρ dV    =    ρ/t dV  +   ρ v.n dS   =  0 

        V             V              S  

 

  

Conservation of Momentum                                               

D/Dt  [ρv] dV   =    [ρv]/t dV  +   [ρv] v.n dS 

          V               V                 S 

 

                                                

=    σ dS     +     ρb dV 

                      S               V    

   

Conservation of Energy 

 

D/Dt  [ρe] dV   =    [ρe]/t dV  +   [ρe] v.n dS 

          V                V                 S 

 

=   -  q.n dS  +   v.σ dS 

                        S            S              

 



 

In these equations, V is fluid volume, S is fluid surface 

area, t is time, n is outward unit normal on S, v is 

velocity, ρ is density, σ denotes surface stresses such as 

pressure and viscous traction, b denotes body forces such as 

gravity, e is energy density and q denotes heat flux. 

 

 

CONSERVATION LAWS IN STREAM TUBE FORM 

       

Conservation of Mass for a stream tube is: 

 

[ρCA]OUT - [ρCA]IN = 0        

 

In this equation, ρ is density, C is flow speed and A is pipe 

area. Letting ρCA equal M
. 

allows one to rewrite mass as 

 

 M
.

OUT -  M
.

IN = 0     M
.

OUT =  M
.

IN         

    

 

Conservation of Momentum for a stream tube is:                                              

  

[ρvCA]OUT - [ρvCA]IN  

 

= - [PAn]OUT - [PAn]IN + R 

 

Expansion gives 

 [M
.
U]OUT -  [M

.
U]IN = - PAnx + Rx  

 [M
.
V]OUT -  [M

.
V]IN = - PAny + Ry    

 [M
.
W]OUT -  [M

.
W]IN = - PAnz + Rz 



In these equations, P is pressure, U V W are velocity 

components and R is the wall force on the fluid. 

 

Conservation of Energy for a stream tube is 

 [M
.
(C2/2 + gz)]OUT -  [M

.
(C2/2 + gz)]IN =   

- [PAC]OUT  +  [PAC]IN  +  T
. 

- L
.
 

 

Manipulation gives 

 [M
.
gh]OUT -  [M

.
gh]IN =  +  T

. 
- L
.
 

 

where h is known as head and is given by  

h = C2/2g + P/ρg + z      

 

It represents each energy as an equivalent height of fluid. 

One can represent shaft power and lost power as 

T
. 

= M
.
ghT       L

. 
= M
.
ghL 

 

The head loss is given by 

 

hL = (fL/D +K) C2/2g 

 

where f is pipe friction factor, L is pipe length, D is pipe 

diameter and K accounts for losses at constrictions such as 

bends. The Moody Diagram gives f as a function of Reynolds 

Number Re=CD/ and pipe relative roughness =e/D. 



 

 

 



 

 

BERNOULLI EQUATION 

 

When there is no shaft work and friction is insignificant, 

conservation of energy for a stream tube shows that hOUT is 

equal to hIN, which implies that h is constant: 

 

C2/2g + P/ρg + z  =  K 

 

This equation is known as the Bernoulli Equation. It can also 

be derived from conservation of momentum. For a short stream 

tube, a force balance gives: 

 

 DC/Dt  =   (C/t + CC/s)  =  - P/s  -  g z/s 

 

For steady flow this becomes 

 

 CdC/ds  =  d[C2/2]/ds  = - dP/ds  -  g dz/ds 

 

Integration of this gives the Bernoulli equation: 

 

C2/2   +  P/  +   gz   =     

 

This equation shows that, when pressure goes down in a 

flow, speed goes up and visa versa. From an energy 

perspective, flow work causes the speed changes. From a 

momentum perspective, it is due to pressure forces. 

 

 

 

 



SYSTEM DEMAND 

 

For a system where a pipe connects two reservoirs, the head H 

versus flow Q system demand equation has the form: 

 

H = X + Y Q2         

 

X = Δ [P/ρg + z]   Y = [fL/D + K]/[2gA2] 

 

X accounts for pressure and height changes between the 

reservoirs and Y accounts for losses along the pipe.  

 

 

PUMP SELECTION 

 

To pick a pump, one first calculates the specific speed N 

based on the system operating point. This is a nondimensional 

number which does not have pump size in it:   

 

                    N   =  [N Q]/[H3/4] 

 

This allows one to pick the appropriate type of pump. Axial 

pumps have high Q but low H which gives them high N. Radial 

pumps have lower Q but higher H which gives them lower N. 

Positive Displacement pumps have the lowest Q but highest H 

which gives them the lowest N. Next one scans pump catalogs 

of the type indicated by specific speed and picks the size of 

pump that will meet the system demand, while it is operating 

at its best efficiency point (BEP) or best operating point 

(BOP). Finally, to prevent cavitation, the pump is located in 

the system at a point where it has the Net Positive Suction 

Head or NPSH recommended by the manufacturer: 



 

 

 

 



NPSH = Ps/ρg + CsCs/2g - Pv/ρg 

 

In this equation, Pv is the absolute vapor pressure of the 

fluid being pumped, and Ps and Cs are the absolute pressure 

and speed at the pump inlet. For a system where a pipe 

connects a low reservoir to a high reservoir, conservation of 

energy from the low reservoir to the pump inlet gives:  

 

Po/ρg  -  [Ps/ρg + CsCs/2g + d]  =  hL 

 

where Po is the absolute pressure of the air above the low 

reservoir and d is the height of the pump above the surface 

of the low reservoir. Manipulation gives 

 

d  =  (Po-Pv)/ρg  -  hL  –  NPSH 

 

This shows that d might have to be negative. 

 

 

ELECTRICAL ANALOGY  

 

Electrical power P is V I where V is volts and I is current. 

By analogy, fluid power P is P Q where P is pressure and Q is 

volumetric flow rate. Note that power is force F times speed 

C. In a flow, force F is pressure P times area A. So power is 

P times A times C. Now volumetric flow rate Q is C times A. 

So power becomes P times Q. One can write pressure P in terms 

of head H as: P=ρgH. Power becomes: P=ρgHQ. Voltage drop 

along a wire is V=RI where R is the resistance of the wire. 

By analogy, the pressure drop along a pipe due to losses is 

P=RQ2 where R is the resistance of the pipe. 



 

 

 

 

 

FLUIDS IN MOTION 

 

 

 

TURBOMACHINES 



 

 

 

TURBOMACHINE POWER 

 

 

Swirl is the only component of fluid velocity that has a 

moment arm around the axis of rotation or shaft of a 

turbomachine. Because of this, it is the only one that can 

contribute to shaft power. The shaft power equation is:  

 

P = Δ [T ω] = Δ [ρQ VT R ω] 

 

The swirl or tangential component of fluid velocity is VT. 

The symbol Δ indicates we are looking at changes from inlet 

to outlet. The tangential momentum at an inlet or an outlet 

is ρQ VT. Multiplying momentum by moment arm R gives the 

torque T. Multiplying torque by the speed ω gives the power 

P. The power equation is good for pumps and turbines. Power 

is absorbed at an inlet and expelled at an outlet. If the 

outlet power is greater than the inlet power, then the 

machine is a pump. If the outlet power is less than the inlet 

power, then the machine is a turbine. Geometry can be used to 

connect VT to the flow rate Q and the rotor speed ω. 

 

Theoretical analysis of turbomachines makes use of a number 

of velocities. These are: the tangential flow velocity VT; 

the normal flow velocity VN; the blade or bucket velocity VB; 

the relative velocity VR; the jet velocity VJ.     

 

 

 



 

 

 

 

 

 

 

 



 

 

 

 

 

 



 

 

 

ELECTRICAL ANALOGY  

 

Electrical power P is V I where V is volts and I is current. 

By analogy, fluid power P is P Q where P is pressure and Q is 

volumetric flow rate. Note that power is force F times speed 

C. In a flow, force F is pressure P times area A. So power is 

P times A times C. Now volumetric flow rate Q is C times A. 

So power becomes P times Q. One can write pressure P in terms 

of head H as: P=ρgH. Power becomes: P=ρgHQ. Voltage drop 

along a wire is V=RI where R is the resistance of the wire. 

By analogy, the pressure drop along a pipe due to losses is 

P=RQ2 where R is the resistance of the pipe. 

 

 

TURBOMACHINE SCALING LAWS 

Scaling laws allow us to predict prototype behavior from 

model data. Generally the model and prototype must look the 

same. This is known as geometric similitude. The flow 

patterns at both scales must also look the same. This is 

known as kinematic or motion similitude. Finally, certain 

force ratios in the flow must be the same at both scales. 

This is known as kinetic or dynamic similitude. Sometimes 

getting all force ratios the same is impossible and one 

must use engineering judgement to resolve the issue.  

 



 

 

SCALING LAWS FOR TURBINES 

 

 

For turbines, we are interested mainly in the power of the 

device as a function of its rotational speed. The simplest 

way to develop a nondimensional power is to divide power P 

by something which has the units of power. The power in a 

flow is equal to its dynamic pressure P times its 

volumetric flow rate Q:  

                                

P Q 

 

So, we can define a power coefficient CP:   

 

CP  =  P / [P Q]  

                        

To develop a nondimensional version of the rotational speed 

of the turbine, we can divide the tip speed of the blades 

R by the flow speed U, which is usually equal to a jet 

speed VJ. So, we can define a speed coefficient CS:   

 

CS  = R / VJ 

 

 

 



 

SCALING LAWS FOR PUMPS 

 

For a pump, it is customary to let N be the rotor RPM and D 

be the rotor diameter. All flow speeds U scale as ND and all 

areas A scale as D2. Pressures are set by the dynamic 

pressure ρU2/2. Ignoring constants, one can define a 

reference pressure [ρN2D2] and a reference flow [ND3]. Since 

fluid power is just pressure times flow, one can also define 

a reference power [ρN3D5]. Dividing dimensional quantities by 

reference quantities gives the scaling laws: 

 

Pressure Coefficient    CP = P / [ρN2D2] 

 

Flow Coefficient    CQ = Q / [ND3] 

 

Power Coefficient   CP = P / [ρN3D5] 

  

On the pressure versus flow characteristic of a pump, there 

is a best efficiency point (BEP) or best operating point 

(BOP). For geometrically similar pumps that have the same 

operating point on the CP versus CQ curve, the coefficients 

show that if D is doubled, P increases 4 fold, Q increases 8 

fold and P increases 32 fold, whereas if N is doubled, P 

increases 4 fold, Q doubles and P increases 8 fold.   

 

 

 

 

 



 

 

 

PELTON WHEEL TURBINE THEORY 

 

The power output of the turbine is: P = T ω where T is the 

torque on the rotor and ω is the rotational speed of the 

rotor. The torque is:  

 

T =  (ρQ VT R) 

 

 

The tangential flow velocities at inlet and outlet are: 

   

VIN = VJ      VOUT = (VJ - VB) K Cosβ + VB 

 

where β is the bucket outlet angle and K is a loss factor. 

The blade and jet velocities are:  

 

VB = R ω        VJ = k √[2P/ρ] 

 

So power becomes: 

 

P =  ρQ (VJ - VB) (1 – K Cosβ) VB 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 



 

 

 

FRANCIS TURBINE THEORY 

 

The power output of the turbine is: P = T ω  where T is 

the torque on the rotor and ω is the rotational speed of 

the rotor. The torque is:  

 

T =  (ρQ VT R) 

 

 

The tangential flow velocities at inlet and outlet are: 

   

VIN = VN Cot[α]      VOUT = VB + VN Cot[β]  

 

where α is the inlet guide vane angle and β is the blade 

outlet angle. The blade and normal velocities are:  

 

VB = R ω     VN = Q / [π 2R h] 

 

where h is the depth of the rotor. So power becomes: 

 

P =  ρQ (VIN RIN – VOUT ROUT) ω 

= ρQ ( [VTVB]IN – [VTVB]OUT ) 

 

 

 

 

 

 



 

 

 

 



 

 

KAPLAN TURBINE THEORY 

 

The power output of the turbine is: P = T ω  where T is 

the torque on the rotor and ω is the rotational speed of 

the rotor. The torque is:  

 

T =  (ρQ VT R) 

 

 

The tangential flow velocities at inlet and outlet are: 

   

VIN = VN Cot[α]      VOUT = VB + VN Cot[β]  

 

where α is the inlet guide vane angle and β is the blade 

outlet angle. The blade and normal velocities are:  

 

VB = (RO+RI)/2 ω     VN = Q / [π (RO RO – RI RI)] 

 

where RO and RI are outer radius and inner radius of the 

blade respectively. So power becomes: 

 

P =  ρQ (VIN RIN – VOUT ROUT) ω 

= ρQ ( [VTVB]IN – [VTVB]OUT ) 

 

 

 

 

 

 



 

 



 

 

CENTRIFUGAL PUMP THEORY 

 

The power output of the pump is:  

 

P = T ω  =  (ρQ VT R) ω 

 

The tangential flow velocities at inlet and outlet are: 

   

VIN = VN Cot[α]      VOUT = VB + VN Cot[β]  

 

The blade and normal velocities are:  

 

VB = R ω     VN = Q / [π 2R h] 

 

Power output is also  

P = P Q 

 

Manipulation gives 

 

P = P / Q  =  (ρ VT R) ω 

= ρ (VOUT ROUT – VIN RIN) ω 

= ρ ( [VTVB]OUT – [VTVB]IN ) 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

 

PROPELLOR PUMP THEORY 

 

The power output of the pump is:  

 

P = T ω =  (ρQ VT R) ω 

 

 

The tangential flow velocities at inlet and outlet are: 

   

VIN = VN Cot[α]      VOUT = VB + VN Cot[β]  

 

The blade and normal velocities are:  

 

VB = (RO+RI)/2 ω        VN = Q / [π (RO RO – RI RI)] 

 

Power output is also  

 

P = P Q 

 

Manipulation gives 

 

P = P / Q  =  (ρ VT R) ω 

= ρ (VOUT ROUT – VIN RIN) ω 

= ρ ( [VTVB]OUT – [VTVB]IN ) 

 

 

 

 

 



 

 

 

 

 

 

 

 



 

 

 

 

 

 

FLUIDS IN MOTION 

 

 

SCALING 

LAWS 



 

 

 

 

 

PREAMBLE 

 

Scaling laws allow us to predict prototype behavior from 

model data. Generally the model and prototype must look the 

same. This is known as geometric similitude. The flow 

patterns at both scales must also look the same. This is 

known as kinematic or motion similitude. Finally, certain 

force ratios in the flow must be the same at both scales. 

This is known as kinetic or dynamic similitude. Sometimes 

getting all force ratios the same is impossible and one must 

use engineering judgement to resolve the issue.  

 

The simplest way to derive scaling laws is to use common 

sense. If you need to develop a nondimensional power 

coefficient, you need to divide power by a reference power. 

The reference power could be based on things like the 

properties of the fluid and conditions imposed by the 

surroundings. One could also derive the scaling laws using a 

more formal procedure known as the Method of Indices. Most 

fluids texts call this the Buckingham π Theorem. For this, 

the variables and parameters of interest are divided into 

primary and secondary categories. When using the Buckingham 

π Theorem, each nondimensional coefficient is known as a π. 

 



 

 

FLUID FORCE RATIOS 

 

Many flow situations depend on the strength of one type of 

fluid force relative to another type of fluid force. The 

ratio of the forces is used to define the flow. Every flow 

situation will have a characteristic dimension which defines 

the size of the geometry. Let this dimension be D. All areas 

in the flow scale as D2 and all volumes scale as D3. Every 

flow situation will have a characteristic flow speed. Let 

this speed be C. Inertia forces in a flow scale as dynamic 

pressure times area:  C2/2 D2. Viscous forces scale as 

shear stress times area: µ C/D D2. Gravity forces scale as 

weight density times volume: ρg D3. Surface tension forces 

scale as σ D where σ is surface tension. Fluid elastic or 

compressibility forces scale as K D2 or ρ a2 D2.    

 

Ignoring the constant 2, the ratio of pressure forces to 

inertia forces gives the Euler Number:  ΔP/[C2]. 

 

Ignoring the constant 2, the ratio of inertia forces to 

viscous forces gives the Reynolds Number:  ρCD/µ. 

 

Ignoring the constant 2, the ratio of inertia forces to 

gravity forces gives the Froude Number:  C2/[gD] or C/√[gD]. 

 

Ignoring the constant 2, the ratio of inertia forces to 

surface tension forces gives the Weber Number:  ρC2D/σ. 

 

The ratio of inertia forces to elastic or compressibility 

forces gives the Mach Number: C2/a2 or C/a. 

 
 
 
 



 

 

 

 

 

ILLUSTRATION : WAKE DRAG ON BODIES 

 

For a body moving through a fluid, the wake drag on it can be 

represented nondimenionally as a drag coefficient:  

 

CD = D / [[ρU2/2] A] 

 

The reference drag is the dynamic pressure associated with 

the motion of the body times its profile area as seen from 

upstream.  Usually CD is a function of Reynolds Number: 

 

Re = UD/ν 

 

This is inertia forces divided by viscous forces. 

 

 

 

ILLUSTRATION : LIFT ON WINGS 

 

The lift force on a wing can be represented nondimenionally 

as a lift coefficient:  

 

CL = L / [[ρU2/2] A] 

 

The reference lift is the dynamic pressure associated with 

the motion of the wing times its planform area as seen from 

above. Below stall, CL is a weak function of Reynolds Number. 

It is a strong function of the wing angle of attack.  

 

 

 



 

 

 

 

ILLUSTRATION : WAVE DRAG ON SHIPS 

 

The drag on a ship due to wave generation can be represented 

nondimensionally as a drag coefficient:  

 

CD = D / [[ρU2/2] A] 

 

In this case CD is a function of Froude Number: 

 

Fr = U/√[gL] 

 

This is inertia forces divided by gravity forces. 

 

 

 

ILLUSTRATION :  OSCILLATORY MOTION 

 

Sometimes flows are oscillatory. In this case we need to 

nondimensionalize the flow period  T with a reference period 

T. For a body with characteristic dimension D in a flow with 

speed U, the reference period is the transit time: 

 

T = D/U 

 

So the nondimensional period is:  

 

CT = T/T 

 

 

 

 



 

 

 

ILLUSTRATION :  VORTEX SHEDDING 

 

Vortices are often shed from structures in an asymmetric 

pattern. The Strouhal Number for such flows is the transit 

time T divided by the vortex shedding period T: St = T/T. For 

a circular cylinder St is around 0.2 so T is around 5 times 

T. One can form a period ratio  

 

CT = T/ T 

 

where T is a natural period of vibration of the structure. 

Resonance would occur when CT is equal to unity. 

 

 

ILLUSTRATION :  HARBOR RESONANCE 

 

Consider a harbor with a surface area S and a neck with area 

A and length L. The motion of the water in the neck causes 

the water level in the harbor to rise or fall. The 

hydrostatic force due to this level moves the water in the 

neck. This is basically a mass on a spring. Analysis shows 

that the natural period of vibration is 

 

T  = 2π/ω  = 2π √([SL]/[gA]) 

 

Dividing this by the tide period  T gives  

 

CT = T /T 

 

Resonance would occur when CT is equal to unity. 

  



 

 

 

 

 

ILLUSTRATION :  HEAD LOSS IN PIPES 

 

 

The pressure drop ΔP due to friction for flow along a pipe 

is a function of the pipe diameter D, the pipe length L, the 

roughness size e, the density of the fluid ρ, the viscosity 

of the fluid µ and the speed of the flow C. Manipulation of 

the variables gives the nondimensional coefficients 

 

Pressure Coefficient     ΔP / [ρC2/2] 

 

Reynolds Number         ρ C D / µ 

 

Length to Diameter Ratio     L / D 

 

Roughness to Diameter Ratio    e / D 

 

An equation for pressure drop is 

 

ΔP = f L/D  ρC2/2 

          

This can be written as a head loss 

 

Δh = f L/D  C2/2g 

 

The friction factor f would be a function of the Reynolds 

Number and the Relative Roughness Ratio.  

 

 



 

 

 

ILLUSTRATION: PUMPS 

 

 

For a pump, it is customary to let N be the rotor RPM and D 

be the rotor diameter. All flow speeds U scale as ND and all 

areas A scale as D2. Pressures are set by the dynamic 

pressure ρU2/2. Ignoring constants, one can define a 

reference pressure [ρN2D2] and a reference flow [ND3]. Since 

fluid power is just pressure times flow, one can also define 

a reference power [ρN3D5]. Dividing dimensional quantities by 

reference quantities gives the scaling laws: 

 

Pressure Coefficient    CP = P / [ρN2D2] 

 

Flow Coefficient    CQ = Q / [ND3] 

 

Power Coefficient   CP = P / [ρN3D5] 

  

On the pressure versus flow characteristic of a pump, there 

is a best efficiency point (BEP) or best operating point 

(BOP). For geometrically similar pumps that have the same 

operating point on the CP versus CQ curve, the coefficients 

show that if D is doubled, P increases 4 fold, Q increases 8 

fold and P increases 32 fold, whereas if N is doubled, P 

increases 4 fold, Q doubles and P increases 8 fold.   

 

 

 

 



 

 

ILLUSTRATION: TURBINES 

 

For a turbine, we are interested mainly in the power output 

of the device as a function of its rotational speed. The 

simplest way to develop a nondimensional power is to divide 

power P by something which has the units of power.  The 

power in a flow is its dynamic pressure P times volumetric 

flow rate Q. For a flow, the dynamic pressure P is 

 

P =  V2/2 

 

where ρ denotes the density of fluid and V is the speed of 

the flow. Volumetric flow Q is the speed of the flow V times 

its flow area A.  So, a reference power is 

                                

V2/2  VA 

 

So, we can define a power coefficient CP   

                        

CP  =  P   /  [ V3/2  A] 

 

To develop a nondimensional version of the rotational speed, 

we can divide the tip speed of the blades R by the flow 

speed V. So, we can define a speed coefficient CS    

 

CS  =  R / V  

 

One could derive the power and rotor speed coefficients 

using the Buckingham π Theorem. Power and speed would be 

primary variables. The flow speed and area and the density 



 

 

of the fluid would be secondary variables. For power, the 

goal is to find πP where 

 

πP =    P   Va   b  Ac 

 

We need to find the a b c that make the right hand side 

dimensionless. In terms of the basic units of mass M and 

length L and time T, one can write 

 

M0L0T0    =      M L/T2  L /T     [L/T]a     [M/L3]b  [L2]c 

  

Inspection shows that  

 

a=-3             b=-1        c=-1 

 

With this, πP becomes     

    

πP =   P  /  [V3  A] 

 

Similarly, for rotor speed, the goal is to find πS where 

       

πS =       Va   b  Rc 

 

Manipulation shows that   

 

a=-1      b=0        c=+1 

 

With this, πS becomes     

 

πS = R / V 

 

As can be seen, each π is basically the same as a C. 
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