
 

 

 

 

FLUID STRUCTURE INTERACTIONS 

 

 

 

 

 

These notes cover three different types of fluid structure 

interactions. The first is Flow Induced Vibration of 

Structures. The second is Unsteady Flow in Pipe Networks. The 

third is Water Wave Interaction with Structures. 
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PREAMBLE 

There are two types of vibrations: resonance and instability. 

Resonance occurs when a structure is excited at a natural 

frequency. When damping is low, the structure is able to 

absorb energy each oscillation cycle and dangerous amplitudes 

can build up. There are two types of instability: static and 

dynamic. Static instability occurs when a negative fluid 

stiffness overcomes a positive structural stiffness. Usually, 

because of nonlinearity, this instability is oscillatory: 

oscillations are often referred to as relaxation 

oscillations. Examples are wing stall flutter and gate valve 

vibration. Dynamic instability occurs when a negative fluid 

damping overcomes a positive structural damping. Examples 

include galloping of slender structures and tube bundle 

vibrations. In many cases, a system oscillates at a 

structural natural frequency. In these cases, frequency is a 

parameter in a semi empirical critical speed equation.  

Natural frequencies depend on the inertia of the structure 

and its stiffness. Usually the damping of the structure is 

ignored. It usually has only a small influence on periods. If 

the structure has a heavy fluid surrounding it, some of the 

fluid mass must be considered part of the structure. The 

structure appears more massive than it really is. For a 

simple discrete mass stiffness system, there is only one 



natural period. For distributed mass/stiffness systems, like 

wires and beams, there are an infinite number of natural 

periods. For each period, there is a mode shape. This shows 

the level of vibration at points along the structure.       

Structural frequencies can be obtained analytically for 

discrete mass/spring systems and for uniform wires and beams. 

For complex structures, they can be obtained using 

approximate procedures like the Galerkin Method of Weighted 

Residuals. In some cases, the fluid structure interaction is 

so complex that vibration frequencies depend on both the 

structure and the fluid. Examples include flutter of wings 

and panels and pipe whip due to internal flow.  

 

These notes start with a description of some flow induced 

vibrations of slender structures.  Next vibration of lifting 

bodies like wings and propellors is considered. Then 

vibration of panels exposed to flow is discussed. Finally, 

vibration in pipe networks is considered.  

 

 

  

 

 

 

 



FLOW INDUCED VIBRATION OF SLENDER STRUCTURES 

  

 VORTEX INDUCED RESONANCE 

Vortices shed from most slender structures in an asymmetric 

pattern. The shedding causes a lateral vibration of the 

structure. When the vortex shedding frequency is close to a 

natural frequency of the structure, the structure undergoes 

resonance. Once the structure begins to oscillate, it causes 

a phenomenon known as lock in. The vortices shed at the 

natural frequency. In other words, the structure motion 

controls the vortex shedding. It also increases the 

correlation length along the span. This means that vortex 

shedding along the span occurs at the same time. This gives 

rise to greater lateral loads. So, once shedding starts, it 

quickly amplifies motion. 

  

 VORTEX INDUCED INSTABILITY 

Beyond a certain critical flow speed, a shear layer that 

has separated from a structure can reattach and create a 

very strong attached vortex. This occurs only for certain 

shapes. When such a shape is moving laterally in a flow, 

the attached vortex pulls it even more laterally! The 

phenomenon is known as galloping. The structure moves until 

its stiffness stops it. The vortex disappears and the 



structure starts moving back the other way. As it does so, 

the vortex appears on the other side of the structure which 

pulls it the other way.  Another type of galloping is known 

as wake galloping. This is an oval shaped orbit motion of a 

cylindrical structure in the outer wake of another structure 

which is just upstream.  

 

WAKE BREATHING OF A CYLINDER IN A FLOW 

There are two modes of wake breathing. In the first mode, the 

Reynolds Number is near the point where the boundary layer 

becomes turbulent and the wake becomes smaller. When the 

cylinder moves upstream into such a flow, its drag drops, 

whereas when it moves downstream away from such a flow, its 

drag rises. This promotes a streamwise vibration of the 

cylinder. In the second mode of wake breathing, when the 

cylinder moves into a wake, added mass phenomena cause the 

wake to grow, whereas when the cylinder moves away from the 

wake, it causes it to shrink. This promotes a streamwise 

vibration of the cylinder.  

 

FLOW INDUCED VIBRATIONS OF TUBE BUNDLES 

There are three mechanisms that can cause tube bundles in a 

flow to vibrate. One is known as the displacement mechanism. 

As tubes move relative to each other, some passageways narrow 



while others widen. Fluid speeds up in narrowed passageways 

and slows down in widened passageways. Bernoulli shows that 

in the narrowed passageways pressure decreases while in the 

widened passageways it increases. Common sense would suggest 

that if tube stiffness and damping are low, at some point as 

flow increases, tubes must flutter or vibrate. The 

displacement mechanism has one serious drawback. It predicts 

that a single flexible tube in an otherwise rigid bundle 

cannot flutter but it can undergo a nonlinear oscillation 

called divergence. It is known from experiments that a single 

flexible tube in an otherwise rigid bundle can flutter. 

Another mechanism known as the velocity mechanism does 

predict flutter in the single flexible tube case. This 

mechanism is based on the idea that, when a tube is moving, 

the fluid force on it due its motion lags behind the motion 

because the upstream flow which influences the force needs 

time to redistribute. This time lag introduces a negative 

damping which can overcome the positive damping due to 

structural and viscous phenomena. The time lag is roughly the 

tube spacing divided by the flow speed within the bundle. 

Details of this model are beyond the scope of this note. The 

third mechanism for tube vibration involves vortex shedding 

and turbulence within the bundle. 

 



 

CRITICAL SPEED EQUATIONS 

For a slender structure, the Strouhal Number S is the 

transit time T divided by the vortex shedding period T: 

S=T/T. The transit time T is D/U. Solving for flow speed U 

gives: U = D/[ST]. During resonance, T=T where T is the 

structural period. So the critical flow speed is: 

 

U = D/[S T] 

 

For the lateral vibration of a slender structure known as 

galloping, the critical flow speed U is 

   

U = Uo M/Mo ζ a      Uo = D/T    Mo = ρD
2
 

 

The factor ζ accounts for damping: it is typically in the 

range 0.01 to 0.1. The parameter a accounts for the shape 

of the structure. For a square cross section structure a is 

8 while for a circular cross section structure a is . 

For tube bundle vibration, the critical flow speed is 

 

U = β/T √[Mδ/ρ]       U = βUo √[δM/Mo] 

 

The factor δ accounts for damping, and the parameter β 

accounts for the bundle geometry. Typically δ is in the 

range 0.05 to 0.25 while β is in the range 2.5 to 6.0. 



 

VIBRATION MODES OF SIMPLE WIRES AND BEAMS 

 

For a wire under tension free to undergo lateral motion, the 

governing equation is: 

 

/x (TY/x) = M 2Y/t2 

                  

where Y is the lateral deflection, T is the tension in the 

wire, M is its mass per unit length, x is position along the 

wire and t is time. For a uniform wire with constant M and T, 

this can be written as the wave equation: 

 

a
2
 2Y/x2 = 2Y/t2       a2 = T/M 

 

where a is the wave speed. During steady free vibration of a 

wire, one can write for each point on the wire: 

 

Y = Y Sin ωt 

 

Substitution into the governing equation gives: 

 

a
2
 d

2Y/dx2 = - ω2 Y 

d
2Y/dx2 = - β2 Y      β2 = ω2/a2 

 

A general solution is 

 



Y  =  Yo Sin βx 

 

For a wire held at both ends, Y is zero at both ends. This 

implies that β must be nπ/L,  where n is any positive integer 

and L is the length of the wire. Substitution into the β
2
 

equation gives the natural frequencies:  

 

ωn = nπa/L = nπ/L [T/M] 

 

The corresponding natural periods are: 

 

Tn = 2L/n [M/T] 

 

The natural mode shapes are:  

 

Sin [nπx/L] 

 

For a beam free to undergo lateral motion, the governing 

equation is 

 

- 2/x2 (EI 2Y/x2) = M 2Y/t2 

 

where E is the beam material Elastic Modulus and I is the 

section area moment of inertia. 

 

During steady free vibration of a beam, one can write for 

each point on the beam:  



 

Y = Y Sin ωt 

 

Substitution into the equation of motion gives: 

 

d
2
/dx

2
 (EI d

2Y/dx2) = ω2 M Y 

 

For a uniform beam with constant M and EI, this becomes: 

 

d
4Y/dx4 = β4 Y        β4 = ω2 M/[EI] 

              

The general solution is:  

 

Y = A Sin[βx] + B Cos[βx] + C Sinh[βx] + D Cosh[βx] 

                      

where A and B and C and D are constants of integration. These 

are determined by the boundary conditions.  

 

For a beam with pivot supports, the boundary conditions are 

zero deflection and zero bending moment at each end. This 

implies that at each end: 

 

Y = 0      d2Y/dx2 = 0 

 

In this case, the general solution reduces to:    

            

Y  =  Yo Sin βx 



As for the wire, β must be nπ/L, where n is any positive 

integer and L is the length of the beam. Substitution into 

the β
4
 equation gives the natural frequencies:  

 

ωn = [nπ/L]
2
 [EI]/M 

 

The corresponding natural periods are: 

 

Tn = [L/n]
2
 2/π M/[EI] 

 

The natural mode shapes are:  

 

Sin [nπx/L] 

 

For a cantilever beam, the boundary conditions at the wall 

are zero deflection and zero slope. This implies that 

   

Y = 0      dY/dx = 0 

 

Application of these conditions shows that: 

 

C = - A       D = - B 

 

At the free end of the beam, the bending moment and shear are 

both zero. This implies that 

 

d
2Y/dx2 = 0     d3Y/dx3 = 0 



Application of these conditions gives  

 

[SinβL+SinhβL] A + [CosβL+CoshβL] B = 0 

[CosβL+CoshβL] A - [SinβL-SinhβL] B = 0 

 

Manipulation of these equations gives the β condition: 

  

CosβnL CoshβnL  +  1  =  0 

 

This gives the natural frequencies of the beam. For each 

frequency, one gets the natural mode shape: 

 

(Sin[βnL] - Sinh[βnL]) (Sin[βnx] - Sinh[βnx]) 

+ 

(Cos[βnL] + Cosh[βnL]) (Cos[βnx] - Cosh[βnx]) 

 

The first 3 natural frequencies are: 

 

ω1 = 3.52/L
2
 [EI]/M 

 ω2 = 22.03/L
2
 [EI]/M 

 ω3 = 61.70/L
2
 [EI]/M 

 

The corresponding natural periods are:  

 

T1 = 2πL
2
/3.52 M/[EI] 

 T2 = 2πL
2
/22.03 M/[EI] 

 T3 = 2πL
2
/61.70 M/[EI] 

 

 



  

VIBRATION MODES OF COMPLEX WIRES 

 

The equation governing the lateral motion of a wire is: 

                         

                           

- /x (TY/x)  +  M 2Y/t2  =  0 
                       

In this equation, Y is deflection of the wire from its 

neutral position, T is its tension, x is location along the 

wire, M is the mass of the wire and t is time. During steady 

free vibration of a wire:  

 

Y = Y Sin ωt 

 

Substitution into the equation of motion gives  

 

- d/dx (T dY/dx)  -  ω2 M Y =  0 

 

For a Galerkin finite element analysis, we assume that 

deflection along the wire can be given as a sum of scaled 

shape functions:  

 

Y  =   A n 

        

where n is deflection at a node and A is a shape function. 

For shape functions, we use piecewise linear polynomials. The 

sketch on the next page shows one for a typical node.   

 

 



 

 

 



 

 

Substitution of the assumed form for Y into the governing 

equation gives a residual. In a Galerkin analysis, weighted 

averages of this residual along the wire are set to zero. 

After some manipulation, one gets 

 

 

             L                       

 [dW/dx T dY/dx - W ω2 M Y] dx  =  0 

             0         

  

where L is the length of the wire and W is a weighting 

function. For a Galerkin analysis, shape functions are used 

as weighting functions. For a typical node, these are: 

 

AL = ε       AR = 1-ε 

   

where ε is a local coordinate. The subscripts L and R 

indicate elements immediately to the left and right of the 

node. Notice the integration by parts of the space derivative 

term in the integral. This introduces slope end boundary 

conditions into the formulation. Such boundary conditions are 

not needed for a wire held at both ends. Application of 

vibration theory gives the vibration modes of the wire. A 

computer program was written to do this. For a uniform wire 

with L=10 and M=10 and T=100, theory gives ω1=0.993. With 10 

elements, Galerkin gives ω1=0.998.  

 

 



VIBRATION MODES OF COMPLEX BEAMS 

 

The equation governing the lateral motion of a beam is: 

                         

                           

2/x2 (EI2Y/x2)  +  M 2Y/t2  =  0 

                       

In this equation, Y is deflection of the beam from its 

neutral position, EI is its flexural rigidity, x is location 

along the beam, M is the mass of the beam and t is time. 

During steady free vibration of a beam:  

 

Y = Y Sin ωt 

 

Substitution into the equation of motion gives  

 

d
2
/dx

2
 (EI d

2
Y/dx

2
)  -  ω

2
 M Y  =  0 

 

For a Galerkin finite element analysis, we assume that 

deflection can be given as a sum of scaled shape functions: 

 

Y  =   [A n + B m] 

        

where n is the deflection at a node and m is the slope at the 

node. A and B are shape functions. Theory shows that these 

must be Hermite polynomials. Such polynomials must be used 

because the stiffness term is 4
th
 order. The sketch on the 

next page shows what they look like for a typical node.   

 

 



 

 
 



 

Substitution of the assumed form for Y into the governing 

equation gives a residual. In a Galerkin analysis, weighted 

averages of this residual along the beam are set to zero. 

After some manipulation, one gets 

 

 

           L                         

  [d
2
W/dx

2
 EI d

2Y/dx2 - W ω2 M Y] dx  =  0 

           0            

  

where L is the length of the beam and W is a weighting 

function. For a Galerkin analysis, shape functions are used 

as weighting functions. For a typical node, these are: 

 

AL = ε
2
(3-2ε)     AR = 1-3ε

2
+2ε

3
 

  

BL = Sε
2
(ε-1)     BR = Sε(ε-1)

2
 

   

where ε is a local coordinate and S is an element length. The 

subscripts L and R indicate elements immediately to the left 

and right of the node. Notice the double integration by parts 

of the space derivative term in the integral. This introduces 

tip shear and tip bending moment boundary conditions into the 

formulation. These are both zero for a cantilever beam. 

Application of vibration theory gives the vibration modes of 

the beam. A computer program was written to do this. For a 

uniform beam with L=1 and M=10 and EI=8.33, theory gives 

ω1=3.213. With 10 elements, Galerkin gives ω1=3.210. 

 



GOVERNING EQUATIONS FOR WIRES AND BEAMS 

 

Sketch A shows a wire under tension. A force balance on a 

small segment of the wire gives: 

 

- TY/x  +  [TY/x + /x (TY/x) Δx]  =  M Δx 2Y/t2 

 

Manipulation gives the equation of motion:  

 

/x (TY/x)  =  M 2Y/t2 
 

Sketches B and C show a beam undergoing bending. A force 

balance on a small segment of the beam gives:  

 

- Q  +  (Q + Q/x Δx)  =  M Δx 2Y/t2 

 

Manipulation gives:  

 

Q/x  =  M 2Y/t2 

 

A moment balance on the beam segment gives:  

 

- M  +  (M + M/x Δx)  +  (Q + Q/x Δx) Δx  =  0 

 

Manipulation gives : 

 

Q  =  - M/x 



 

Sketch D shows how a beam is strained when bent. Inspection 

of the sketch shows that the strain is: 

 

ε = Y/R 

 

The stress is: 

 

σ = E ε 

 

where E is the Elastic Modulus. Geometry gives 

 

RΘ = s     Θ/s = 1/R 

s = x       Θ = Y/x 
 

Manipulation gives: 

                

2Y/x2 = 1/R 

 

Moment considerations give: 

 

M  =   σY dA  =  E/R  Y2 dA  =  EI/R  =  EI 2Y/x2 

 

So, the equation of motion becomes 

 

- 2/x2 M  =  - 2/x2 (EI 2Y/x2)  =  M 2Y/t2 



 







 
 

 

 



FEA FIRST MODE VIBRATION OF A SIMPLE WIRE 

 

 

The equation governing lateral motion of a simple wire is 

 

- /x (T Y/x)  +  M 2Y/t2  =  0 
 

For free vibration, Y = Y Sin[ωt], where Y is the deflection 

shape. Substitution into the governing equation gives 

 

- d/dx (T dY/dx)  -  M ω2 Y =  0 

 

For a two element, Galerkin Method of Weighted Residuals, 

Finite Element Analysis, the deflection shape has the form   

 

Y  =  A n            AL=ε     AR=1-ε 

 

where n is the deflection of the node at the middle of the 

wire, A is a shape function, AL is the part of A to the left 

of the node, AR is the part of A to the right of the node and 

ε is a local element coordinate. Substitution into the 

governing equation gives a residual. Weighting this residual 

by the shape function W and integrating along the wire gives   

 

           L                         

  [ - W T d
2Y/dx2  -  W M ω2 Y ] dx  =  0 

           0     

   

Integration by parts of the space derivative term gives 

 

           L                        

 [ dW/dx T dY/dx  -  W M ω
2
 Y ] dx  =  0  

           0 

 

This has left element and right element contributions  

 

                S 

  [ dW/dx T dY/dx - W M ω2 Y ] dx 

                0      



            

               L  

  [ dW/dx T dY/dx - W M ω2 Y ] dx 

               S      

 

where S=L/2 is the element span. In terms of the local 

element coordinate, each contribution becomes 

 

          1                         

  [ dW/dε T/[S
2
] dY/dε  -  W M ω2 Y ] S dε 

          0            

 

Setting the weighting function W equal to A gives 

 

          1                         

  [ dA/dε T/[S
2
] dY/dε  -  A M ω2 Y ] S dε 

          0            

 

The MWR integral contains the following integrals 

           

     [ dA/dε dA/dε ] dε  =  1         [ A A ] dε  =  1/3 

              

Substitution into the MWR integrals gives 

 

[ T/S
2
 – [M/3] ω

2
] S  + [ T/S

2
 – [M/3] ω

2
] S  =  0 

 

Manipulation gives 

 

ω = √3/S √[T/M]  =  2√3/L √[T/M] = 3.46/L √[T/M] 

 

The simple wire theoretical frequency equation is  

 

ω = π/L √[T/M] = 3.14/L √[T/M] 

 

 



 

 

FEA FIRST MODE VIBRATION OF A SIMPLE CANTILEVER BEAM 

 

 



The equation governing lateral motion of a simple beam is 

 

2/x2 (EI 2Y/x2)  +  M 2Y/t2  =  0 
                       

For free vibration, Y = Y Sin[ωt], where Y is the deflection 

shape. Substitution into the governing equation gives 

 

d
2
/dx

2
 (EI d

2Y/dx2)  -  M ω2 Y =  0 

                       

For a single element, Galerkin Method of Weighted Residuals, 

Finite Element Analysis, the deflection shape has the form   

 

Y  =  A n + B m 

        

A = ε
2
(3-2ε)         B = L ε

2
(ε-1)    

   

where A and B are shape functions, ε is a local element 

coordinate, n is the deflection at the tip of the beam, m is 

the slope at the tip and L is the beam length. Substitution 

into the governing equation gives a residual. Weighting this 

residual by each of the shape functions and integrating along 

the length of the beam gives   

 

           L                         

  [ W EI d
4Y/dx4  -  W M ω2 Y ] dx  =  0 

           0            

 

Integration by parts of the space derivative term gives 

 

         L                         

  [ d
2
W/dx

2
 EI d

2Y/dx2  -  W M ω2 Y ] dx  =  0 

         0            

 

In terms of the local element coordinate, this becomes 

 

       1                         

        [ d
2
W/dε

2
 EI/[L

4
] d

2Y/dε2  -  W M ω2 Y ] L dε = 0 

       0     

In the MWR integrals  

 

d
2Y/dε2  = d2A/dε2 n + d2B/dε2 m  =  [-12ε+6]n + [6Lε-2L]m 



 

For a beam, there are two weighting functions. These are the 

shape functions A and B. The resulting MWR integrals contain 

the following integrals 

                                

 [d
2
A/dε

2
 d

2
A/dε

2
]dε = +12      [A A]dε = +78/210 

 [d
2
B/dε

2
 d

2
B/dε

2
]dε = +4L

2
       [B B]dε = +2/210 L

2
 

  [d
2
A/dε

2
 d

2
B/dε

2
]dε = -6L       [A B]dε = -11/210 L 

                  

Substitution into the MWR integrals gives      

 

L(+12n – 6Lm)[EI]/[L
4
] – L M ω

2
(+78/210n - 11L/210m) = 0 

 

L(-6Ln + 4L
2
m)[EI]/[L

4
] – L M ω

2
(-11L/210n + 2L

2
/210m) = 0 

 

Manipulation gives 

 

[+12[EI]/[L
4
]-[78/210]Mω

2
]n+[-6L[EI]/[L

4
]+[11L/210]Mω

2
]m=0 

 

[-6L[EI]/[L
4
]+[11L/210]Mω

2
]n+[+4L

2
[EI]/[L

4
]-[2L

2
/210]Mω

2
]m=0 

 

One can put these equations in matrix form. Setting the 

determinant of the square matrix to zero gives 

 

[+12[EI]/[L
4
]-[78/210]Mω

2
] [+4L

2
[EI]/[L

4
]-[2L

2
/210]Mω

2
] 

- [-6L[EI]/[L
4
]+[11L/210]Mω

2
] [-6L[EI]/[L

4
]+[11L/210]Mω

2
] = 0 

 

Manipulation gives a quadratic for ω
2
. It gives 

 

ω = 3.53/L
2
 [EI]/M 

 

The simple beam theoretical solution is                      

 

ω = 3.52/L
2
 [EI]/M 

 

 

 



 

 

 

 

 



 

 

LIFTING BODY INSTABILITIES 

 

Flutter is a dynamic instability of a lifting body. When it 

occurs, the heave and pitch motions of the body are 90
o
 out 

of phase. The passing stream does work on the body over an 

oscillation cycle. Divergence is a static instability. It 

occurs when the pitch moment due to fluid dynamics overcomes 

the moment due to the structural pitch stiffness of the body.  

  

 FLUTTER AND DIVERGENCE OF FOILS 

A foil is a section of a lifting body. Here quasi steady 

fluid dynamics theory is used to get the loads on the foil. 

This ignores the fact that, when a foil is heaving and 

pitching, vortices are shed behind it because its circulation 

keeps changing. These vortices influence the loads on the 

foil. The equations governing motions of a foil are: 

                      

K h  +  i dh/dt  +  M d
2
h/dt

2
  +  Ma d

2
α/dt

2
   +  L  =  H 

k α  +  j dα/dt  +  I d
2
α/dt

2
  +  Ma d

2
h/dt

2
   +  T  =  P 

 

where h is the downward heave displacement of the foil, α is 

its upward pitch displacement, M is the mass of the foil, I 

is its rotary inertia, K is the heave stiffness of the foil, 

k is its pitch stiffness, i is the heave damping coefficient 

of the foil, j is its pitch damping coefficient, L is the 



lift on the foil, T is the pitch moment and H and P are 

disturbance loads. Quasi steady fluid dynamics theory gives 

for the fluid dynamic loads L and T:  

 

L = ρU
2
/2 CCP β      T = ρU

2
/2 C

2
 κ 

 

where 

β = α + (dh/dt)/U + (3C/4-b)/U (dα/dt) 

κ = (C/4-b)/C CP β + Cπ/[8U] (dα/dt) 

 

where U is the speed of the foil, C is its chord length, a 

indicates how far the center of gravity is behind the elastic 

axis, b is the distance between the elastic axis and the 

leading edge of the foil and CP is a constant given by fluid 

dynamics theory: it is approximately 2π.  

 

Note that the parameter β is the instantaneous angle of 

attack of the foil 3C/4 back from its leading edge. It is 

made up of three components. The first component is the pitch 

angle α. The second component is due to the change in flow 

direction caused by the heave rate dh/dt. The third component 

is due to the change in flow direction caused by the pitch 

rate dα/dt at the 3C/4 location. The 3C/4 location is 

suggested by flat plate foil theory. Theory shows that the 

center of pressure on a foil is at C/4 back from the leading 

edge. This gives rise to the first term in the pitch moment 



parameter κ. The second term is due to the distribution of 

pressure over the foil.  

One can Laplace Transform the governing equations and 

manipulate to get a characteristic equation. Stability is 

dependent on the roots of this equation. One can get the 

roots numerically and plot them in a Root Locus Plot as a 

function of foil speed. This would give the critical speed 

corresponding to the onset of instability. 

 

 FLUTTER AND DIVERGENCE OF WINGS 

Here strip theory is used to get the loads on a wing. The 

wing is broken into strips spanwise and quasi steady fluid 

dynamics theory is used to get the loads on each strip. This 

ignores the fact that, when a wing is heaving and pitching, 

vortices are shed behind it because its circulation keeps 

changing. These vortices influence the loads on the wing. It 

also ignores the fact that for a finite span wing vortices 

are shed along its span but mainly at its tips. These 

vortices create a downwash on the wing. This reduces the lift 

on the wing because it lowers its apparent angle of attack. 

It also tilts the load on the wing backwards and this gives 

rise to a drag. The equations governing heave and pitch 

motions of a wing are: 

                         

 

           

2/y2 (EI2h/y2)  +  M 2h/t2  +  Ma 2α/t2 

+  ρU
2
/2 CCP β  =  H 



                              

 

                                   

-  /y (GJα/y)  +  I 2α/t2  +  Ma 2h/t2 

+  ρU
2
/2 C

2
 κ  =  P 

                       

In these equations, h is the downward heave displacement of 

the wing and α is the upward pitch displacement of the wing. 

EI and GJ account for the stiffness of the wing per unit 

span. M and I are its inertias per unit span. The chord of 

the wing is C and its span is Q. The speed of the wing is U. 

The distance from the elastic axis to the center of gravity 

is a. The distance from the leading edge to the elastic axis 

is b. H and P are disturbance loads.  

 

Fluid dynamic loads per unit span acting on the wing are 

determined by the β and κ parameters. These are: 

 

β = α + (h/t)/U + (3C/4-b)/U (α/t) 

κ = (C/4-b)/C CP β + Cπ/8/U (α/t) 

 

For a Galerkin finite element analysis, we let h and α each 

be a sum of scaled shape functions as follows: 

 

h =  [A n + B m]      α =  D p 

 



A and B and D are the shape functions. In the equation for 

heave, n is the heave at a node while m is the heave slope at 

a node. In the equation for pitch, p is the pitch at a node.  

For a typical node, the shape functions are: 

 

             AL = ε
2
(3-2ε)     AR = 1-3ε

2
+2ε

3
   

             BL = Sε
2
(ε-1)     BR = Sε(ε-1)

2
 

             DL = ε            DR = 1-ε   

        

where ε is a local coordinate and S is an element length. The 

subscripts L and R indicate elements immediately to the left 

and right of a node. The polynomials used for heave are known 

as Hermite polynomials. They must be used because the 

stiffness term in the heave governing equation is 4
th
 order. 

They are not needed for pitch because its stiffness term is 

only 2
nd
 order: linear shape functions are adequate for it.  

 

Substitution of the assumed forms for h and α into the 

governing equations gives residuals. In a Galerkin analysis, 

weighted averages of these residuals along the span of the 

wing are set to zero. After some manipulation, one gets  

 

                           

               [2W/y2 EI 2h/y2 + WM 2h/t2                          

             + WMa 2α/t2 + WρU2/2 CCP β - WH] dy = 0             
                                    

              [W/y GJ α/y + WI 2α/t2                          

             + WMa 2h/t2 + WρU2/2 C2 κ - WP] dy = 0 

 

 



 

where W and W are weighting functions. For a Galerkin 

analysis, these are just the shape functions used to define h 

and α. In other words, W is A and B for each node while W is 

D for each node. Notice the double integration by parts of 

the space derivative term in the heave integral. This 

introduces tip shear and tip bending moment boundary 

conditions into the formulation. Both of these are zero for a 

wing. Notice the single integration by parts of the space 

derivative term in the pitch integral. This introduces tip 

torsion into the formulation. Again this is zero for a wing.  

  

After performing the integrations numerically using Gaussian 

Quadrature, one gets a set of Ordinary Differential Equations 

or ODEs in time. One can Laplace Transform these and 

manipulate to get a characteristic equation. Stability is 

dependent on the roots of this equation. Instead of using 

Laplace Transform approach, one can put the ODEs in a matrix 

form and use matrix manipulation to get the roots of the 

characteristic equation. One can plot them in a Root Locus 

Plot as a function of wing speed. This would give the 

critical speed corresponding to the onset of instability. 

 

 

 

 

 



 

 

 

 



 

KELVIN HELMHOLTZ INSTABILITIES 

 

Consider the flexible panel shown in Figure A. A fluid 

flowing over such a panel can cause it to flutter. The 

simplest analysis of this assumes the panel to be an 

infinitely long thin plate. It also assumes that the flow 

above and below the panel is potential flow. Conservation of 

mass considerations give: 

    

2
φT = 0         

2
φB = 0 

 

where T indicates the top flow and B indicates the bottom 

flow. The kinematic constraints at walls are: 

 

φT/z = 0      at z = +dT 

φB/z = 0      at z = -dB 

 

The panel kinematic constraints are based on: 

 

Dη/Dt  =  Dz/Dt 

 

where η is the vertical deflection of the panel from its rest 

state. The η for a point on the panel must follow the z for 



 

 



that point. The constraint gives for the top and bottom of 

the panel: 

 

η/t  +  U η/x  =  φT/z    at  z = 0 

η/t  =  φB/z    at  z = 0 
 

The panel dynamic constraints are: 

 

φT/t  +  U φT/x  +  PT/ρT  +  gη  =  0    at  z = 0 

φB/t  +  PB/ρB  +  gη  =  0    at  z = 0 
      

Finally, the equation of motion of the panel is: 

 

σ w 2η/t2 = (PB - PT )w  - K η + T w 
2
η/x2 - D w 4η/x4 

 

where σ is the sheet density of the panel, w is the panel 

width, K accounts for side support forces, T is the tension 

in the panel and D=EI is its flexural rigidity.  

 

The dynamic constraints give: 

 

PT  =  - ρT (φT/t + UφT/x)  -  ρT gη    at  z = 0 

PB  =  - ρB (φB/t)  -  ρB gη    at  z = 0 
 

Substitution into the panel equation of motion gives: 

 

σ 2η/t2  =  - ρB (φB/t)  +  ρT (φT/t + UφT/x) 

-  ρBg η  +  ρTg η  -  K/w η  +  T 
2
η/x2  -  D 4η/x4 



Consider the general solution forms: 

 

φT = [G Sinh[kz] + H Cosh[kz] ]  e
jkX
      

φB = [I Sinh[kz] + J Cosh[kz] ]  e
jkX
      

η = ηO e
jkX
 

 

where  kX  =  k(x - CPt)  =  kx – ωt   where X is the 

horizontal coordinate of a wave fixed frame, x is the 

horizontal coordinate of an inertial frame, CP is the wave 

phase speed, k is the wave number and ω is the wave 

frequency. The wall constraints give 

 

φT = φTO  Cosh[k(dT-z)]/Cosh[kdT]  e
jkX
      

φB = φBO  Cosh[k(dB+z)]/Cosh[kdB]  e
jkX
      

η = ηO e
jkX
 

 

These satisfy everything except the panel kinematic 

constraints and the panel equation of motion. Substitution 

into the panel equations gives, after common terms are 

cancelled away: 

 

-jω ηO  +  Ujk ηO  =  -k φTO Tanh[kdT] 

-jω ηO  =  +k φBO Tanh[kdB] 

 

ρT [-jω + Ujk ] φTO -  ρB [-jω] φBO +  ρTg ηO  -  ρBg ηO 

-  Tk
2
 ηO  -  Dk

4
 ηO  -  K/w ηO  -  σ[-jω]

2
 ηO  =  0 

 



Substitution into the last equation gives: 

 

ρT[-jω+Ujk][+jωηO-UjkηO]/[kTanh[kdT]] 

  -  ρB[-jω][-jωηO]/[kTanh[kdB]]  +  ρTg ηO 

- ρBg ηO  -  Tk
2 
ηO  -  Dk

4 
ηO  - K/w ηO  - σ[-jω]

2 
ηO  =  0 

 

Manipulation of this gives an equation of the form: 

 

A ω
2
  +  B ω  +  C  =  0  

            

A  =  ρT/[kTanh[kdT]]  +  ρB/[kTanh[kdB]]  +  σ        

 

B  =  - 2UρT/Tanh[kdT]  

 

C  =  - S  +  U
2
kρT/Tanh[kdT]   

 

S = + Tk
2
  +  Dk

4
  +  K/w  -  ρTg  +  ρBg   

 

When B
2
 - 4AC is negative, the roots of the quadratic for ω 

form a complex conjugate pair: 

  

ω1 = α + βj       ω2 = α - βj 

α = -B/2A         β = [4AC-B2]/2A 

 

Substitution of ω1 into the wave profile equation gives: 

 

 



ηO e
jkX
  =  (ΔR+ΔIj) e

j[kx-(α+βj)t]
 

 

=  (ΔR+ΔIj) e
j[kx-αt]

 e
j[-βjt]

  =  (ΔR+ΔIj) e
+βt
 e

j[kx-αt]
 

  

=  (ΔR+ΔIj) e
+βt
 [Cos(kx-αt)+jSin(kx-αt)] 

 

The real part of this is: 

 

[ ΔR Cos(kx-αt) - ΔI Sin(kx-αt) ] e
+βt
 

 

=  Δ  e
+βt
 Sin[(kx-αt) + ε] 

 

This shows that, when B
2
-4AC is negative, the ω1 wave grows. 

Similarly, one can show that the ω2 wave decays. Substitution 

into B
2
 - 4AC = 0 gives the critical speed: 

 

U
2
  =  S V/W  

 

V  = ρT/[kTanh[kdT]] + ρB/[kTanh[kdB]] + σ 

W = ρBρT/[Tanh[kdT]Tanh[kdB]] + kσρT/Tanh[kdT] 

 

This is sketched in Figure B. The plot shows that, if U is 

below a certain level, the panel does not flutter. For U 

beyond this level, it flutters for a range of k.  

 



 

 



 

For a membrane under uniform pressure load 

 

T d2Δ/dx2 = P 

 

Integration shows that the mean deflection is: 

 

Δ = P w2 / [12 T] 

 

This gives the side support stiffness  

 

K
*
 = [12 T] / w2 

 

For a beam under uniform pressure load 

 

EI d4Δ/dx4 = P 

 

Integration shows that the mean deflection is: 

 

Δ = P w4 / [120 EI] 

 

This gives the side support stiffness  

 

K
*
 = [120 EI] / w4 

    

 



 

 

PIPE INSTABILITIES DUE TO INTERNAL FLOW 

 

 

The equation governing the lateral vibration of a pipe 

containing an internal flow is  

 

M 2Y/t2  =   -  2/x2 (EI 2Y/x2)  +  T 2Y/x2 

-  PA 2Y/x2  -  ρAU2 2Y/x2  -  2ρAU 2Y/xt 

 

For a pipe pivoted at both ends, a static force balance 

shows that centrifugal forces generated by fluid motion can 

cause buckling when U is greater than 

 

U
2
 = [ EI/[ρA] π

2
/L

2
 + T/[ρA] - P/ρ ] 

                  

For a pipe clamped at one end and open and free at the 

other end, a stability analysis shows that the pipe can 

undergo a flutter like phenomenon known as pipe whip. The 

critical speed U can be obtained from the sketch on the 

next page. A straight line fit to the wavy curve there is 

  

U = [4 + 14 Mo/M] Uo 

Uo = [EI]/[MoL
2
]       Mo = ρA 



 

 



  

PIPE WHIP INSTABILTY 

 

 

The equation governing the lateral vibration of a pipe 

containing an internal flow is  

 

0  =   M 
2

Y/t
2

   +   
2

/x
2

 (EI 
2

Y/x
2

)  -  T 
2

Y/x
2

 

+  PA 
2

Y/x
2

  +  ρAU
2

 
2

Y/x
2

  +  2ρAU 
2

Y/xt 

 

In this equation, Y is the lateral deflection of the pipe 

from its neutral position, M is the total mass of the pipe 

per unit length, EI is its flexural rigidity, T is tension, P 

is pressure, U is flow speed, A is pipe area, x is location 

along the pipe and t is time. For a Galerkin finite element 

analysis, we assume that the deflection of the pipe can be 

given as a sum of scaled shape functions: 

 

                    Y  =   [A n + B m] 

        

where n is the deflection at a node and m is the slope at the 

node. A and B are shape functions. Theory shows that these 

must be Hermite polynomials. Such polynomials must be used 

because the EI term is 4
th
 order. The sketch on the next page 

shows what they look like for a typical node.   

 



 

 

 

 

 

 

 



Substitution of the assumed form for Y into the governing 

equation gives a residual R. In a Galerkin analysis, weighted 

averages of this residual along the pipe are set to zero: 

                        L 

    W R dx  =  0 

                        0 

                     

where L is the length of the pipe and W is a weighting 

function. For a Galerkin analysis, shape functions are used 

as weighting functions. For a typical node, these are: 

 

             AL = ε
2
(3-2ε)     AR = 1-3ε

2
+2ε

3
  

             BL = Sε
2
(ε-1)     BR = Sε(ε-1)

2
 

   

where ε is a local coordinate and S is an element length. The 

subscripts L and R indicate elements immediately to the left 

and right of the node. After performing the integrations and 

applying boundary conditions, one gets a set of ODEs in time. 

One can put them in a matrix form and use matrix manipulation 

to get the roots  of the system characteristic equation.  

 

[GI] |d/dt| + [GS] || = |0| 

[GI]  |o| + [GS] |o| = |0| 

 

One can plot the roots in a Root Locus Plot to get the 

critical speed corresponding to the onset of instability. 

 



 

 

 

 

FLUID STRUCTURE INTERACTIONS 

 

 

 

 

 

 

 UNSTEADY FLOW  

IN PIPE NETWORKS 

 

 

 

 

 



 

PREAMBLE 

Unsteady flow in pipe networks can be caused by a number of 

factors. A turbomachine with blades can send pressure waves 

down a pipe. If the period of these waves matches a natural 

period of the pipe wave speed resonance develops. A piston 

pump can send similar waves down a pipe. Waves on the surface 

of a water reservoir can also excite resonance of inlet 

pipes. One way to avoid resonance is to change the wave speed 

of the pipes in the network. For liquids, one can do this by 

adding a gas such as air. This can be bled into the network 

at critical locations or it can be held in a flexible tube 

which runs inside the pipes. One could also use a flexible 

pipe to change the wave speed. Sudden valve or turbomachine 

changes can send waves up and down pipes. These can cause the 

pipes to explode or implode. In some cases interaction 

between pipes and devices is such that oscillations develop 

automatically. Examples include oscillations set up by leaky 

valves and those set up by slow turbomachine controllers. To 

lessen the severity of transients in a hydraulic network, one 

can use gas accumulators. Hydro plants use surge pipes. 

Another way to lessen the severity of transients is use of 

relief valves. These are spring loaded valves which open when 

the pressure reaches a preset level. This can be high or low. 

For high pressure liquids, they create a pathway back to a 

sump. For low pressure liquids, they allow a gas such as air 



to enter the pipe. Bypass valves and check valves can be used 

to isolate turbomachines when they fail.  

 

There are three procedures that can be used to study unsteady 

flow in pipe networks. The most complex of these is the 

Method of Characteristics. This finds directions in space and 

time along which the partial differential equations of mass 

and momentum reduce to an ordinary differential equation in 

time. Computational Fluid Dynamics codes have been developed 

based on this method that can handle extremely complex pipe 

networks. A second procedure is known as Graphical 

Waterhammer. It is a graphical form of a procedure known as 

Algebraic Waterhammer. It makes extensive use of PU plots. A 

third procedure is known as the Impedance Method. This makes 

use of Laplace Transforms. It employs something called the 

Impedance Transfer Function. It resembles closely a method 

used to study Electrical Transmission Lines. 

 

These notes start with a physical description of how pressure 

waves propagate along a pipe. This is followed by a 

derivation of the basic wave equations. Then, wave speeds for 

waves in flexible tubes and mixtures are given. Next, an 

outline of Algebraic/Graphical Waterhammer is given. Finally, 

the Method of Characteristics is presented.  

 

 

 



WAVE PROPAGATION IN PIPES 

 

 

Consider flow in a rigid pipe with a valve at its downstream 

end and a reservoir at its upstream end. Assume that there 

are no friction losses. This implies that the pressure and 

flow speed are the same everywhere along the pipe.  

 

Imagine now that the valve is suddenly closed. This causes a 

high pressure or surge wave to propagate up the pipe. As it 

does so, it brings the fluid to rest. The fluid immediately 

next to the valve is stopped first. The valve is like a wall. 

Fluid enters an infinitesimal layer next to this wall and 

pressurizes it and stops. This layer becomes like a wall for 

an infinitesimal layer just upstream. Fluid then enters that 

layer and pressurizes it and stops. As the surge wave 

propagates up the pipe, it causes an infinite number of these 

pressurizations. When it reaches the reservoir, all of the 

inflow has been stopped, and pressure is high everywhere 

along the pipe. The pipe resembles a compressed spring. 

 

When the surge wave reaches the reservoir, it creates a 

pressure imbalance. The layer of fluid just inside the pipe 

has high pressure fluid downstream of it and reservoir 

pressure upstream. Fluid exits the layer on its upstream side 

and depressurizes it. The pressure drops back to the 

reservoir level. A backflow wave is created. The speed of the 

backflow is exactly the same as the speed of the original 

inflow. The pressure that was generated by taking the 

original inflow away is exactly what is available to generate 



the backflow. The backflow wave propagates down the pipe 

restoring pressure everywhere to its original level.  

 

When the backflow wave reaches the valve, it creates a flow 

imbalance. This causes a low pressure or suction wave to 

propagate up the pipe. As it does so, it brings the fluid to 

rest. Again, the valve is like a wall. Because of backflow, 

fluid exits an infinitesimal layer next to this wall and 

depressurizes it and stops. The pressure drops below the 

reservoir level by exactly the amount it was above the 

reservoir level in the surge wave.  

 

When the suction wave reaches the reservoir, all of the 

backflow has been stopped, and pressure is low everywhere 

along the pipe. The pipe resembles a stretched spring. At the 

reservoir, the suction wave creates a pressure imbalance. An 

inflow wave is created. The speed of the inflow is exactly 

the same as the speed of the backflow. The inflow wave 

travels down the pipe restoring pressure to its original 

level. Conditions in the pipe become what they were just 

before the valve was closed.  

 

During one cycle of vibration, there are 4 transits of the 

pipe by pressure waves. This means that the natural period of 

the pipe is 4 times the length of the pipe divided by the 

wave speed. Without friction, the vibration cycle repeats 

over and over. With friction, it gradually dies away.  

 

 

 

 



 

 

 

BASIC WAVE EQUATIONS    



 

 

Consider a wave travelling up a rigid pipe. In a reference 

frame moving with the wave, mass considerations give 

 

ρ A (U+a) = (ρ+Δρ) A (U+ΔU+a) 

 

where ρ is density, A is pipe area, U is flow velocity and 

a is wave speed. When a >> U, this reduces to 

 

ρ ΔU = - a Δρ 

 

Momentum considerations give 

 

[(ρ+Δρ)A(U+ΔU+a) (U+ΔU+a) - ρA(U+a) (U+a)] = [P – [P+ΔP]] A 

 

ρA(U+a) [(U+ΔU+a) - (U+a)] = - ΔP A 

 

where P is pressure. When a >> U, this reduces to 

 

ρ a ΔU = - ΔP 

 

Manipulations give 

a =  [ΔP/Δρ] 

 

For a gas such as air moving down a pipe, one can assume 

ideal gas behavior for which:  

P/ρ = R T 

 



R is the ideal gas constant and T is the absolute 

temperature of the gas. For a wave propagating through a 

gas, one can assume processes are isentropic: in other 

words, adiabatic and frictionless. The wave moves so fast 

through the gas that there is no time for heat transfer or 

friction. The isentropic equation of state is:  

 

P = K ρ
k 

 

where K is another constant and k is the ratio of specific 

heats. Differentiation of this equation gives 

 

                ΔP/Δρ  =  K k ρ
k-1

 = K k ρ
k
 / ρ 

= k/ρ  K ρ
k
 = k P/ρ 

 

The ideal gas law into this gives 

 

ΔP/Δρ  = k R T 

 

So wave speed for a gas becomes  

 

a = k R T] 

 

For a liquid, fluid mechanics shows that 

 

                    ΔP  =  - K ΔV/V 

 



where K is the bulk modulus of the liquid. It is a measure 

of its compressibility. For a bit of fluid mass 

 

ΔM = Δ [ρ V] = V Δρ  +  ρ ΔV  =  0 

 

                  

This implies that  

 

 ΔP  =  K Δρ/ρ        ΔP/Δρ  =  K/ρ 

 

 

So wave speed for a liquid becomes 



a =  [K/ρ] 

 

The bulk modulus of a gas follows from  

 

a = k R T]  =  [K/ρ] 

 

K/ρ = k R T      K = k ρ R T  

    

K = k P 

 

For a flexible pipe 

 

a =  [K/ρ] 

K = K / [1 + [DK]/[Ee]] 

 

where E is the Elastic Modulus of the pipe wall material, e 

is the wall thickness and D is the pipe diameter.  

 

 



WAVES IN FLEXIBLE TUBES   

 

Conservation of Mass for a flexible tube is 

 

ρ A (U+a) = (ρ+Δρ) (A+ΔA) (U+ΔU+a) 

 

Manipulation of this equation gives when U<<a 

 

ρA ΔU  + (U+a)A Δρ + ρ(U+a) ΔA = 0 

ΔU/a  + Δρ/ρ + ΔA/A = 0 

 

Conservation of Momentum for a flexible tube is 

 

 [ρA(U+a)] [(U+ΔU+a)-(U+a)] =  

PA + [P+ΔP] ΔA – [P+ΔP][A+ΔA] 

 

Manipulation of this equation gives when U<<a 

 

ρA(U+a) ΔU  + A ΔP  =  0 

ρa ΔU  + ΔP  =  0 

 

More manipulation gives 

 

ΔU = - ΔP/[ρa]           ΔU/a = -ΔP/[ρa
2
] 

 

Experiments show that 

 

 

 



ΔP = K Δρ/ρ             Δρ/ρ = ΔP/K   

 

For a thin wall pipe, the hoop stress follows from 

 

[2e] σ = ΔP D           σ = ΔP D/[2e] 

 

The hoop strain is  

 

ε = [πΔD]/[πD] = ΔD/D 

 

Substitution into the stress strain connection gives 

 

σ = E ε            ΔP D/[2e] = E ΔD/D    

 

Geometry gives 

 

A = π D
2
/4       ΔA = π 2D/4 ΔD 

 

ΔA/A = 2 ΔD/D = ΔP D/[Ee] 

 

With this Conservation of Mass becomes 

 

- ΔP/[ρa
2
]  +  ΔP/K  +  ΔP D/[Ee] = 0 

 

Manipulation of Conservation of Mass gives 

 

a =  [K/ρ]        

K  =  K / [ 1 + [DK]/[Ee] ] 

 

 



WAVES IN MIXTURES 

For a mixture the wave speed is: 

 

aM =  [KM/ρM] 
 

The mixture density follows from: 

 

MM =  MC     ρMVM =  ρCVC  
 

ρM = [ρCVC]/VM  

 

Experiments show that  

 

ΔP = - KM [ΔVM/VM] 

 

Manipulation gives the bulk modulus 

 

KM = - ΔP / [ΔVM/VM]       VM =  VC     ΔVM =  ΔVC  
 

For each component in the mixture:  

 

 ΔP = - KC [ΔVC/VC]      ΔVC = - [VC/KC] ΔP   

   

The mixture bulk modulus becomes: 

  

KM =  VC / [VC/KC]    
  

The mixture analysis is also valid for mixtures of small 

solid particles and a fluid, such as a dusty gas.  



 

 

ALGEBRAIC/GRAPHICAL WATERHAMMER 

 

Waterhammer analysis allows one to connect unknown pressure 

and flow velocity at one end of a pipe to known pressure and 

velocity at the other end of the pipe one transit time back 

in time. The derivation of the waterhammer equations starts 

with the conservation of momentum and mass equations for 

unsteady flow in a pipe. These are: 

 

ρ U/t + ρU U/x + P/x - ρg Sinα + f/D ρU|U|/2 = 0 

P/t + U P/x + ρa2 U/x = 0 

 

where P is pressure and U is velocity. For the case where 

gravity and friction are insignificant and the mean flow 

speed is approximately zero, these reduce to: 

 

ρ U/t + P/x = 0 

P/t + ρa2 U/x = 0 

 

Manipulation gives the wave equations: 

 

2P/t2 = a2 2P/x2 

2U/t2 = a2 2U/x2 

 



 

 

The general solution consists of two waves: one wave which 

travels up the pipe known as the F wave and the other which 

travels down the pipe known as the f wave.  

 

In terms of these waves, pressure and velocity are: 

 

P – Po  =  f(N) + F(M) 

 

U - Uo  =  [f(N) - F(M)] / [ρa] 

 

where N and M are wave fixed frames given by: 

 

N = x – a t     M = x + a t 

 

For a given point N on the f wave, the N equation shows that 

x must increase as time increases, which means the wave must 

be moving down the pipe. For a given point M on the F wave, 

the M equation shows that x must decrease as time increases, 

which means the wave must be moving up the pipe. Substitution 

of the general solution into mass or momentum or the wave 

equations shows that they are valid solutions. 

 

 

 



 

 

Multiplying U by ρa and subtracting it from P gives: 

 

[P–Po] – ρa[U-Uo]  = 2F(M) 

 

Let the F wave travel from the downstream end of the pipe to 

the upstream end. For a point on the wave, the value of F 

would be the same. This implies  

 

ΔP = + ρa ΔU 

 

Multiplying U by ρa and adding it to P gives: 

 

 [P–Po] + ρa[U-Uo]  = 2f(N) 

 

Let the f wave travel from the upstream end of the pipe to 

the downstream end. For a point on the wave, the value of f 

would be the same. This implies  

 

ΔP = - ρa ΔU 

  

The ΔP vs ΔU equations allow us to connect unknown conditions 

at one end of a pipe at some point in time to known 

conditions at the other end back in time. They are known as 

the algebraic/graphical waterhammer equations. 

 





 

  

 

SUDDEN VALVE CLOSURE 

 

Imagine a pipe with a reservoir at its upstream end and a 

valve at its downstream end. The valve is initially open. 

Then it is suddenly shut. From that point onward, the 

velocity at the valve is zero. We ignore losses. Because of 

this, the pressure at the reservoir is fixed at its initial 

level. We start at point 1 which is at the reservoir and move 

along an f wave to point 2 which is at the valve. A surge 

wave is created at the valve. We then move from the valve 

along an F wave to point 3 which is at the reservoir. A 

backflow wave is created at the reservoir. We then move from 

the reservoir along an f wave to point 4 which is at the 

valve. A suction wave is created at the valve. We then move 

from the valve along an F wave to point 1 which is at the 

reservoir. An inflow wave is created at the reservoir. From 

this point onward the cycle repeats. Friction gradually 

dissipates the waves and the velocity homes in on zero. 

 

 

 

 

 

 



 

 

 

 

 

 



 

LEAKY VALVES 

 

A stable leaky valve is basically one that has a P versus U 

characteristic which resembles that of a wide open valve. 

This has a parabolic shape with positive slope throughout. 

An unstable leaky valve has a characteristic that has a 

positive slope at low pressure but negative slope at high 

pressure. Basically, the valve tries to shut itself at high 

pressure. The flow rate just upstream of a valve is pipe 

flow speed times pipe area. The flow rate within the valve 

is valve flow speed times valve area. In a stable leaky 

valve, the areas are both constant. The valve flow speed 

increases with pipe pressure so the pipe flow speed also 

increases. In an unstable leaky valve, the flow speed 

within the valve also increases with pipe pressure but the 

valve area drops because of suction within the valve. The 

suction is generated by high speed flow through the small 

passageway within the valve. It pulls on flexible elements 

within the valve and attempts to shut it. Graphical 

waterhammer plots for stable and unstable leaky valves are 

given below. As can be seen, they both resemble the sudden 

valve closure plot, but the stable one is decaying while 

the unstable one is growing. In the unstable case, greater 

suction is needed each time a backflow wave comes up to the 

valve because the flow requirements of the valve keep 

getting bigger. In the stable case, less suction is needed 

because the flow requirements keep getting smaller.  

 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

 



 

METHOD OF REACHES 

 

Pipes in a pipe network often have different lengths. The 

method of reaches divides the pipes into segments that have 

the same transit time. The segments are known as reaches. The 

sketch on the next page shows a pipe divided into 4 reaches. 

Conditions at points i j k are known. Conditions at point J 

are unknown. Waterhammer analysis gives for point J: 

 

ΔP = - ρa ΔU 

PJ = Pi - [ρa][UJ-Ui]  

 

ΔP = + ρa ΔU 

PJ = Pk + [ρa][UJ-Uk]  

 
 
Manipulation of these equations gives: 

 
 

PJ = (Pk+Pi)/2 - [ρa][Uk-Ui]/2  

 

UJ = (Uk+Ui)/2 - [Pk-Pi]/[2ρa]  

 

This is the template for finding conditions at points inside 

the pipe. At the ends of a pipe, water hammer analysis would 

connect the end points to j points inside the pipe. 



 

 



 

TREATMENT OF PIPE JUNCTIONS 

 

Pipes in a pipe network are connected at junctions. The 

sketch on the next page shows a junction which connects 3 

pipes. Lower case letters indicate known conditions. Upper 

case letters indicate unknown conditions. A junction is often 

small. This allows us to assume that the junction pressure is 

common to all pipes. It also allows us to assume that the net 

flow into or out of the junction is zero. Conservation of 

Mass considerations give:   

 

ρ AN UN  +   ρ AH UH  +   ρ AW UW   =  0 

 

Waterhammer analysis gives: 

 

PN = Pm + [ρaN][UN-Um]  

PH = Pg + [ρaH][UH-Ug]  

PW = Pv + [ρaW][UW-Uv]  

 

Manipulation gives 

 

UN = Um + [PN-Pm]/[ρaN] 

UH = Ug + [PH-Pg]/[ρaH] 

UW = Uv + [PW-Pv]/[ρaW] 

 

 

 



 

In these equations PN = PH = PW = PJ. Substitution into 

Conservation of Mass gives:  

 

ρ AN [ Um + [PJ-Pm]/[ρaN] ]   

+ ρ AH [ Ug + [PJ-Pg]/[ρaH] ] 

+ ρ AW [ Uv + [PJ-Pv]/[ρaW] ]  =  0 

 

Manipulation gives the junction pressure: 

 

 

PJ = [X – Y] / Z 

 

where 

 

  X = [ AN/aN Pm + AH/aH Pg + AW/aW Pv ]   

 

Y = ρ [ ANUm + AHUg + AWUv ]   

 

Z = [ AN/aN + AH/aH + AW/aW ] 

 

 

The velocities at the junction are: 

  

UN = Um + [PJ-Pm]/[ρaN] 

UH = Ug + [PJ-Pg]/[ρaH] 

UW = Uv + [PJ-Pv]/[ρaW] 

 

 

 



 

 

 

 



ACCUMULATOTS 

 

Accumulators are used to dampen transients in pipe networks. 

They generally consist of a neck or constriction containing 

liquid which is connected directly to the pipe network. A 

pocket of gas is at the other end of the neck. The gas is 

usually contained inside a flexible bladder.  

 

There are two ways to model an accumulator. The first is the 

Helmholtz Resonator mass spring model where the slug of 

liquid in the neck bounces on the gas spring. This gives the 

natural frequency of the accumulator and one tries to match 

that to the natural period of the network. The second model 

is a transient model where the equation of motion of the slug 

of liquid in the neck and the equations for the gas pocket 

are solved step by step in time and this is coupled a water 

hammer analysis transient model. 

 

 

The Helmholtz Resonator model starts with the equation of 

motion of a mass on a spring: 

 

m d
2
ΔZ/dt

2
 + k ΔZ = f  

 

where m is the mass of liquid in the neck and k is the spring 

due to gas compressibility.  

 

 



 

 



 

 

The natural frequency and period of the accumulator are 

 

ω =  √ [k/m]        T = 2π/ω 

 

The mass m of the slug of liquid in the neck is 

 

m = ρ A L 

 

where ρ is the density of the liquid in the neck, A is the 

area of the neck and L is the length of the neck. 

 

Conservation of Mass for the gas pocket gives 

 

Δ [ σ V ] = V Δσ + σ ΔV = 0 

 

Thermodynamics gives 

 

ΔP/Δσ = a
2
      a = √[nRT] 

 

Geometry gives 

 

ΔV = - A ΔZ 

 

Substitution into mass gives 

 

V ΔP/a
2
 – σ A ΔZ = 0 

 

ΔP = [σ A a
2
 / V] ΔZ 

 

 



 

 

The force on the slug of liquid is  

 

ΔF = ΔP A = [σ A
2
 a

2
 / V] ΔZ = k ΔZ 

 

This gives the spring constant k 

 

k = [σ A
2
 a

2
 / V] 

 

Substitution into the frequency equation gives 

 

ω = √ [ [σ A
2
 a

2
 / V] / [ρ A L] ] 

 

= √ [ [σ A a
2
] / [ρ V L] ] 

 

For the transient model the equation governing the motion of 

the slug of liquid in the neck is: 

 

m dU/dt = [ PJ – PG ] A – fL/D ρ U|U|/2 A 

 

where PJ is the junction pressure and PG is the gas pressure. 

The volume of gas is governed by  

 

dV/dt = - U A 

 

The pressure of the gas is 

 

PG = N σ
n
 = N (M/V)

n



 

 

SUDDEN VALVE OPENING 

 

A sketch of a valve is shown on the next page. The governing 

equation for the flow through it is: 

 

PN – PX = K U|U| 

 

For constant pipe properties  

 

                 U = UN = UX      P = PN - PX 

 

P = K U|U| 

 

Water hammer analysis gives 

 

PN – Pm = - ρa (UN – Um) 

  

PX – Py = + ρa (UX – Uy) 

 

Substitution into the valve equation gives 

 

[Pm - ρa (U – Um)] – [Py + ρa (U – Uy)] = K U|U| 

 

This gives U at each time step. Back substitution gives the 

pressure upstream and downstream of the valve.                

 

  

 



 

 

 

 

 



 

METHOD OF CHARACTERISTICS 

 

The method of characteristics is a way to determine the 

pressure and velocity variations in a pipe network when 

valves are adjusted or turbomachines undergo load changes. 

The equations governing flow in a typical pipe are: 

 

ρ U/t + ρU U/x + P/x - ρg Sinα + f/D ρU|U|/2 = 0 

P/t + U P/x + ρa2 U/x = 0 

 

where  P is pressure, U is velocity, t is time, x is distance 

along the pipe, ρ is the fluid density, g is gravity, α is 

the pipe slope, f is the pipe friction factor, D is the pipe 

diameter and a is the wave speed. The wave speed is: 

 

a
2
 = K/ρ      K = K / [1 + DK/Ee] 

 

where K is the bulk modulus of the fluid, E is the Youngs 

Modulus of the pipe wall and e is its thickness. 

 

The governing equations can be combined as follows: 

 

ρ U/t  +  ρ U U/x  +  P/x  +  ρ C 

+  λ  (P/t + U P/x + ρa2 U/x) = 0 

 

 



 

where 

 

C =  f/D U|U|/2 - g Sinα 

 

Manipulation gives  

         

ρ (U/t + [U+λa2] U/x) 

+ λ (P/t + [1/λ+U] P/x) + ρC  = 0 

 

According to Calculus  

 

dP/dt = P/t + dx/dt P/x 

dU/dt = U/t + dx/dt U/x 

 

Inspection of the last three equations suggests: 

   

dx/dt = U + λa
2
 = 1/λ + U 

  

In this case, the PDE becomes the ODE: 

 

ρ dU/dt + λ dP/dt + ρ C = 0 

 

The dx/dt equation gives  

 

 

 



 

λa
2
 = 1/λ    or    λ

2
 = 1/a

2
     or    λ = ± 1/a 

 

So there are 2 values of λ. They give  

 

ρ dU/dt  +  1/a dP/dt  +  ρ C  =  0      dx/dt = U + a 

ρ dU/dt  -  1/a dP/dt  +  ρ C  =  0      dx/dt = U - a 

 

The dx/dt equations define directions in space and time along 

which the PDE becomes an ODE. Using finite differences, each 

ODE and dx/dt equation can be written as:  

 

ρ ΔU/Δt  +  1/a ΔP/Δt  +  ρ C  =  0      Δx/Δt = U + a 

ρ ΔU/Δt  -  1/a ΔP/Δt  +  ρ C  =  0      Δx/Δt = U - a 

 

Manipulation gives 

 

ρa ΔU  +  ΔP  +  Δt ρa C  =  0 

ρa ΔU  -  ΔP  +  Δt ρa C  =  0 

 

When the wave speed a is much greater than the flow speed U 

and when Δx is the length of the pipe L and Δt is the pipe 

transit time T, these equations are basically the water 

hammer equations but with friction added.  

 

 

 



 

 

For pipes divided into reaches, one gets 

 

UP - UL + (PP-PL)/[ρa] + CL(tP-tL) = 0   xP-xL = (UL+a)(tP-tL) 

UP - UR - (PP-PR)/[ρa] + CR(tP-tR) = 0   xP-xR = (UR-a)(tP-tR) 

 

Manipulation gives 

 

UP = 0.5 (UL + UR + [PL-PR]/[ρa] - Δt(CL+CR)) 

PP = 0.5 (PL + PR + [ρa][UL-UR] - Δt[ρa](CL-CR)) 

 

Linear interpolation gives U and P at points L and R in terms 

of known U and P at grid points A and B and C: 

 

UL = UA + (xL-xA)/(xB-xA) (UB-UA) 

UR = UC + (xR-xC)/(xB-xC) (UB-UC) 

PL = PA + (xL-xA)/(xB-xA) (PB-PA) 

PR = PC + (xR-xC)/(xB-xC) (PB-PC) 

 

At each end of the pipe, a boundary condition relates the PP 

and UP there. A finite difference equation also relates the 

PP and UP there. So, one can solve for the PP and UP there.  
 

 

 

 

 

 

 

 



 

 

 

 



 

 

%     UNSTEADY FLOW IN A PIPE 

 

%     METHOD OF CHARACTERISTICS  

 

%     RESERVOIR / PIPE / VALVE 

 

%     PRESSURE = POLD / PNEW 

%     VELOCITY = UOLD / UNEW 

 

%     HEAD = RESERVOIR HEAD 

%     PIPE = HEAD PRESSURE 

 

%     SLOPE = VALVE SLOPE  

 

%     OD = PIPE DIAMETER   

%     OL = PIPE LENGTH 

%     CF = FRICTION FACTOR 

 

%     SOUND = SOUND SPEED 

%     GRAVITY = GRAVITY 

%     DENSITY = DENSITY 

      

%     NIT = NUMBER OF TIME STEPS 

%     MIT = NUMBER OF PIPE NODES 

%     DELT = STEP IN TIME 

 

%     DATA 

      DELT=0.001; 

      CF=0.5; 

      CMAX=+10.0; 

      CMIN=0.0; 

      OD=0.15;OL=100.0; 

      SOUND=1000.0; 

      GRAVITY=10.0; 

      DENSITY=1000.0; 

      SLOPE=-100000.0; 

      HEAD=20.0;SPEED=0.1; 

      NIT=5000;MIT=100;KIT=1; 

      PIPE=HEAD*DENSITY*GRAVITY; 

% 

      ONE=PIPE; 

      TWO=0.0;  

      ZERO=0.0; 

      BIT=MIT/2; 

      GIT=MIT-1; 

      DELX=OL/(MIT-1); 

      FLD=CF*OL/OD; 

      PMAX=CMAX*PIPE; 

      PMIN=CMIN*PIPE; 

      WAY=SPEED*SPEED/2.0; 



      LOSS=FLD*WAY/GRAVITY; 

      G=LOSS*DENSITY*GRAVITY; 

      DELP=G/GIT; 

      for IM=1:MIT 

      POLD(IM)=ONE; 

      UOLD(IM)=SPEED;      

      X(IM)=TWO; 

      ONE=ONE-DELP; 

      TWO=TWO+DELX; 

      end 

      PV=POLD(MIT); 

      UV=UOLD(MIT); 

 

%     START LOOP ON TIME  

      TIME=0.0; 

      for IT=1:NIT 

      TIME=TIME+DELT; 

      T(IT)=TIME; 

%     POINTS INSIDE PIPE 

      for IM=2:MIT-1 

      XA=X(IM-1); 

      XB=X(IM); 

      XC=X(IM+1); 

      PA=POLD(IM-1); 

      PB=POLD(IM); 

      PC=POLD(IM+1); 

      UA=UOLD(IM-1); 

      UB=UOLD(IM); 

      UC=UOLD(IM+1); 

      XL=XB-(UB+SOUND)*DELT; 

      XR=XB-(UB-SOUND)*DELT; 

      UL=UA+(XL-XA)/(XB-XA)*(UB-UA); 

      PL=PA+(XL-XA)/(XB-XA)*(PB-PA); 

      UR=UC+(XR-XC)/(XB-XC)*(UB-UC); 

      PR=PC+(XR-XC)/(XB-XC)*(PB-PC); 

      UNEW(IM)=0.5*(UL+UR+(PL-PR)/DENSITY/SOUND ... 

      -DELT*(CF/2.0/OD*(UL*abs(UL)+UR*abs(UR)))); 

      PNEW(IM)=0.5*(PL+PR+(UL-UR)*DENSITY*SOUND-DENSITY ... 

       *SOUND*CF/2.0/OD*DELT*(UL*abs(UL)-UR*abs(UR))); 

      end 

%     DOWNSTREAM END OF PIPE 

      if(KIT==1) UNEW(MIT)=ZERO;end; 

      if(KIT==2) UNEW(MIT)=UV ... 

      +(POLD(MIT)-PV)/SLOPE;end; 

      if(UNEW(MIT)<=ZERO) ... 

      UNEW(MIT)=ZERO;end; 

      XA=X(MIT-1); 

      XB=X(MIT); 

      PA=POLD(MIT-1); 

      PB=POLD(MIT); 

      UA=UOLD(MIT-1); 

      UB=UOLD(MIT); 



      XL=XB-(UB+SOUND)*DELT; 

      UL=UA+(XL-XA)/(XB-XA)*(UB-UA); 

      PL=PA+(XL-XA)/(XB-XA)*(PB-PA); 

      PNEW(MIT)=PL-(UNEW(MIT)-UL)*DENSITY*SOUND ... 

      -DELT*DENSITY*SOUND*(CF/2.0/OD*UL*abs(UL)); 

      if(PNEW(MIT)<=PMIN) PNEW(MIT)=PMIN;end; 

      if(PNEW(MIT)>=PMAX) PNEW(MIT)=PMAX;end; 

      if(PNEW(MIT)==PMAX | PNEW(MIT)==PMIN) ... 

      UNEW(MIT)=UL-(PNEW(MIT)-PL)/DENSITY/SOUND ... 

      -DELT*(CF/2.0/OD*UL*abs(UL));end; 

%     UPSTREAM END OF PIPE 

      XB=X(1); 

      XC=X(2); 

      PB=POLD(1); 

      PC=POLD(2); 

      UB=UOLD(1); 

      UC=UOLD(2); 

      XR=XB-(UB-SOUND)*DELT; 

      UR=UC+(XR-XC)/(XB-XC)*(UB-UC); 

      PR=PC+(XR-XC)/(XB-XC)*(PB-PC); 

      PNEW(1)=PIPE; 

      UNEW(1)=UR+(PNEW(1)-PR)/DENSITY/SOUND ... 

      -DELT*(CF/2.0/OD*UR*abs(UR)); 

%     STORING P AND U 

      for IM=1:MIT 

      POLD(IM)=PNEW(IM); 

      UOLD(IM)=UNEW(IM); 

      if (IM==BIT) PIT(IT)=PNEW(IM); ... 

      HIT(IT)=PIT(IT)/DENSITY/GRAVITY; ... 

      BAR(IT)=HIT(IT)/10.0; ... 

      UIT(IT)=UNEW(IM);end; 

      end 

%     END OF TIME LOOP  

      end 

% 

 

      plot(T,UIT) 

      plot(UIT,HIT)  

      plot(UIT,BAR)   

      plot(UIT,PIT)        

      plot(T,PIT)        

      plot(T,BAR)  

      xlabel('TIME') 

      ylabel('BAR')   

 

 
 

 

 

 

 

 



 

 

 

 

 

 

 

SUDDEN VALVE CLOSURE 

 

 

 



 

 

 

 

 

 

STABLE LEAKY VALVE



 

 

 

 

UNSTABLE LEAKY VALVE 

 

 



 

 

REACHES WITH FRICTION 

 

Pipes in a pipe network often have different lengths. The 

method of reaches divides the pipes into segments that have 

the same transit time. The segments are known as reaches. The 

sketch on the next page shows a pipe divided into 4 reaches. 

Conditions at points i j k are known. Conditions at point J 

are unknown. Waterhammer analysis gives for point J: 

 

[ρa] dU/dt + dP/dt + [ρa]C  =  0 

PJ - Pi = - [ρa][UJ-Ui] - Δt [ρa]Ci 

 

[ρa] dU/dt - dP/dt + [ρa]C  =  0 

PJ - Pk = + [ρa][UJ-Uk] + Δt [ρa]Ck 

 

 
Manipulation of these equations gives: 

 
 

PJ = (Pk+Pi)/2 - [ρa][Uk-Ui]/2  + Δt [ρa][Ck-Ci]/2 
 

UJ = (Uk+Ui)/2 - [Pk-Pi]/[2ρa] - Δt [Ck+Ci]/2 

 

This is the template for finding conditions at points inside 

the pipe. At the ends of a pipe, water hammer analysis would 

connect the end points to j points inside the pipe. 



 

 

 
 

JUNCTIONS WITH FRICTION 

 



Pipes in a pipe network are connected at junctions. The 

sketch on the next page shows a junction which connects 3 

pipes. Lower case letters indicate known conditions. Upper 

case letters indicate unknown conditions. A junction is often 

small. This allows us to assume that the junction pressure is 

common to all pipes. It also allows us to assume that the net 

flow into or out of the junction is zero. Conservation of 

Mass considerations give:   

 

+  ρ AN UN  +   ρ AH UH  +   ρ AW UW   =  0 

 

Waterhammer analysis gives: 

 

PN - Pm = + [ρaN][UN-Um] + Δt [ρa]Cm 

PH - Pg = + [ρaH][UH-Ug] + Δt [ρa]Cg 

PW - Pv = + [ρaW][UW-Uv] + Δt [ρa]Cv 

 

Manipulation gives 

 

UN = Um + [PN-Pm]/[ρaN] - Δt Cm 

UH = Ug + [PH-Pg]/[ρaH] - Δt Cg 

UW = Uv + [PW-Pv]/[ρaW] - Δt Cv 

 

 

In these equations PN = PH = PW = PJ. Substitution into 

Conservation of Mass gives:  



 

+ ρ AN [ Um + [PJ-Pm]/[ρaN] - Δt Cm]    

+ ρ AH [ Ug + [PJ-Pg]/[ρaH] - Δt Cg] 

+ ρ AW [ Uv + [PJ-Pv]/[ρaW] - Δt Cv]    =  0 

 

Manipulation gives the junction pressure: 

 

PJ = [X – Y] / Z 

 

  X = [ + AN/aN Pm + AH/aH Pg + AW/aW Pv ]   

 

Y = ρ [ + AN[Um-ΔtCm] + AH[Ug-ΔtCg] + AW[Uv-ΔtCv] ] 

   

Z = [ + AN/aN + AH/aH + AW/aW ] 

 

The velocities at the junction are: 

 

UN = Um + [PJ-Pm]/[ρaN] - Δt Cm 

UH = Ug + [PJ-Pg]/[ρaH] - Δt Cg 

UW = Uv + [PJ-Pv]/[ρaW] - Δt Cv 



 

 

 
 



 

 

THREE PHASE VALVE STROKING 

 

Three phase valve stroking is a process where a valve is 

opened or closed very fast in such a way that pressures are 

kept within preset limits and no waves are left at the end.  

It is described below for a complete closure case.   

 

In phase I the valve is moved in such a way that the 

pressure at the valve rises linearly in time from PLOW to 

PHIGH in 2T pipe transit times. At the end of phase I the 

pressure variation along the pipe is linear and the 

velocity everywhere because of a combination of pressure 

surges and back flows has been reduced by P/[a] where P 

is PHIGH minus PLOW. In phase II the valve is moved in such a 

way that the pressure variation along the pipe stays 

constant and the velocity drops by 2P/[a] everywhere every 

2T transit times. The pressure variation remains constant 

because pressure surges generated by valve motion are 

cancelled by suction waves at the valve caused by back 

flows. The constant pressure variation causes a constant 

deceleration of the fluid in the pipe. Phase III takes 2T 

pipe transit times to complete. During this time the 

velocity everywhere drops P/[a] and pressure falls 

linearly at the valve from PHIGH to PLOW. The valve is moved 

in such a way that suction waves at the valve caused by 

back flows are allowed to bring the pressure down again to 

PLOW. Because phases I and III reduce the velocity by a 



total of 2P/[a] phase II must take (U-2P/[a])/(2P/[a]) 

2T seconds to complete. One can calculate what the valve 

area should be at each instant in time during stroking. A 

fast acting feedback control system can then be used to 

move the valve in the desired manner. 

 

Phase I sets up conditions in the pipe for phase II. 

Similarly, phase II sets up conditions in the pipe for 

phase III. In phase II, the pressure surge rate is twice 

that of phases I and III. In a set period of time, one 

pressure surge maintains a backflow that would have 

otherwise been stopped by a suction wave. The other 

pressure surge balances a pressure release. There are no 

suction waves in phase II and all backflows are maintained. 

Every point in the pipe has a velocity reduction due to a 

surge wave and one due to a backflow. In phase III, the 

pressure surge rate is cut in half. This allows suction 

waves to form at the valve. These propagate up the pipe and 

eliminate backflows. Conditions in the pipe are controlled 

by these waves and by waves already there from phase II. 

During the first half of phase III, conditions in the pipe 

are still under the influence of phase II. Velocity falls 

faster at the reservoir than at the valve because of this. 

Half way through phase III, there is a linear pressure 

variation and a linear velocity variation along the pipe. 

During the second half of phase III, a wave travels down 

the pipe which brings the pressure back to PLOW everywhere 

and the velocity to zero everywhere. 

 

 



 

 

 

 

 

 



 

DISCRETE VALVE STROKING 

 

 

The following sketches show a stroking maneuver that has 

been broken down into 16 discrete steps. The top sketch is 

for pressure and the bottom sketch is for velocity. The 

spacing of the steps in time is one quarter transit time.  

 

The first four steps show small surge waves gradually 

propagating up the pipe causing velocity reductions as they 

go. The next four steps show where surge waves propagating 

up the pipe are superimposed on pressure releases and back 

flows propagating down the pipe. These eight steps are for 

phase I. The end result is a linear pressure variation 

along the pipe. The pressure at the valve is high and the 

velocity is the same everywhere. In phase II, the linear 

pressure variation is maintained and this causes a uniform 

deceleration of the fluid along the pipe. The last eight 

steps are for phase III. The first 4 steps there are 

influenced by phase II.  After these 4 steps, the velocity 

is zero at the upstream end of the pipe and there is a new 

linear pressure variation along the pipe. During the last 4 

steps, a wave propagates down the pipe making the velocity 

zero everywhere and bringing pressure back to low.     



 

 

 

 

 

FLUID STRUCTURE INTERACTIONS 

 

 

 

 

 

WATER WAVE INTERACTION  

WITH STRUCTURES 

 



 

PREAMBLE 

 

Most water waves are generated by storms at sea. Many waves 

are present in a storm sea state: each has a different 

wavelength and period. Theory shows that the speed of 

propagation of a wave or its phase speed is a function of 

water depth. It travels faster in deeper water. Theory also 

shows that the speed of a wave is a function of its 

wavelength. Long wavelength waves travel faster than short 

wavelength waves. This explains why storm generated waves, 

which approach shore, are generally a single wavelength. 

Because waves travel at different speeds, they tend to 

separate or disperse. When waves approach shore, they are 

influenced by the seabed by a process known as refraction. 

This can focus or spread out wave energy onto a site. Close 

to shore water depth is not the same everywhere: so points on 

wave crests move at different speeds and crests become bent. 

This explains why crests which approach a shore line tend to 

line up with it: points in deep water travel faster than 

points in shallow water and overtake them. Wave energy 

travels at a speed known as the group speed. This is 

generally not the same as the phase speed. However for 

shallow water both speeds are the same and they depend only 

on the water depth. A large low pressure system moving over 

shallow water would generate an enormous wave if the system 

speed and the wave energy speed were the same. Basically wave 



energy gets trapped in the system frame when the system speed 

matches the wave energy speed. Tides are basically shallow 

water waves. Here the pull of the Moon mimics a low pressure 

system. Theory shows that if water depth was 22km everywhere 

on Earth the Moon pull would produce gigantic tides. They 

would probably drain the oceans and swamp the continents 

everyday. Fortunately the average water depth is only 3km.  

 

There are two mechanisms that have been proposed for wave 

generation by winds. One is the classic Kelvin Helmholtz 

stability mechanism where water waves extract energy from the 

wind and grow. This mechanism explains the generation of 

small wavelength waves. Energy in small wavelength waves can 

leak into longer wavelength waves but not into very long 

wavelength swells. There must be another mechanism to explain 

them. This mechanism considers a storm to be made up of an 

infinite number of pressure waves each with a different speed 

and wavelength moving over the water surface. When the speed 

and wavelength of a pressure wave matches the speed and 

wavelength of a wave that can exist in the water, a resonance 

occurs which causes that water wave to grow. A pressure wave 

can be broken down into a series of infinitesimal pulses. 

Each pulse as it moves over the water generates a stern wave 

much like that directly behind a ship. Resonance occurs when 

all of the stern waves add up.   

 

 



 

STRUCTURE SIZE 

 

Water waves can interact with structures and cause them to 

move or experience loads. For wave structure interaction, an 

important parameter is 5D/λ where D is the characteristic 

dimension of the structure and λ is the wavelength. 

Structures are considered large if 5D/λ is much greater than 

unity: they are considered small if 5D/λ is much less than 

unity. Small structures are transparent to waves. Large 

structures scatter waves.  

 

For large structures, wave energy can reflect from it or 

diffract around it. Panel Method CFD based on Potential Flow 

Theory can be used to study the scattering process. This is 

beyond the scope of this note.   

 

When a wave passes a small structure, there can be two kinds 

of loads on the structure: wake load due to the formation of 

wakes back of the structure and inertia load due to pressures 

in the water caused by acceleration and deceleration of water 

particles in the wave. In deep water, water particles move in 

circular orbits. In finite depth water, the orbits are 

ellipses. Let the orbit dimension normal to the structure be 

d and let the characteristic dimension of the structure be D. 

When 5D<<d, a well defined wake forms behind the structure. 

When 5D>>d, such a wake does not form. When 5D is 



approximately equal to d, flows are extremely complex. Let T 

be the wave period and let Τ be the time it takes a water 

particle to move pass the structure. It turns out that 5Τ<<T 

corresponds to 5D<<d while 5Τ>>T corresponds to 5D>>d. When 

5D<<d, wakes form because transit time is short relative to 

wave period. So, water is moving sufficiently long in one 

direction to pass the structure. When 5D>>d, wakes do not 

form because transit time is long relative to wave period. 

So, before water particles can pass the structure, they 

reverse direction.  

 

 

WATER WAVES 

 

The wave profile equation has the form:   

 

                       η = ηO Sin(kX) 

 

where  X = x - CPt where X is the horizontal coordinate of a 

wave fixed frame, x is the horizontal coordinate of an 

inertial frame, CP is the wave phase speed, k is the wave 

number and ω = k CP is the wave frequency. The wave number k 

is related to the wave length λ as follows: k = 2π/λ. 

 

The water particle velocities are: 

 

U  =  + H/2 2π/T Cosh[k(z+h)]/Sinh[kh] Sin(kX) 

W  =  - H/2 2π/T Sinh[k(z+h)]/Sinh[kh] Cos(kX) 



 

These can be used to get drag loads on small structures. 

The water particle accelerations are: 

 

dU/dt = - H/2 (2π/T)
2
 Cosh[k(z+h)]/Sinh[kh] Cos(kX) 

dW/dt = - H/2 (2π/T)
2
 Sinh[k(z+h)]/Sinh[kh] Sin(kX) 

 

These can be used to get inertia loads on small structures. 

 

The water particle positions are:  

   

xp  =  xo  + H/2 Cosh[k(z+h)]/Sinh[kh] Cos(kX) 

Zp  =  zo  + H/2 Sinh[k(z+h)]/Sinh[kh] Sin(kX) 

 

These give the water particle orbit size.  

 

The wave pressure is: 

 

              ΔP  =  ρg η Cosh[k(z+h)]/Cosh[kh] 

 

The dispersion relationships: 

 

CP  =  (g/k Tanh[kh]) 

ω =  (gk Tanh[kh]) 

 

These show that deep water waves travel faster than shallow 

water waves. They also show that long wave length waves 

travel faster than short wave length waves.  

 



Wave energy travels at a speed known as the group speed. This 

is generally not the same as the phase speed of a wave.  One 

can show that the group speed is given by: 

 

CG  =  dω/dk  =  CP (1/2 + [kh]/Sinh[2kh]) 

 

The wave energy density is: 

 

E = 1/8 ρg H
2
 

 

One can show that wave energy flux is: 

 

P =  CG  E 

   

Group speed is responsible for many important phenomena. Some 

of these were mentioned earlier. 

 

Waves at sea after a storm are random. They are made up of an 

infinite number of frequencies. A spectrum shows how the 

energy in a wave field is spread out over a range of 

frequencies. A popular 2 parameter fit to a wave amplitude 

spectrum is the ITTC fit: 

 

Sη = A/ω
5
 e

-B/ω4
 

A=346H
2
/T

4
      B=691/T

4
 

 

where H is significant wave height and T is significant wave 

period. JONSWAP is a popular 3 parameter fit. 

 



A Response Amplitude Operator or RAO can be used to connect a 

wave spectrum to a body motion or load response spectrum  

 

SR = RAO
2
 Sη 

 

An RAO is basically a Magnitude Ratio. For a specific wave 

period, it is the amplitude of body response divided by the 

wave amplitude. One can get RAOs from theoretical analysis. 

One can also get RAOs from experiments. 

 

All sorts of statistical and probabilistic information can be 

obtained from spectra. For bodies, the analysis makes use of 

the following moments of the spectrum:  

                                                                 

Mn = 1/2     SR(ω) ω
n
 dω 

                             0                         

One can show that the significant response height and period 

of a body motion or load are:  

  

2 RS = 4 M0      TS = 2π M0/M1 
 

The probability of a response exceeding a certain level is: 

 

P(Ro>R) = e
-X
        X = RR/[2M0] 

 



 

WAVE INTERACTION WITH BODIES 

 REAL FLUID FORMULATION 

 

PREAMBLE 

At low speeds, fluid particles move along smooth paths: 

motion has a laminar or layered structure. At high speeds, 

particles have superimposed onto their basic streamwise 

observable motion a random walk or chaotic motion. Particles 

move as groups in small spinning bodies known as eddies. The 

flow pattern is said to be turbulent. A turbulent wake flow 

is one that contains some large eddies together with a lot of 

small ones. Such a flow could be found around the GBS on a 

stormy day. The large eddies generally stay roughly in one 

place. Fluid in them swirls around and around or recirculates 

in roughly closed orbits. The smaller eddies are associated 

with turbulence and are carried along by the local flow. The 

large eddies can usually be found inside wakes. Most of the 

smaller ones can be found near wake boundaries. They are 

generated in regions where velocity gradients are high like 

at the edges of wakes or in the boundary layers close to 

structures. They are dissipated in regions where gradients 

are low like in sheltered areas like corners. Turbulent wake 

flows are governed by the basic conservation laws. However, 



they are so complex that analytical solutions are impossible. 

One could develop computational fluid dynamics or CFD codes 

based on the conservation law equations. Unfortunately, the 

small eddies are so small that an extremely fine grid spacing 

and a very small time step would be needed to follow 

individual eddies in a flow. Small eddies are typically 

around 1mm in diameter. One would need a grid spacing smaller 

than 0.1mm to follow such eddies. CFD converts each governing 

equation into a set of algebraic equations or AEs: one AE for 

each PDE for each xyz grid point. Workable CFD is not 

possible because computers cannot handle the extremely large 

number of AEs generated. For example, a 100m x 100m x 100m 

volume of water near a structure like the GBS would need 10
6
 

x 10
6
 x 10

6
 or 10

18
 grid points if the grid spacing was 0.1mm. 

Also very many time steps would be needed to complete a 

simulation run. No computer currently exists that can handle 

so many grid points and so many time steps. The random 

motions of molecules in a gas diffuse momentum: they give gas 

its viscosity. Small eddies in a turbulent flow also diffuse 

momentum: they make fluid appear more viscous than it really 

is. This apparent increase in viscosity controls overall flow 

patterns and loads on structures. Models which account for 

this apparent increase in viscosity are known as eddy 

viscosity models. They can be obtained from the momentum 



equations by a complex time averaging process. The time 

averaging introduces the so called Reynolds Stresses into the 

momentum equations, and these are modelled using the eddy 

viscosity concept. Models have been developed which can 

estimate how eddy viscosity varies throughout a flow. 

Workable CFD is now possible because one can now use much 

larger grid spacing and time steps: it is no longer necessary 

to follow individual eddies around in a flow. When small 

eddies are accounted for in this way, they no longer show up 

in flow: they are suppressed by eddy viscosity. For the GBS 

case, a grid spacing around 1m would now be adequate. This 

means a 100m x 100m x 100m volume of water near the GBS would 

now need only 10
2
 x 10

2
 x 10

2
 or 10

6
 grid points.  

 

 CONSERVATION LAWS FOR HYDRODYNAMICS FLOWS 

Hydrodynamics flows are often turbulent. Conservation of 

momentum considerations for such flows give: 

 

ρ ( U/t + UU/x + VU/y + WU/z ) + A = - P/x 

+  [ /x (μ U/x) + /y (μ U/y) + /z (μ U/z) ] 

 

ρ ( V/t + UV/x + VV/y + WV/z ) + B = - P/y 

+  [ /x (μ V/x) + /y (μ V/y) + /z (μ V/z) ] 

 



 

 

ρ ( W/t + UW/x + VW/y + WW/z ) + C = - P/z - ρg 

+  [ /x (μ W/x) + /y (μ W/y) + /z (μ W/z) ] 

where U V W are respectively the velocity components in the x 

y z directions, P is pressure, ρ is the density of water and 

μ is its effective viscosity. The time averaging process 

introduces source like terms A B C into the momentum 

equations. Each is a complex function of velocity and 

viscosity gradients as indicated below:  

 

A = μ/y V/x - μ/x V/y + μ/z W/x - μ/x W/z 

 

B = μ/x U/y - μ/y U/x + μ/z W/y - μ/y W/z 
 

C = μ/y V/z - μ/z V/y + μ/x U/z - μ/z U/x 
 

Conservation of mass considerations give:  

 

P/t + ρ c2 ( U/x + V/y + W/z ) = 0 

 

where c is the speed of sound in water. Although water is 

basically incompressible, CFD takes it to be compressible. 

Mass is used to adjust pressure at points in the grid when 

the divergence of the velocity vector is not zero.   

 



A special function F known as the volume of fluid or VOF 

function is used to locate the water surface. For water, F is 

taken to be unity: for air, it is taken to be zero. Regions 

with F between unity and zero must contain the water surface. 

Material volume considerations give:  

 

 F/t +  UF/x + VF/y + WF/z = 0 

 

 TURBULENCE MODEL 

Engineers are usually not interested in the details of the 

eddy motion. Instead they need models which account for the 

diffusive character of turbulence. One such model is the k-ε 

model, where k is the local intensity of turbulence and ε is 

its local dissipation rate. Its governing equations are: 

 

k/t + Uk/x + Vk/y + Wk/z = TP - TD 

+  [ /x (μ/a k/x) + /y (μ/a k/y) + /z (μ/a k/z) ] 

 

ε/t + Uε/x + Vε/y + Wε/z = DP - DD 

+  [ /x (μ/b ε/x) + /y (μ/b ε/y) + /z (μ/b ε/z) ] 

 

where 

 

TP = G μt / ρ     DP = TP C1 ε / k 



TD = CD ε       DD = C2 ε
2
 / k 

μt = C3 k
2
 / ε     μ = μt + μl 

where 

 

 

 

G   =  2 [ (U/x)2 +  (V/y)2  +  (W/z)2 ] 

+ [ U/y +V/x ] 2 +  [ U/z +W/x ] 2 

+ [ W/y +V/z ] 2 

 

where CD=1.0  C1=1.44  C2=1.92  C3=0.9  a=1.0  b=1.3 are 

constants based on data from geometrically simple 

experiments, μl is the laminar viscosity, μt is extra 

viscosity due to eddy motion and G is a production function. 

The k-ε equations account for the convection, diffusion, 

production and dissipation of turbulence. Special wall 

functions are used to simplify consideration of the sharp 

normal gradients in velocity and turbulence near walls.    

 

 COMPUTATIONAL FLUID DYNAMICS 

For CFD, the flow field is discretized by a Cartesian or xyz 

system of grid lines. Small volumes or cells surround points 

where grid lines cross. Flow is not allowed in cells occupied 

by fixed bodies. Ways to handle moving bodies are still under 



development. Flow can enter or leave the region of interest 

through its boundaries. For hydrodynamics problems, an 

oscillating pressure over a patch of the water surface could 

be used to generate waves. An oscillating flow at a vertical 

wall could also be used for this. For CFD, each governing 

equation is put into the form: 

 

M/t = N 

At points within the CFD grid, each governing equation is 

integrated numerically across a time step to get:  

   

M(t+Δt) = M(t) + Δt N(t) 

     

where the various derivatives in N are discretized using 

finite difference approximations. The discretization gives 

algebraic equations for the scalars  P F k ε at points where 

grid lines cross and equations for the velocity components at 

staggered positions between the grid points. Central 

differences are used to discretize the viscous terms in the 

momentum and turbulence equations. To ensure numerical 

stability, a combination of central and upwind differences is 

used for the convective terms. Collocation or lumping is used 

for the T and D terms. To march the unknowns forward in time, 

the momentum equations are used to update U V W, the mass 

equation is used to update P and correct U V W, the VOF 



equation is used to update F and the location of the water 

surface and the turbulence equations are used to update k ε.  

 

 

APPLICATIONS OF FLOW-3D CODE 

FLOW-3D is a CFD software package for hydrodynamics and other 

flows <www.flow3d.com>. It can handle all sorts of complex 

phenomena such as wave breaking and phase changes such as 

vaporization and solidification. No other CFD package can 

handle these phenomena. A unique feature of FLOW-3D known as 

the General Moving Object or GMO can simulate the complex 

motions of floating bodies in steep waves. The motions of the 

bodies can be prescribed or they can be coupled to the motion 

of the fluid. It allows for extremely complicated motions and 

flows.  One can think of a GMO as a bubble in a flow where 

the pressure on the inside surface of the bubble is adjusted 

in such a way that its boundary matches the shape of a body. 

FLOW 3D uses a complex interpolation scheme to fit the body 

into the Cartesian grid. The sketch on the next page shows a 

FLOW-3D simulation of an oil rig in waves.  

http://www.flow3d.com/


 

 

 

 

 

 

 



 

SPECTRAL ANALYSIS OF SENSOR SIGNALS 

 

 

FOURIER SERIES 

 

A Fourier Series breaks down a periodic signal with a known 

period into its harmonics. The general equation for a Fourier 

Series representation of a signal is 

                      

f(t) =  [ Ak Sin[kt] + Bk Cos[kt] ] 

 

Manipulation shows that  

 

                           +T/2     

Ak =  2/T    f(t) Sin[kt] dt 
                           -T/2    

 

                           +T/2     

Bk  =  2/T    f(t) Cos[kt] dt 
                           -T/2    

 

For discrete data these take the form 

 

                        N 

Ak  =  2/T   f[nt] Sin[k[nt]] t 
                       n=1 

 

                        N 

Bk  =  2/T   f[nt] Cos[k[nt]] t 
                       n=1 

 

 

Fk = Bk + Ak j 

 



 

 

FOURIER TRANSFORM 

 

The general equation for a Fourier Transform is 

 

                           +     

  A()  =      f(t) Sin[t] dt 

                           -    

                           +     

  B()  =     f(t) Cos[t] dt 

                           -    

 

While the Fourier Series deals with the harmonics of a 

periodic signal with a known period, the Fourier Transform 

deals with a signal with an infinite number of periods. 

                           

For discrete data the Fourier Transform becomes 

 

                          N 

                A()  =    f[nt] Sin[[nt]] t 
                         n=1 

 

                          N 

                B()  =    f[nt] Cos[[nt]] t 
                         n=1 

 

 

F()= B() + A()j 

 

This acts on data streams that are not infinitely long. 

Windows are used to compress data at the extremes to avoid 

errors due to the finite length of the stream.  

 

 



 

HYDRODYNAMICS 

 

SCALING LAWS 

 

             

All sorts of probabilistic and statistical information can be 

obtained from the response spectrum of a structure in random 

waves. The desired spectrum needs to be known before the 

structure is actually built. Getting it would be part of the 

design process. There are two ways to get the response 

spectrum. One way is to measure response profile data and use 

that to generate the spectrum. One can get this response 

profile data by putting a small scale model of the structure 

in random seas in a physical wave tank. Obviously, we need to 

know how the model data scales to prototype size. One can 

also put a model or prototype in random seas in a numerical 

wave tank. The other way to get a response spectrum is to 

measure the response amplitude operator of the structure. It 

connects the wave spectrum to the response spectrum:    

 

SR = RAO
2
 Sη 

 

 



 

A wave spectrum for a particular location can be obtained 

from historical data or it can be obtained from wave profile 

data measured at the location. For motion studies, the RAO is 

usually a ratio of amplitudes. In this case, the RAO is 

already a dimensionless number. One would expect the peak RAO 

to be the same at model and prototype scales.  

 

Model frequencies are usually higher than prototype 

frequencies. Wave theory connects the frequencies. The 

dispersion relationship for deep water waves is 

  

ω
2
 = gk             

 

ω = 2π/T      k = 2π/λ        

 

Manipulation gives 

 

[2π/T]
2
 = g[2π/λ]     

         

[2π/TM]
2
 = g[2π/λM]    [2π/TP]

2
 = g[2π/λP] 

 

Division of model by prototype gives  

 

[TP/TM]
2
 = P/M 

 

 

 

 



 

 

 

Geometric scaling requires that  

 

 

P/M = DP/DM 

 

This gives 

 

[TP/TM]
2
 = DP/DM 

 

[ωP/ωM]
2
 = DM/DP 

 

This implies that for a 100:1 geometry ratio the period ratio 

is 10:1 while the frequency ratio is 0.1:1. Note that a 

response spectrum by definition is  

 

SR = [RO]
2
/∆ω 

 

This implies that for a 100:1 geometry ratio the spectrum 

ratio would be 100000:1. For finite depth water 

 

ω
2
 = gk Tanh[kh]    

 

This gives the same scaling laws as those for deep water.   

         

 



 

 

The resistance to forward motion of ships is often studied at 

model scale. Most of the resistance is due to wave generation 

by the ship. One usually plots the resistance force 

coefficient CD versus the Froude Number FR: 

 

CD = R / [A ρU
2
/2]     FR = U / √[g D] 

  

For a ship moving at a steady speed, the phase speed of 

generated waves directly behind it matches the ship speed. 

The dispersion relationship gives for phase speed: 

 

CW = √[g/k] = √[g/[2π]] 

 

Manipulation gives  

 

CP/√[gP] = CM/√[gM] 

        

UP/√[gDP] = UM/√[gDM] 

 

So the Froude Number definition follows from the dispersion 

relationship. It is basically a speed coefficient.   

 

 

 

 



 

% 

% HYDRODYNAMICS LAB 

% 

clear all 

DRAFT=0.55; DEPTH=1.5; 

MASS=27.7; POT=11.9;  

SPRING=359.0; HEAVE=0.1; 

OMEGA=0.00001; STEP=0.01; 

HEIGHT=0.1; PERIOD=2.0; 

MOMENT0=0.0; MOMENT1=0.0; 

GRAVITY=9.81; PI=3.14159; 

for count=1:1000 

  A=346.0*HEIGHT^2/PERIOD^4; 

  B=691/PERIOD^4; 

  WAVE=A/OMEGA^5*exp(-B/OMEGA^4); 

  HZ(count)=OMEGA/(2.0*PI); SZ(count)=WAVE; 

  WAVENUMBER=OMEGA^2/GRAVITY; 

  CORRECT=tanh(WAVENUMBER*DEPTH); 

  WAVENUMBER=WAVENUMBER/CORRECT; 

  G=exp(-WAVENUMBER*DRAFT); 

  ONE=cosh(WAVENUMBER*(-DRAFT+DEPTH)); 

  TWO=cosh(WAVENUMBER*DEPTH); G=ONE/TWO; 

  P=(SPRING-MASS*OMEGA^2); Q=POT*OMEGA; 

  M=SPRING*G*P/(P^2+Q^2);  

  N=-SPRING*G*Q/(P^2+Q^2); 

  M=G*(SPRING*P+Q*Q)/(P^2+Q^2);  

  N=G*(P*Q-SPRING*Q)/(P^2+Q^2); 

  RAO=sqrt(M^2+N^2); RESPONSE=RAO*RAO*WAVE; 

  MR(count)=RAO; SR(count)=RESPONSE; 

  MOMENT0=MOMENT0+RESPONSE*STEP/2.0; 

  MOMENT1=MOMENT1+RESPONSE*OMEGA*STEP/2.0; 

  OMEGA=OMEGA+STEP;  

end 

SIGR=4.0*sqrt(MOMENT0)/2.0 

SIGT=2.0*PI*MOMENT0/MOMENT1 

PROB=exp(-HEAVE^2/(2.0*MOMENT0)) 

plot(HZ,SZ*500,HZ,SR*500,HZ,MR) 

 



 

 

 

% 

% SIGNALS LAB DATA 

% 

% FAST FOURIER TRANSFORM 

% 

clear all 

name='Book1.txt'; 

S=load(name); 

out=254/2; 

depth=2.0; 

gravity=9.81; 

delt=0.00004; cycle=1/delt; 

nit=1000000; mit=2*nit;  

bit=nit+1; f(1)=0.0;  

w(1)=0.0; wn(1)=0.0; 

% period=2.0; 

% omega=2*pi/period; 

CFW=1.0;CFP=1.0;  

SW=S(1,2); SP=S(1,3); 

for it=1:nit  

 iot=it+1; 

 time=it*delt; 

 t(it)=time;  

 wave(it)=(S(it,2)-SW)*CFW; 

 heave(it)=(S(it,3)-SP)*CFP; 

 % shake(it)=sin(omega*time); 

 f(iot)=cycle/2*iot/nit; 

end 

width=cycle/mit; 

wave=wave-mean(wave); 

zw=fft(wave,mit)/nit; 

pw=2*abs(zw(1:bit)); 

qw=2*pw(1:bit).*conj(2*pw(1:bit))/width; 

 

 

 

 



 

 

 

figure(6) 

plot(f(1:out),qw(1:out)) 

xlabel('hz') 

ylabel('data') 

title('spectrum') 

figure(5) 

plot(f(1:out),pw(1:out)) 

xlabel('hz') 

ylabel('data') 

title('FFT') 

figure(4) 

plot(t,wave) 

xlabel('time') 

ylabel('data') 

title('test') 

heave=heave-mean(heave); 

zp=fft(heave,mit)/nit; 

pp=2*abs(zp(1:bit)); 

qp=2*zp(1:bit).*conj(2*zp(1:bit))/width; 

figure(3) 

plot(f(1:out),qp(1:out)) 

xlabel('hz') 

ylabel('data') 

title('spectrum') 

figure(2) 

plot(f(1:out),pp(1:out)) 

xlabel('hz') 

ylabel('data') 

title('FFT') 

figure(1) 

plot(t,heave) 

xlabel('time') 

ylabel('data') 

title('test') 

 

 

 



 

 

 

% 

% SIGNALS LAB DATA 

% 

% STANDARD FOURIER TRANSFORM 

% 

% 

clear all 

name='Book1.txt'; 

S=load(name); 

gravity=9.81; 

depth=2.0; 

nit=1000000; mit=300; 

sat=1000; nit=nit/sat; 

delt=0.00004*sat;  

span=delt*nit; 

SW=S(1,2); SP=S(1,3); 

CFW=1.0;CFP=1.0;  

% period=2.0; 

% omega=2*pi/period; 

for nat=1:nit  

time=nat*delt; 

t(nat)=time;  

window=sin(pi*time/span);window=1.0; 

wave(nat)=(S(nat*sat,2)-SW)*window*CFW; 

heave(nat)=(S(nat*sat,3)-SP)*window*CFP; 

% shake(nat)=sin(omega*time)*window; 

end 



 

wave=wave-mean(wave); 

abc=0.0; 

xyz=0.0; 

omega=0.0; 

for mat=1:mit 

omega=omega+pi/100; 

hz(mat)=omega/(2*pi); 

time=0.0; 

for nat=1:nit 

time=time+delt; 

one=sin(omega*time)*delt; 

two=cos(omega*time)*delt; 

abc=abc+wave(nat)*one; 

xyz=xyz+wave(nat)*two; 

end 

sum=(abc^2+xyz^2)^0.5; 

uvw=2*sum/span; 

level(mat)=uvw; 

energy(mat)=uvw*uvw ... 

    /(pi/100); 

abc=0.0; xyz=0.0; 

end 

figure(6) 

plot(hz,energy) 

xlabel('hz') 

ylabel('data') 

title('spectrum') 

figure(5) 

plot(hz,level) 

xlabel('hz') 

ylabel('data') 

title('SFT') 

figure(4) 

plot(t,wave) 

xlabel('time') 

ylabel('data') 

title('test') 



 

heave=heave-mean(heave); 

abc=0.0; 

xyz=0.0; 

omega=0.0; 

for mat=1:mit 

omega=omega+pi/100; 

hz(mat)=omega/(2*pi); 

time=0.0; 

for nat=1:nit 

time=time+delt; 

one=sin(omega*time)*delt; 

two=cos(omega*time)*delt; 

abc=abc+heave(nat)*one; 

xyz=xyz+heave(nat)*two; 

end 

sum=(abc^2+xyz^2)^0.5; 

uvw=2*sum/span; 

level(mat)=uvw; 

energy(mat)=uvw*uvw ... 

    /(pi/100); 

abc=0.0; xyz=0.0; 

end 

figure(3) 

plot(hz,energy) 

xlabel('hz') 

ylabel('data') 

title('spectrum') 

figure(2) 

plot(hz,level) 

xlabel('hz') 

ylabel('data') 

title('SFT') 

figure(1) 

plot(t,heave) 

xlabel('time') 

ylabel('data') 

title('test') 

 

 


