FLUID STRUCTURE INTERACTIONS

These notes cover three different types of fluid structure
interactions. The first is Flow Induced Vibration of
Structures. The second is Unsteady Flow in Pipe Networks. The

third is Water Wave Interaction with Structures.



FLUID STRUCTURE INTERACTIONS

FLOW INDUCED VIBRATIONS

OF STRUCTURES



PREAMBLE
There are two types of vibrations: resonance and instability.
Resonance occurs when a structure is excited at a natural
frequency. When damping 1is low, the structure is able to
absorb energy each oscillation cycle and dangerous amplitudes
can build up. There are two types of instability: static and
dynamic. Static instability occurs when a negative fluid
stiffness overcomes a positive structural stiffness. Usually,
because of nonlinearity, this instability is oscillatory:
oscillations are often referred to as relaxation
oscillations. Examples are wing stall flutter and gate wvalve
vibration. Dynamic instability occurs when a negative fluid
damping overcomes a positive structural damping. Examples
include galloping of slender structures and tube bundle
vibrations. In many cases, a sSystem oscillates at a
structural natural frequency. In these cases, frequency is a
parameter 1in a semi empirical critical speed equation.
Natural frequencies depend on the inertia of the structure
and its stiffness. Usually the damping of the structure is
ignored. It usually has only a small influence on periods. If
the structure has a heavy fluid surrounding it, some of the
fluid mass must be considered part of the structure. The
structure appears more massive than it really is. For a

simple discrete mass stiffness system, there 1is only one



natural period. For distributed mass/stiffness systems, like
wires and beams, there are an infinite number of natural
periods. For each period, there is a mode shape. This shows
the level of vibration at points along the structure.
Structural frequencies can be obtained analytically for
discrete mass/spring systems and for uniform wires and beams.
For complex structures, they can be obtained using
approximate procedures like the Galerkin Method of Weighted
Residuals. In some cases, the fluid structure interaction is
so complex that vibration frequencies depend on both the
structure and the fluid. Examples include flutter of wings

and panels and pipe whip due to internal flow.

These notes start with a description of some flow induced
vibrations of slender structures. Next vibration of lifting
bodies 1like wings and ©propellors is considered. Then
vibration of panels exposed to flow is discussed. Finally,

vibration in pipe networks is considered.



FLOW INDUCED VIBRATION OF SLENDER STRUCTURES

VORTEX INDUCED RESONANCE
Vortices shed from most slender structures in an asymmetric
pattern. The shedding causes a lateral vibration of the
structure. When the vortex shedding frequency is close to a
natural frequency of the structure, the structure undergoes
resonance. Once the structure begins to oscillate, it causes
a phenomenon known as lock in. The vortices shed at the
natural frequency. In other words, the structure motion
controls the vortex shedding. It also increases the
correlation length along the span. This means that vortex
shedding along the span occurs at the same time. This gives
rise to greater lateral loads. So, once shedding starts, it

quickly amplifies motion.

VORTEX INDUCED INSTABILITY
Beyond a certain critical flow speed, a shear layer that
has separated from a structure can reattach and create a
very strong attached vortex. This occurs only for certain
shapes. When such a shape is moving laterally in a flow,
the attached wvortex pulls it even more laterally! The
phenomenon is known as galloping. The structure moves until

its stiffness stops 1it. The vortex disappears and the



structure starts moving back the other way. As it does so,
the vortex appears on the other side of the structure which
pulls it the other way. Another type of galloping is known
as wake galloping. This is an oval shaped orbit motion of a
cylindrical structure in the outer wake of another structure

which is just upstream.

WAKE BREATHING OF A CYLINDER IN A FLOW
There are two modes of wake breathing. In the first mode, the
Reynolds Number is near the point where the boundary layer
becomes turbulent and the wake becomes smaller. When the
cylinder moves upstream into such a flow, its drag drops,
whereas when it moves downstream away from such a flow, its
drag rises. This promotes a streamwise vibration of the
cylinder. In the second mode of wake breathing, when the
cylinder moves 1into a wake, added mass phenomena cause the
wake to grow, whereas when the cylinder moves away from the
wake, 1t causes it to shrink. This promotes a streamwise

vibration of the cylinder.

FLOW INDUCED VIBRATIONS OF TUBE BUNDLES
There are three mechanisms that can cause tube bundles in a
flow to vibrate. One 1is known as the displacement mechanism.

As tubes move relative to each other, some passageways narrow



while others widen. Fluid speeds up in narrowed passageways
and slows down 1in widened passageways. Bernoulli shows that
in the narrowed passageways pressure decreases while in the
widened passageways 1t increases. Common sense would suggest
that if tube stiffness and damping are low, at some point as
flow increases, tubes must flutter or vibrate. The
displacement mechanism has one serious drawback. It predicts
that a single flexible tube in an otherwise rigid Dbundle
cannot flutter but it can undergo a nonlinear oscillation
called divergence. It is known from experiments that a single
flexible tube in an otherwise rigid bundle can flutter.
Another mechanism known as the wvelocity mechanism does
predict flutter in the single flexible tube case. This
mechanism is based on the idea that, when a tube is moving,
the fluid force on it due its motion lags behind the motion
because the upstream flow which influences the force needs
time to redistribute. This time lag introduces a negative
damping which can overcome the positive damping due to
structural and viscous phenomena. The time lag is roughly the
tube spacing divided by the flow speed within the bundle.
Details of this model are beyond the scope of this note. The
third mechanism for tube vibration involves vortex shedding

and turbulence within the bundle.



CRITICAL SPEED EQUATIONS
For a slender structure, the Strouhal Number S 1is the
transit time T divided by the vortex shedding period T:
S=T/T. The transit time T is D/U. Solving for flow speed U
gives: U = D/[ST]. During resonance, T=T where T is the

structural period. So the critical flow speed is:

U = D/[S T]

For the lateral vibration of a slender structure known as

galloping, the critical flow speed U is

U="U, M/My { a U, = D/T M, = pD?

The factor (¢ accounts for damping: it is typically in the
range 0.01 to 0.1. The parameter a accounts for the shape
of the structure. For a square cross section structure a is
8 while for a circular cross section structure a is .

For tube bundle vibration, the critical flow speed 1is

U = B/T V[Md/p] U = BU, V[EM/M,]

The factor O accounts for damping, and the parameter R
accounts for the bundle geometry. Typically & 1is in the

range 0.05 to 0.25 while B is in the range 2.5 to 6.0.



VIBRATION MODES OF SIMPLE WIRES AND BEAMS

For a wire under tension free to undergo lateral motion, the

governing equation is:

0/0x (TOY/0x) = M 0°Y/0t?
where Y 1s the lateral deflection, T is the tension in the
wire, M is its mass per unit length, x is position along the
wire and t i1s time. For a uniform wire with constant M and T,
this can be written as the wave equation:

a? 0°Y/ox? = 0°Y/0t? a’? = T/M

where a is the wave speed. During steady free vibration of a

wire, one can write for each point on the wire:

Y =Y Sin ot

Substitution into the governing equation gives:

a? d%¥/dx® = - o* Y

A general solution is



Y = Y, Sin Bx

For a wire held at both ends, ¥ is zero at both ends. This

implies that B must be nm/L, where n is any positive integer

and L is the length of the wire. Substitution into the B?

equation gives the natural frequencies:

©, = nna/L = nn/L V[T/M]

The corresponding natural periods are:

T, = 2L/n V[M/T]

The natural mode shapes are:

Sin [nnx/L]

For a beam free to undergo lateral motion, the governing

equation is

- 0°/0x® (EI 0°Y/0x%) = M 0°Y/0t?

where E 1s the beam material Elastic Modulus and I is the

section area moment of inertia.

During steady free vibration of a beam, one can write for

each point on the beam:



Y =Y Sin ot

Substitution into the equation of motion gives:

d?/dx® (EI d°¥/dx?) = w° M Y

For a uniform beam with constant M and EI, this becomes:

d'y/dx* = p* ¥ B* = o’ M/[EI]

The general solution is:

Y = A Sin[fx] + B Cos[fx] + C Sinh[pBx] + D Cosh[px]

where A and B and C and D are constants of integration. These

are determined by the boundary conditions.
For a beam with pivot supports, the boundary conditions are
zero deflection and zero bending moment at each end. This
implies that at each end:

Y =0 d’y/dx* = 0

In this case, the general solution reduces to:

Y = Y, Sin Bx



As for the wire, B must be nn/L, where n 1is any positive

integer and L is the length of the beam. Substitution into

the B* equation gives the natural frequencies:

o, = [nn/L]1% V[EI]/M

The corresponding natural periods are:

T, = [L/n]? 2/0 \M/[ETI]

The natural mode shapes are:

Sin [nnx/L]

For a cantilever beam, the boundary conditions at the wall

are zero deflection and zero slope. This implies that

Y =20 d¥/dx = O

Application of these conditions shows that:

At the free end of the beam, the bending moment and shear are

both zero. This implies that

d’y/dx? = 0 3’Y/dx® = 0



Application of these conditions gives

[SinBL+SinhpBL] A + [CosPL+CoshpL] B

Il
o

Il
o

[CosPL+CoshfL] A - [SinPL-SinhPL] B

Manipulation of these equations gives the [ condition:

CosfB,L Coshp,L. + 1 = 0

This gives the natural frequencies of the beam. For

frequency, one gets the natural mode shape:

(Sin[PnaL] - Sinh[R.L]) (Sin[Bpx] - Sinh[p,x])

(Cos[BnL] + Cosh[B,L]) (Cos[PBnx] - Cosh[P.x])

The first 3 natural freguencies are:

w, = 3.52/1% V[EI]/M
w, = 22.03/1% V[EI]/M
w; = 61.70/1% V[ETI]/M

The corresponding natural periods are:

T, = 20L°/3.52 \M/[EI]
T, = 2nL°/22.03 WM/ [EI]
Ty = 2012/61.70 \M/[ET]

each



VIBRATION MODES OF COMPLEX WIRES

The equation governing the lateral motion of a wire is:

- 0/0x (TOY/0x) + M 0°Y/ot> = 0

In this equation, Y 1s deflection of the wire from its
neutral position, T 1is its tension, x 1is location along the
wire, M is the mass of the wire and t is time. During steady

free vibration of a wire:

Y =Y Sin ot

Substitution into the equation of motion gives

Il
o

- d/dx (T d¥/dx) - w° MY

For a Galerkin finite element analysis, we assume that
deflection along the wire can be given as a sum of scaled

shape functions:

Y = X An

where n is deflection at a node and A is a shape function.
For shape functions, we use piecewise linear polynomials. The

sketch on the next page shows one for a typical node.






Substitution of the assumed form for Y into the governing
equation gives a residual. In a Galerkin analysis, weighted
averages of this residual along the wire are set to zero.

After some manipulation, one gets

L
j [dW/dx T d¥/dx - W 0> M ¥] dx = 0
0

where L 1is the length of the wire and W is a weighting
function. For a Galerkin analysis, shape functions are used

as weighting functions. For a typical node, these are:
ALZS ARZ:I_—S

where ¢ 1s a local coordinate. The subscripts L and R
indicate elements immediately to the left and right of the
node. Notice the integration by parts of the space derivative
term in the integral. This introduces slope end boundary
conditions into the formulation. Such boundary conditions are
not needed for a wire held at both ends. Application of
vibration theory gives the vibration modes of the wire. A
computer program was written to do this. For a uniform wire
with L=10 and M=10 and T=100, theory gives w;=0.993. With 10

elements, Galerkin gives w;=0.998.



VIBRATION MODES OF COMPLEX BEAMS

The equation governing the lateral motion of a beam is:

0°/0x°> (EIO°Y/0x%) + M 0°Y/ot? = 0

In this equation, Y 1is deflection of the beam from its
neutral position, EI is its flexural rigidity, x is location
along the beam, M is the mass of the beam and t is time.

During steady free vibration of a beam:

Y =Y Sin ot

Substitution into the equation of motion gives

d?/dx? (EI d’¥/dx?’) - oMY = 0

For a Galerkin finite element analysis, we assume that

deflection can be given as a sum of scaled shape functions:

Y = 2 [An + B m]

where n is the deflection at a node and m is the slope at the
node. A and B are shape functions. Theory shows that these
must be Hermite polynomials. Such polynomials must be used
4th

because the stiffness term is order. The sketch on the

next page shows what they look like for a typical node.






Substitution of the assumed form for Y into the governing
equation gives a residual. In a Galerkin analysis, weighted
averages of this residual along the beam are set to zero.

After some manipulation, one gets

L
j [d%W/dx? ET d%¥/dx? - W > M ¥] dx = 0
0

where L 1s the length of the beam and W 1is a weighting
function. For a Galerkin analysis, shape functions are used

as weighting functions. For a typical node, these are:
Ay = £7(3-2¢) Ap = 1-3e%+2¢°
By = Se”(g-1) Bz = Se(e-1)°

where ¢ is a local coordinate and S is an element length. The
subscripts L and R indicate elements immediately to the left
and right of the node. Notice the double integration by parts
of the space derivative term in the integral. This introduces
tip shear and tip bending moment boundary conditions into the
formulation. These are both =zero for a cantilever beam.
Application of wvibration theory gives the vibration modes of
the beam. A computer program was written to do this. For a
uniform beam with L=1 and M=10 and EI=8.33, theory gives

w1=3.213. With 10 elements, Galerkin gives w;=3.210.



GOVERNING EQUATIONS FOR WIRES AND BEAMS

Sketch A shows a wire under tension. A force balance on a

small segment of the wire gives:

- TOY/0x + [TOY/0x + 8/0x (TOY/O0x) Ax] = M Ax 0°Y/0t?

Manipulation gives the equation of motion:

0/0x (TOY/0x) = M 0°Y/0t?

Sketches B and C show a beam undergoing bending.

balance on a small segment of the beam gives:

- Q + (Q + 0Q/0x Ax) = M Ax &Y/0t?

Manipulation gives:

0Q/0x = M 0°Y/0t?

A moment balance on the beam segment gives:

- M + (M+ OM/Ox Ax) + (Q + 0Q/0x Ax) Ax =

Manipulation gives

Q = - 0M/0ox

A force

0



Sketch D shows how a beam is strained when bent. Inspection

of the sketch shows that the strain is:

¢ = Y/R

The stress 1is:

Q
Il
=
m

where E is the Elastic Modulus. Geometry gives

RO® = Os 00/0s = 1/R

Os = 0x ® = 0Y/0ox

Manipulation gives:

0°Y/0x?> = 1/R

Moment considerations give:

M = [oYydr = E/RJ Y dA = EI/R

So, the equation of motion becomes

- 0°/0x* M = - 0°/0x® (EI 0°Y/0x%)

ET 0°Y/0x?

M 0°Y/ot?















FEA FIRST MODE VIBRATION OF A SIMPLE WIRE

The equation governing lateral motion of a simple wire is
- 0/0x (T 0Y/ox) + M 0°Y/ot® = O

For free vibration, Y = Y Sin[wt], where Y is the deflection
shape. Substitution into the governing equation gives

- d/dx (T d¥/dx) - M o> ¥ = 0

For a two element, Galerkin Method of Weighted Residuals,
Finite Element Analysis, the deflection shape has the form

Y = An Ar=¢ Ag=1-¢

where n i1s the deflection of the node at the middle of the
wire, A is a shape function, Ap is the part of A to the left
of the node, AR is the part of A to the right of the node and
¢ 1s a 1local element coordinate. Substitution into the
governing equation gives a residual. Weighting this residual
by the shape function W and integrating along the wire gives

L
j [ - W T d%%/dx?® - WMw ¥ ] dg = 0
0

Integration by parts of the space derivative term gives

L
j [ dW/dx T d¥/dx - WM Y ] dgx = 0
0

This has left element and right element contributions

s
j [ dW/dx T d¥/dx - WM «® Y ] dx
0



[ dW/dx T dY/dx - WM o’ ¥ ] dx

n —

where S=L/2 1is the element span. In terms of the 1local
element coordinate, each contribution becomes

1
j [ dW/de T/[S%] d¥/de - WM o> ¥ ] S de
0

Setting the weighting function W equal to A gives
[ [ an/ae 7/18%] a¥/de - amMo® Y] 5 de

The MWR integral contains the following integrals
[ [ an/ae dn/ae 1 ae = 1 [ranyae = 1/3
Substitution into the MWR integrals gives
[ T/8® - [M/3] ©*] S + [ T/S® - [M/3] ©’] S = O
Manipulation gives
w = N3/s N[T/M] = 2V3/L V[T/M] = 3.46/L N[T/M]
The simple wire theoretical frequency equation is

o = 1/L V[T/M] = 3.14/L N[T/M]



FEA FIRST MODE VIBRATION OF A SIMPLE CANTILEVER BEAM



The equation governing lateral motion of a simple beam is
&°/0x* (EI 0°Y/0x*) + M &°Y/ot? = 0

For free vibration, Y = Y Sin[wt], where Y is the deflection
shape. Substitution into the governing equation gives

d?/dx?® (EI d%¥/dx’) - M w’ Y = 0

For a single element, Galerkin Method of Weighted Residuals,
Finite Element Analysis, the deflection shape has the form

Y = An+ Bm

A = £2(3-2¢) B =1 £’(e-1)

where A and B are shape functions, € 1is a local element
coordinate, n is the deflection at the tip of the beam, m is
the slope at the tip and L is the beam length. Substitution
into the governing equation gives a residual. Weighting this
residual by each of the shape functions and integrating along
the length of the beam gives

L
j [ WET d¥/dx® - WMo ¥ ] dg = 0
0

Integration by parts of the space derivative term gives

L
I [ d%W/dx® EI d%¥/dx’ - WMoY ] dgx = 0
0

In terms of the local element coordinate, this becomes

1
j [ d®W/de? EI/[LY] d°¥/de? - WMo ¥ ] L de = 0

0
In the MWR integrals

d’¥Y/de? = d?A/de? n + d°B/de’ m = [-12g+46]n + [6Le-2L]m



For a beam, there are two weighting functions. These are the
shape functions A and B. The resulting MWR integrals contain
the following integrals

j [d?A/de? d’A/de?]de = +12 j [A Alde = +78/210
j [d°B/de? d’B/de’]de = +4L° I [B B]de = +2/210 12
j [d%A/de? d’B/de?]de = -6L j [A B]de = -11/210 L

Substitution into the MWR integrals gives

L(+12n - 6Lm) [EI]/[1L*] - L M &% (+78/210n - 11L/210m) = 0

L(-6Ln + 4L°m) [EI]/[1L*] - L M &?(-11L/210n + 2L?/210m) = O
Manipulation gives

[+12[EI]/[L*]-[78/2101Mw?]n+[-6L[ET]/[L*]+[11L/210]Mw?]m=0

[-6L[ET]/[LY]+[11L/210] Mo’ n+ [+4L%[ET]/[L*]1-[21%/210]Mw? ] m=0

One can put these equations 1in matrix form. Setting the
determinant of the square matrix to zero gives

LY1-[21%/210]Mw?]

[+12[ETI]/[L*]1-[78/210]Mw?] [+4L [
LY1+[11L/210]Mw?] = 0

] 1- [ET]/
- [-6L[EI]/[L*1+[11L/210]Mw"] [-6LI[EI]/I

]

/

Manipulation gives a quadratic for w?. It gives
® = 3.53/1° V[EI]/M

The simple beam theoretical solution is

w = 3.52/1% J[EI]/M






LIFTING BODY INSTABILITIES

Flutter is a dynamic instability of a lifting body. When it
occurs, the heave and pitch motions of the body are 90° out
of phase. The passing stream does work on the body over an
oscillation cycle. Divergence 1s a static instability. It
occurs when the pitch moment due to fluid dynamics overcomes

the moment due to the structural pitch stiffness of the body.

FLUTTER AND DIVERGENCE OF FOILS
A foil 1is a section of a 1lifting body. Here quasi steady
fluid dynamics theory is used to get the loads on the foil.
This ignores the fact that, when a foil 1is heaving and
pitching, vortices are shed behind it because its circulation
keeps changing. These vortices influence the loads on the

foil. The equations governing motions of a foil are:

Kh + i dh/dt + M d°h/dt® + Ma da/dt? + L = H

k o« + 7 do/dt + I d*a/dt?® + Ma d*h/dt® + T = P

where h is the downward heave displacement of the foil, o is
its upward pitch displacement, M is the mass of the foil, I
is its rotary inertia, K is the heave stiffness of the foil,
k is its pitch stiffness, i is the heave damping coefficient

of the foil, J is its pitch damping coefficient, L 1is the



1lift on the foil, T 1is the pitch moment and H and P are
disturbance loads. Quasi steady fluid dynamics theory gives

for the fluid dynamic loads L and T:

L = pU?/2 CCp P T = pU?/2 C? k

where
B = o + (dh/dt)/U + (3C/4-b)/U (do/dt)

kK = (C/4-b)/C Cp B + Cn/[8U] (do/dt)

where U 1is the speed of the foil, C is its chord length, a
indicates how far the center of gravity is behind the elastic
axis, b is the distance between the elastic axis and the
leading edge of the foil and Cp is a constant given by fluid

dynamics theory: it is approximately 2m.

Note that the parameter [ 1s the instantaneous angle of
attack of the foil 3C/4 back from its leading edge. It is
made up of three components. The first component is the pitch
angle o. The second component is due to the change in flow
direction caused by the heave rate dh/dt. The third component
is due to the change in flow direction caused by the pitch
rate do/dt at the 3C/4 1location. The 3C/4 location is
suggested by flat plate foil theory. Theory shows that the
center of pressure on a foil is at C/4 back from the leading

edge. This gives rise to the first term in the pitch moment



parameter k. The second term is due to the distribution of
pressure over the foil.

One can Laplace Transform the governing equations and
manipulate to get a characteristic equation. Stability is
dependent on the roots of this equation. One can get the
roots numerically and plot them in a Root Locus Plot as a
function of foil speed. This would give the critical speed

corresponding to the onset of instability.

FLUTTER AND DIVERGENCE OF WINGS
Here strip theory is used to get the loads on a wing. The
wing 1is broken into strips spanwise and quasi steady fluid
dynamics theory is used to get the loads on each strip. This
ignores the fact that, when a wing is heaving and pitching,
vortices are shed behind it because its circulation keeps
changing. These vortices influence the loads on the wing. It
also ignores the fact that for a finite span wing vortices
are shed along its span but mainly at 1its tips. These
vortices create a downwash on the wing. This reduces the 1lift
on the wing because it lowers its apparent angle of attack.
It also tilts the load on the wing backwards and this gives
rise to a drag. The equations governing heave and pitch

motions of a wing are:

&°/0y® (BI&®h/dy®) + M 6°h/ot? + Ma 0%a/ot?

+ pU?/2 CCp B = H



- 0/0y (GJoa/dy) + I 0*a/ot® + Ma 0°h/ot?

+ pU’/2 C* ' x = P

In these equations, h is the downward heave displacement of
the wing and o is the upward pitch displacement of the wing.
EI and GJ account for the stiffness of the wing per unit
span. M and I are its inertias per unit span. The chord of
the wing is C and its span is Q. The speed of the wing is U.
The distance from the elastic axis to the center of gravity
is a. The distance from the leading edge to the elastic axis

is b. H and P are disturbance loads.

Fluid dynamic loads per unit span acting on the wing are

determined by the B and kx parameters. These are:

B = o + (6h/0t)/U + (3C/4-b)/U (Oa/0t)

k = (C/4-b)/C Cp B + Cn/8/U (0at/0t)

For a Galerkin finite element analysis, we let h and o each

be a sum of scaled shape functions as follows:



A and B and D are the shape functions. In the equation for
heave, n is the heave at a node while m is the heave slope at
a node. In the equation for pitch, p is the pitch at a node.

For a typical node, the shape functions are:

A, = £2(3-2¢) Ar = 1-3g%42¢°
B, = Se?(g-1) Br = Se(e-1)2
DL = ¢ DR = 1-¢

where ¢ is a local coordinate and S is an element length. The
subscripts L and R indicate elements immediately to the left
and right of a node. The polynomials used for heave are known
as Hermite polynomials. They must be used Dbecause the
stiffness term in the heave governing equation is 4™ order.
They are not needed for pitch because its stiffness term is

only 2°® order: linear shape functions are adequate for it.

Substitution of the assumed forms for h and o 1into the
governing equations gives residuals. In a Galerkin analysis,
weighted averages of these residuals along the span of the

wing are set to zero. After some manipulation, one gets

j [0%W/0y° EI 0°h/0y> + WM &°h/ot?
+ WMa 0°ct/0t? + WpU?/2 CCp B - WH] dy = 0

j [OW/0y GJ Oo/dy + WI & o/ot?
+ WMa 0°h/0t? + WpU?/2 C? x - WP] dy = 0



where W and W are weighting functions. For a Galerkin
analysis, these are just the shape functions used to define h
and o. In other words, W is A and B for each node while W is
D for each node. Notice the double integration by parts of
the space derivative term in the heave integral. This
introduces tip shear and tip bending moment boundary
conditions into the formulation. Both of these are zero for a
wing. Notice the single integration by parts of the space
derivative term in the pitch integral. This introduces tip

torsion into the formulation. Again this is zero for a wing.

After performing the integrations numerically using Gaussian
Quadrature, one gets a set of Ordinary Differential Equations
or ODEs i1in time. One can Laplace Transform these and
manipulate to get a characteristic equation. Stability is
dependent on the roots of this equation. Instead of using
Laplace Transform approach, one can put the ODEs in a matrix
form and use matrix manipulation to get the roots of the
characteristic equation. One can plot them in a Root Locus
Plot as a function of wing speed. This would give the

critical speed corresponding to the onset of instability.



e 4

dh



KELVIN HELMHOLTZ INSTABILITIES

Consider the flexible panel shown in Figure A. A fluid
flowing over such a panel can cause it to flutter. The
simplest analysis of this assumes the panel to be an
infinitely long thin plate. It also assumes that the flow
above and below the panel is potential flow. Conservation of

mass considerations give:

v2©T =0 V2(DB =0

where T indicates the top flow and B indicates the bottom

flow. The kinematic constraints at walls are:

Il
o

acpT/az at z = +dT

8@3/82

Il
o

at z = _dB

The panel kinematic constraints are based on:

Dn/Dt = Dz/Dt

where n is the vertical deflection of the panel from its rest

state. The n for a point on the panel must follow the z for






that point. The constraint gives for the top and bottom

the panel:

on/ot + U oOn/ox = 0¢/0z at z =0

on/ot = 0¢g/0z at z =0

The panel dynamic constraints are:

Opr/0t + U Opr/0x + Po/pr + gn = 0 at z =0

Ops/0t + Ps/ps + gn = 0 at z =0

Finally, the equation of motion of the panel is:

6w 0°n/ét? = (P - Pr)w - Kn + T w 6°n/0x* - D w 0'n/ox"

of

where o is the sheet density of the panel, w is the panel

width, K accounts for side support forces, T is the tension

in the panel and D=EI is its flexural rigidity.

The dynamic constraints give:

Pr = - pr (Opr/0t + UOpr/0x) - prgn at z =0

P = - ps (Ops/0Ot) - ps9gn at z =0

Substitution into the panel equation of motion gives:

o 62n/6t2 = - pg (Opg/0t) + pr (Opr/0t + Ulpr/0x)

- o9 n + ogn - K/wn + T én/ox* - D o'n/ox’



Consider the general solution forms:

or = [G Sinh[kz] + H Coshl[kz] ] e’
os = [I Sinh[kz] + J Coshl[kz] ] e’
n = no el
where kX = k(x - Cpt) = kx - ot where X 1s the

horizontal coordinate of a wave fixed frame, x 1is the
horizontal coordinate of an inertial frame, Cp 1s the wave
phase speed, k 1s the wave number and ® 1s the wave

frequency. The wall constraints give

¢r = @ro Cosh[k(dr-z)]/Cosh[kds] e**

Pz = @mo Coshlk(ds+z)]/Cosh[kdg] e’
n = no e

These satisfy everything except the panel kinematic

constraints and the panel equation of motion. Substitution

into the panel equations gives, after common terms are

cancelled away:

-jo no + Ujk no = -k @0 Tanh[kdr]
-jo no = +k ¢@so Tanh[kds]
or [-Jw + Ujk ] @0 - pes [-Jw] @0 + P9 No — PEBg No

- Tk*no - Dk'no - K/wmno - ol-jwl®no = 0



Substitution into the last equation gives:
prl-Jo+UJjk] [+jwno-Ujknol / [kTanh [kdr]]
- psl-Jel [-jono] /[kTanh[kds]] + prg no

- g o - Tk*nmo - Dk'ne - K/wno - ol-jwl’ne = O

Manipulation of this gives an equation of the form:

A ® + Bw + C = 0
A = p¢/[kTanh[kds]] + pes/[kTanh[kdg]] + o©
B = - 2Upg/Tanh[kdr]
C = - S + U’kpr/Tanh[kdr]
S =+ Tk®> + Dk' + K/w - o9 + 09
When B? - 4AC is negative, the roots of the guadratic for

form a complex conjugate pair:

0 = o + BJ w, = a - BJ

o = -B/2A B = V[4AC-B%]/2A

Substitution of w; into the wave profile equation gives:



jkx : J [kx=(a+pJ) t]
No € (Art+A1j) e
— (AR+AIj ) ej[kx—at] ej[—ﬁjt] _ (AR+AIj ) e+[3t ej[kx—oﬁ:]

=  (AxtArj) e*Pt [Cos (kx-ot)+3Sin (kx-at) ]

The real part of this is:

[ Az Cos (kx-ot) - A; Sin(kx-at) ] e*ft

= A e'Pf sin[(kx-at) + €]
This shows that, when B?-4AC is negative, the w; wave grows.

Similarly, one can show that the w, wave decays. Substitution

into B - 4AC = 0 gives the critical speed:

U’ = S V/W

V = pr/[kTanh[kdr]] + pg/[kTanh[kdg]] + ©

W = pgpr/ [Tanh[kdr] Tanh[kdg]] + kopr,Tanh[kdr]

This is sketched in Figure B. The plot shows that, if U is
below a certain level, the panel does not flutter. For U

beyond this level, it flutters for a range of k.






For a membrane under uniform pressure load

T d°A/dx? = P

Integration shows that the mean deflection is:

A =P w / [12 T]

This gives the side support stiffness

*

K = [12 T] / W

For a beam under uniform pressure load

EI d'A/dx* = P

Integration shows that the mean deflection is:

A =P w / [120 EI]

This gives the side support stiffness

*

K" = [120 EI] / w*



PIPE INSTABILITIES DUE TO INTERNAL FLOW

The equation governing the lateral vibration of a pipe

containing an internal flow is

M 8°Y/ot? = - 0°/0x® (EI 0°Y/0x%) + T 0°Y/0x°

- PA 0°Y/0x® - pAU? 0°Y/0x® - 2pAU 0°Y/0x0t

For a pipe pivoted at both ends, a static force balance
shows that centrifugal forces generated by fluid motion can

cause buckling when U is greater than

U? = [ EI/[pA] n’/L® + T/[pA] - P/p ]

For a pipe clamped at one end and open and free at the
other end, a stability analysis shows that the pipe can
undergo a flutter like phenomenon known as pipe whip. The
critical speed U can be obtained from the sketch on the

next page. A straight line fit to the wavy curve there is

U= [4 + 14 M,/M] U,

U, = V[ETI]/[ML?] M, = pA



U/N([ET]/ [pAL2])

18

16 —

14

12 —
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PIPE WHIP INSTABILTY

The equation governing the lateral vibration of a pipe

containing an internal flow is

0 M &Y/ot’ + 0/0x° (EI &°Y/0x’) - T OY/0x

+ PA 0Y/0x" + pAU 0Y/0x" + 2pAU 0Y/0x0t

In this equation, Y is the lateral deflection of the pipe
from its neutral position, M is the total mass of the pipe
per unit length, EI is its flexural rigidity, T is tension, P
is pressure, U is flow speed, A is pipe area, X 1is location
along the pipe and t is time. For a Galerkin finite element
analysis, we assume that the deflection of the pipe can be

given as a sum of scaled shape functions:

where n is the deflection at a node and m is the slope at the
node. A and B are shape functions. Theory shows that these
must be Hermite polynomials. Such polynomials must be used

4th

because the EI term is order. The sketch on the next page

shows what they look like for a typical node.






Substitution of the assumed form for Y into the governing
equation gives a residual R. In a Galerkin analysis, weighted

averages of this residual along the pipe are set to zero:

where L 1s the length of the pipe and W is a weighting
function. For a Galerkin analysis, shape functions are used

as weighting functions. For a typical node, these are:

£2(3-2¢) Ar = 1-3e%42¢°

P
£
Il

582(8—1) Br Ss(s—l)2

vs)
£
Il

where ¢ 1s a local coordinate and S is an element length. The
subscripts L and R indicate elements immediately to the left
and right of the node. After performing the integrations and
applying boundary conditions, one gets a set of ODEs in time.

One can put them in a matrix form and use matrix manipulation

to get the roots A of the system characteristic equation.

[GI] |dd/dt| + [GS] |®d| = |0]|

[GI] A D] + [GS] D] = [0]

One can plot the roots in a Root Locus Plot to get the

critical speed corresponding to the onset of instability.



FLUID STRUCTURE INTERACTIONS

UNSTEADY FLOW

IN PIPE NETWORKS



PREAMBLE
Unsteady flow in pipe networks can be caused by a number of
factors. A turbomachine with blades can send pressure waves
down a pipe. If the period of these waves matches a natural
period of the pipe wave speed resonance develops. A piston
pump can send similar waves down a pipe. Waves on the surface
of a water reservoir can also excite resonance of inlet
pipes. One way to avoid resonance is to change the wave speed
of the pipes in the network. For liquids, one can do this by
adding a gas such as air. This can be bled into the network
at critical locations or it can be held in a flexible tube
which runs inside the pipes. One could also use a flexible
pipe to change the wave speed. Sudden valve or turbomachine
changes can send waves up and down pipes. These can cause the
pipes to explode or implode. In some cases interaction
between pipes and devices is such that oscillations develop
automatically. Examples include oscillations set up by leaky
valves and those set up by slow turbomachine controllers. To
lessen the severity of transients in a hydraulic network, one
can use gas accumulators. Hydro plants use surge pipes.
Another way to lessen the severity of transients is use of
relief valves. These are spring loaded valves which open when
the pressure reaches a preset level. This can be high or low.
For high pressure liquids, they create a pathway back to a

sump. For low pressure liquids, they allow a gas such as air



to enter the pipe. Bypass valves and check valves can be used

to isolate turbomachines when they fail.

There are three procedures that can be used to study unsteady
flow in pipe networks. The most complex of these 1is the
Method of Characteristics. This finds directions in space and
time along which the partial differential equations of mass
and momentum reduce to an ordinary differential equation in
time. Computational Fluid Dynamics codes have been developed
based on this method that can handle extremely complex pipe
networks. A  second procedure is known as Graphical
Waterhammer. It is a graphical form of a procedure known as
Algebraic Waterhammer. It makes extensive use of PU plots. A
third procedure is known as the Impedance Method. This makes
use of Laplace Transforms. It employs something called the
Impedance Transfer Function. It resembles closely a method

used to study Electrical Transmission Lines.

These notes start with a physical description of how pressure
waves propagate along a pipe. This 1s followed by a
derivation of the basic wave equations. Then, wave speeds for
waves 1n flexible tubes and mixtures are given. Next, an
outline of Algebraic/Graphical Waterhammer is given. Finally,

the Method of Characteristics is presented.



WAVE PROPAGATION IN PIPES

Consider flow in a rigid pipe with a wvalve at its downstream
end and a reservoir at its upstream end. Assume that there
are no friction losses. This implies that the pressure and

flow speed are the same everywhere along the pipe.

Imagine now that the valve is suddenly closed. This causes a
high pressure or surge wave to propagate up the pipe. As it
does so, it brings the fluid to rest. The fluid immediately
next to the valve is stopped first. The valve is like a wall.
Fluid enters an infinitesimal layer next to this wall and
pressurizes it and stops. This layer becomes like a wall for
an infinitesimal layer just upstream. Fluid then enters that
layer and pressurizes it and stops. As the surge wave
propagates up the pipe, it causes an infinite number of these
pressurizations. When it reaches the reservoir, all of the
inflow has been stopped, and pressure 1is high everywhere

along the pipe. The pipe resembles a compressed spring.

When the surge wave reaches the reservoir, it creates a
pressure imbalance. The layer of fluid just inside the pipe
has high pressure fluid downstream of it and reservoir
pressure upstream. Fluid exits the layer on its upstream side
and depressurizes 1it. The ©pressure drops Dback to the
reservoir level. A backflow wave is created. The speed of the
backflow is exactly the same as the speed of the original
inflow. The pressure that was generated by taking the

original inflow away is exactly what is available to generate



the backflow. The backflow wave propagates down the pipe

restoring pressure everywhere to its original level.

When the backflow wave reaches the wvalve, it creates a flow
imbalance. This causes a low pressure or suction wave to
propagate up the pipe. As it does so, it brings the fluid to
rest. Again, the wvalve is like a wall. Because of backflow,
fluid exits an infinitesimal layer next to this wall and
depressurizes it and stops. The pressure drops below the
reservoir level by exactly the amount it was above the

reservoir level in the surge wave.

When the suction wave reaches the reservoir, all of the
backflow has been stopped, and pressure is low everywhere
along the pipe. The pipe resembles a stretched spring. At the
reservoir, the suction wave creates a pressure imbalance. An
inflow wave 1s created. The speed of the inflow is exactly
the same as the speed of the backflow. The inflow wave
travels down the pipe restoring pressure to 1its original
level. Conditions in the pipe become what they were Jjust

before the valve was closed.

During one cycle of vibration, there are 4 transits of the
pipe by pressure waves. This means that the natural period of
the pipe is 4 times the length of the pipe divided by the
wave speed. Without friction, the vibration cycle repeats

over and over. With friction, it gradually dies away.



BASIC WAVE EQUATIONS



Consider a wave travelling up a rigid pipe. In a reference

frame moving with the wave, mass considerations give

o A (U+a) = (p+Ap) A (U+AU+a)

where p 1s density, A is pipe area, U is flow velocity and

a is wave speed. When a >> U, this reduces to

o AU = - a Ap

Momentum considerations give

[ (p+Ap) A (U+AU+a) (U+AU+a) - pA(U+a) (U+a)] = [P - [P+AP]] A

PA (U+a) [ (U+AU+a) - (U+a)] = - AP A

where P is pressure. When a >> U, this reduces to

© a AU = - AP

Manipulations give

a =\ [AP/Ap]

For a gas such as air moving down a pipe, one can assume
ideal gas behavior for which:

P/p =R T



R 1is the ideal gas constant and T is the absolute
temperature of the gas. For a wave propagating through a
gas, oOne can assume processes are isentropic: 1in other
words, adiabatic and frictionless. The wave moves so fast
through the gas that there is no time for heat transfer or

friction. The isentropic equation of state is:

where K is another constant and k is the ratio of specific

heats. Differentiation of this equation gives

AP/Ap = K k pk_l =K k pk / P

= k/p K pk = k P/p
The ideal gas law into this gives
AP/Ap =k R T
So wave speed for a gas becomes
a=+V[k R T]
For a liquid, fluid mechanics shows that

AP = - K AV/V



where K is the bulk modulus of the liquid. It is a measure

of its compressibility. For a bit of fluid mass

AM =A [pV] =V Ap + pAV = 0

This implies that

AP = K Ap/p AP/Ap = K/p

So wave speed for a liquid becomes

a = [K/p]

The bulk modulus of a gas follows from

a= V[kRT]I =+ [K/p]
K/po=kRT K=kpRT

K=%kP
For a flexible pipe
a =+ [K/p]

K=K/ [1 + [DK]/[Ee]]

where E is the Elastic Modulus of the pipe wall material, e

is the wall thickness and D is the pipe diameter.



WAVES IN FLEXIBLE TUBES

Conservation of Mass for a flexible tube is

o A (U+a) = (ptAp) (A+AA) (U+AU+a)

Manipulation of this equation gives when U<<a

PpA AU + (U+a)A Ap + p(U+a) AA

Il
o

AU/a + Ap/p + AA/A =0

Conservation of Momentum for a flexible tube is

[PA(U+a)] [(U+AU+a) - (U+a)] =

PA + [P+AP] AA — [P+AP] [A+AA]

Manipulation of this equation gives when U<<a

PA(U+a) AU + A AP = 0

pa AU + AP = 0

More manipulation gives

AU = - AP/ [pa] AU/a = -AP/[pa?]

Experiments show that



AP = K Ap/p Ap/po = AP/K

For a thin wall pipe, the hoop stress follows from

[2e] o = AP D c = AP D/ [2e]

The hoop strain is

¢ = [nAD]/[noD] = AD/D

Substitution into the stress strain connection gives

o=E ¢ AP D/[2e] = E AD/D

Geometry gives

A =1 D°/4 AA = 1 2D/4 AD

AA/A = 2 AD/D = AP D/ [Ee]

With this Conservation of Mass becomes

- AP/[pa’] + OAP/K + AP D/[Ee] = 0

Manipulation of Conservation of Mass gives

a =\ [K/p]

K = K/ [ 1+ [DK]/[Ee] ]



WAVES IN MIXTURES

For a mixture the wave speed is:

am = \/ [KM/pM]

The mixture density follows from:

My = X Mc oV = X pcVe

ou = Z[pcVel] /Vu

Experiments show that

AP = - Ky [AVy/Vy]

Manipulation gives the bulk modulus

KM = - AP / [AVM/VM] VM = ZVC AVM = ZAVC

For each component in the mixture:

AP = - K¢ [AVe/Vc] AVe = = [Vc/Kc] AP

The mixture bulk modulus becomes:

Ky = X2Vc / Z[Vce/Kcl

The mixture analysis 1is also valid for mixtures of

solid particles and a fluid, such as a dusty gas.

small



ALGEBRAIC/GRAPHICAL WATERHAMMER

Waterhammer analysis allows one to connect unknown pressure
and flow velocity at one end of a pipe to known pressure and
velocity at the other end of the pipe one transit time back
in time. The derivation of the waterhammer equations starts
with the conservation of momentum and mass equations for

unsteady flow in a pipe. These are:

o 0U/ot + pU 0U/0x + O0P/0Ox - pg Sinoa + £/D pU|U|/2 =0

OP/0t + U OP/0x + pa’ 0U/0x = 0

where P 1is pressure and U 1is velocity. For the case where
gravity and friction are insignificant and the mean flow

speed 1s approximately zero, these reduce to:

o 0U/0t + 0P/0x = O

O0P/0t + pa’ 0U/dx = 0

Manipulation gives the wave equations:

0°P/ot? = a? 0°p/ox?

0°U/ot? = a? 0°u/ox’



The general solution consists of two waves: one wave which
travels up the pipe known as the F wave and the other which

travels down the pipe known as the f wave.

In terms of these waves, pressure and velocity are:

N=x-at M

Xx + a t

For a given point N on the f wave, the N equation shows that
X must increase as time increases, which means the wave must
be moving down the pipe. For a given point M on the F wave,
the M equation shows that x must decrease as time increases,
which means the wave must be moving up the pipe. Substitution
of the general solution into mass or momentum or the wave

equations shows that they are valid solutions.



Multiplying U by pa and subtracting it from P gives:

[P-P,] - palU-U,] = 2F(M)

Let the F wave travel from the downstream end of the pipe to
the upstream end. For a point on the wave, the wvalue of F

would be the same. This implies

AP = + pa AU

Multiplying U by pa and adding it to P gives:

[P-P,] + palU-U,] = 2f£(N)

Let the f wave travel from the upstream end of the pipe to
the downstream end. For a point on the wave, the value of f

would be the same. This implies

AP = - pa AU

The AP vs AU equations allow us to connect unknown conditions
at one end of a pipe at some point in time to known
conditions at the other end back in time. They are known as

the algebraic/graphical waterhammer equations.



il



SUDDEN VALVE CLOSURE

Imagine a pipe with a reservoir at 1its upstream end and a
valve at its downstream end. The valve 1is initially open.
Then it is suddenly shut. From that point onward, the
velocity at the valve 1is zero. We ignore losses. Because of
this, the pressure at the reservoir is fixed at its initial
level. We start at point 1 which is at the reservoir and move
along an f wave to point 2 which is at the wvalve. A surge
wave 1s created at the wvalve. We then move from the valve
along an F wave to point 3 which is at the reservoir. A
backflow wave is created at the reservoir. We then move from
the reservoir along an f wave to point 4 which is at the
valve. A suction wave 1is created at the valve. We then move
from the wvalve along an F wave to point 1 which is at the
reservoir. An inflow wave 1is created at the reservoir. From
this point onward the cycle repeats. Friction gradually

dissipates the waves and the velocity homes in on zero.






LEAKY VALVES

A stable leaky valve is basically one that has a P versus U
characteristic which resembles that of a wide open valve.
This has a parabolic shape with positive slope throughout.
An unstable 1leaky wvalve has a characteristic that has a
positive slope at low pressure but negative slope at high
pressure. Basically, the valve tries to shut itself at high
pressure. The flow rate Jjust upstream of a wvalve is pipe
flow speed times pipe area. The flow rate within the wvalve
is wvalve flow speed times wvalve area. In a stable leaky
valve, the areas are both constant. The wvalve flow speed
increases with pipe pressure so the pipe flow speed also
increases. In an unstable 1leaky wvalve, the flow speed
within the wvalve also increases with pipe pressure but the
valve area drops because of suction within the wvalve. The
suction 1is generated by high speed flow through the small
passageway within the wvalve. It pulls on flexible elements
within the wvalve and attempts to shut it. Graphical
waterhammer plots for stable and unstable leaky wvalves are
given below. As can be seen, they both resemble the sudden
valve closure plot, but the stable one is decaying while
the unstable one is growing. In the unstable case, greater
suction is needed each time a backflow wave comes up to the
valve Dbecause the flow requirements of the wvalve keep
getting bigger. In the stable case, less suction is needed

because the flow requirements keep getting smaller.



STABLE LEAKY VALVE



UNSTABLE LEAXY VALVE



METHOD OF REACHES

Pipes in a pipe network often have different 1lengths. The
method of reaches divides the pipes into segments that have
the same transit time. The segments are known as reaches. The
sketch on the next page shows a pipe divided into 4 reaches.
Conditions at points i 7 k are known. Conditions at point J

are unknown. Waterhammer analysis gives for point J:

B>
g
Il

- pa AU

P; = P; - [pa] [Us-Ui]

AP = + pa AU

P; = Px + [pa] [Us=Ux]

Manipulation of these equations gives:

3y}
g
I

(PxtPi) /2 - [pal [Ux-Uil/2

Us; = (Upt+Ui) /2 - [Px=-Pi]/[2pal

This is the template for finding conditions at points inside

the pipe. At the ends of a pipe, water hammer analysis would

connect the end points to j points inside the pipe.






TREATMENT OF PIPE JUNCTIONS

Pipes 1in a pipe network are connected at Jjunctions. The
sketch on the next page shows a junction which connects 3
pipes. Lower case letters indicate known conditions. Upper
case letters indicate unknown conditions. A junction is often
small. This allows us to assume that the junction pressure is
common to all pipes. It also allows us to assume that the net
flow into or out of the Jjunction is =zero. Conservation of

Mass considerations give:

pAN UN + pAH UH + pAW UW = 0

Waterhammer analysis gives:

Py = Pn + [pan] [Uy—Ugxl
Py = Pg + [pas] [UH_Ug]

Puw = Py + [paw] [Uy-Uyl]

Manipulation gives

Uy = Un + [Py—Pnl/[pax]
Us = Uy + [Py—Pgl/ [pan]

Uy = Uy + [Py=Pyl/[pau]



In these eqgquations Py = Py = Py = Ps. Substitution

Conservation of Mass gives:

9 AN [ Um + [PJ_Pm]/[paN] ]
+ o Ay [ Uy + [Py=Pgl/[paul ]

+ oAy [ Uy, + [Ps-Py]/[paw] 1] = O

Manipulation gives the junction pressure:

P; = [X - Y] / 7

where

X =1 AN/aN Pn + AH/aH Pg + AW/aWPV ]

Y

© [ AyUn + AUy + AyUy ]

7 = [AN/aN‘l‘ AH/aH‘l‘ Aw/aw]

The velocities at the junction are:

Uy = Uy + [Py—Pn] / [paN]
Us = Uy + [Py—Pgl/ [pan]
Uy = Uy + [Ps—Py] / [paW]

into






ACCUMULATOTS

Accumulators are used to dampen transients in pipe networks.
They generally consist of a neck or constriction containing
liguid which 1is connected directly to the pipe network. A
pocket of gas is at the other end of the neck. The gas 1is

usually contained inside a flexible bladder.

There are two ways to model an accumulator. The first is the
Helmholtz Resonator mass spring model where the slug of
liguid in the neck bounces on the gas spring. This gives the
natural frequency of the accumulator and one tries to match
that to the natural period of the network. The second model
is a transient model where the equation of motion of the slug
of ligquid in the neck and the equations for the gas pocket
are solved step by step in time and this is coupled a water

hammer analysis transient model.

The Helmholtz Resonator model starts with the equation of

motion of a mass on a spring:

m d°AZ/dt? + k AZ = f

where m is the mass of liquid in the neck and k is the spring

due to gas compressibility.






The natural frequency and period of the accumulator are

o = N [k/m] T = 2n/w

The mass m of the slug of liquid in the neck is

m= 0 AL

where p is the density of the liquid in the neck, A is the

area of the neck and L is the length of the neck.

Conservation of Mass for the gas pocket gives

A [ oV ] =VAo+ oAV =0

Thermodynamics gives

2

AP/Ac = a a = V[nRT]

Geometry gives

AV = - A AZ

Substitution into mass gives

V AP/a’ - o A AZ = 0

AP = [0 A a° / V] AZ



The force on the slug of liquid is

AF = AP A = [oc A% a%2 / V] AZ = k AZ

This gives the spring constant k

k = [o A% a2 / V]

Substitution into the frequency equation gives

w=~N [ [ca?>a?/ V] / [pAaL]l ]

=~ [ [cAa’] / [pV L] ]

For the transient model the equation governing the motion of

the slug of liquid in the neck is:

m dU/dt = [ P; - Pg ] A - fL/D p U|U|/2 A

where P; is the junction pressure and Pg is the gas pressure.

The volume of gas is governed by

dv/dt = - U A

The pressure of the gas is

P = N o' =N (M/V)"



SUDDEN VALVE OPENING

A sketch of a valve is shown on the next page. The governing

equation for the flow through it is:

PN_ PXZKU|U|

For constant pipe properties

Py — P = - pa (Uy — Un)

Px — Py = + pa (Ux — Uy)

Substitution into the valve equation gives

[Pn — pa (U - Uy] - [Py + pa (U-Uy] =K U|U|

This gives U at each time step. Back substitution gives the

pressure upstream and downstream of the wvalve.






METHOD OF CHARACTERISTICS

The method of characteristics 1is a way to determine the
pressure and velocity variations 1in a pipe network when
valves are adjusted or turbomachines undergo load changes.

The equations governing flow in a typical pipe are:

o 0U/0t + pU 0U/0Ox + OP/Ox - pg Sina + £/D pU|U|/2 = 0

O0P/0t + U OP/0x + pa’ 0U/0x = 0

where P 1is pressure, U is velocity, t is time, x is distance
along the pipe, p is the fluid density, g is gravity, o is
the pipe slope, f is the pipe friction factor, D is the pipe
diameter and a is the wave speed. The wave speed is:

a’ = K/p K=K/ [l + DK/Ee]

where K is the bulk modulus of the fluid, E is the Youngs

Modulus of the pipe wall and e is its thickness.

The governing equations can be combined as follows:

p du/ot + p U OU/Ox + OP/Ox + p C

+ A (0P/Ot + U 0P/0x + pa® 0U/0x) = O



where

C = f£/DUIU|/2 - g Sinx

Manipulation gives

o (8U/0t + [U+Aa’] 0U/0ox)

+ N (OP/0Ot + [1/A+U] OP/0Ox) + pC =0

According to Calculus

dp/dt op/ot + dx/dt 0P/0x

du/dt

ou/ot + dx/dt 0U/0x

Inspection of the last three equations suggests:

dx/dt = U + 2a® = 1/A + U

In this case, the PDE becomes the ODE:

o du/dt + A dp/dt + p C = 0

The dx/dt equation gives



Aa® = 1/x or A o= 1/a° or A== 1/a
So there are 2 values of A. They give
o du/dt + 1/a dp/dt + p C = 0 dx/dt = U + a
p du/dt - 1/a dp/dt + p C = 0 dx/dt = U - a

The dx/dt equations define directions in space and time along
which the PDE becomes an ODE. Using finite differences, each

ODE and dx/dt equation can be written as:

p AU/At + 1/a AP/At + p C = 0 Ax/At = U + a

o AU/At - 1/a AP/At + p C = 0 Ax/At = U - a

Manipulation gives

Il
o

pa AU + AP + At pa C

pa AU - AP + At pa C = 0

When the wave speed a i1s much greater than the flow speed U
and when Ax is the length of the pipe L and At is the pipe
transit time T, these equations are basically the water

hammer equations but with friction added.



For pipes divided into reaches, one gets

Up - Uy + (Pp=P1)/[pal + Cp(te-ty) =0 Xp=X1, = (Upta) (te—ty)

Up - Ug - (Pp=Pr)/I[pal + Cg(te-tr) =0 Xp—Xr = (Ur—a) (tp—tg)

Manipulation gives

Up = 0.5 (Up + Ug + [Pr-Pr]/[pal - At (Cp+Cgr))

Pp = 0.5 (P + Pr + [pa] [Uy-Ur] - At[pa] (CL-Cgr))

Linear interpolation gives U and P at points L and R in terms

of known U and P at grid points A and B and C:

U, = Un + (X7%Xa)/ (xp=%a) (Up—Ua)
Ur = Uc + (%r=%c)/ (X=%c) (Us=Uc)
PL = Pa + (x1-x%a)/ (xs—Xa) (Ps—Pa)
Pr = Pc + (xr=Xc)/ (xg=%c) (Pg—Pc)

At each end of the pipe, a boundary condition relates the Pp
and Up there. A finite difference equation also relates the

Pr and Up there. So, one can solve for the Pp and Up there.
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UNSTEADY FLOW IN A PIPE
METHOD OF CHARACTERISTICS
RESERVOIR / PIPE / VALVE

PRESSURE = POLD / PNEW
VELOCITY = UOLD / UNEW

HEAD = RESERVOIR HEAD
PIPE = HEAD PRESSURE

SLOPE = VALVE SLOPE

OD = PIPE DIAMETER
OL = PIPE LENGTH
CF = FRICTION FACTOR

SOUND = SOUND SPEED
GRAVITY = GRAVITY
DENSITY DENSITY

NIT = NUMBER OF TIME STEPS
MIT = NUMBER OF PIPE NODES
DELT = STEP IN TIME

DATA

DELT=0.001;

CF=0.5;

CMAX=+10.0;

CMIN=0.0;
0OD=0.15;0L=100.0;
SOUND=1000.0;
GRAVITY=10.0;
DENSITY=1000.0;
SLOPE=-100000.0;
HEAD=20.0;SPEED=0.1;
NIT=5000;MIT=100;KIT=1;
PIPE=HEAD*DENSITY*GRAVITY;

ONE=PIPE;

TWO=0.0;

ZERO=0.0;

BIT=MIT/2;
GIT=MIT-1;

DELX=0L/ (MIT-1) ;
FLD=CF*0OL/0D;
PMAX=CMAX*PIPE;
PMIN=CMIN*PIPE;
WAY=SPEED*SPEED/2.0;
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LOSS=FLD*WAY/GRAVITY;
G=LOSS*DENSITY*GRAVITY;
DELP=G/GIT;

for IM=1:MIT

POLD (IM)=ONE;

UOLD (IM)=SPEED;

X (IM) =TWO;
ONE=ONE-DELP;
TWO=TWO+DELX;

end

PV=POLD (MIT) ;

UV=UOLD (MIT) ;

START LOOP ON TIME
TIME=0.0;
for IT=1:NIT
TIME=TIME+DELT;
T(IT)=TIME;
POINTS INSIDE PIPE
for IM=2:MIT-1
XA=X (IM-1) ;
XB=X (IM) ;
XC=X (IM+1) ;
PA=POLD (IM-1) ;
PB=POLD (IM) ;
PC=POLD (IM+1) ;
UA=UOLD (IM-1) ;
UB=UOLD (IM) ;
UC=UOLD (IM+1) ;
XL=XB- (UB+SOUND) *DELT;
XR=XB- (UB-SOUND) *DELT;
UL=UA+ (XL-XA) / (XB-XA) * (UB-UA) ;
(
(

PRy

( )7
PL=PA+ (XL-XA) / (XB-XA) * (PB-PA) ;
UR=UC+ (XR-XC) / (XB-XC) * (UB-UC) ;
PR=PC+ (XR-XC) / (XB-XC) * (PB-PC) ;
UNEW (IM)=0.5* (UL+UR+ (PL-PR) /DENSITY/SOUND
-DELT* (CF/2.0/0D* (UL*abs (UL) +UR*abs (UR) ) ) ) ;
PNEW (IM)=0.5* (PL+PR+ (UL-UR) *DENSITY*SOUND-DENSITY
*SOUND*CF/2.0/0D*DELT* (UL*abs (UL) -UR*abs (UR) ) ) ;
end
DOWNSTREAM END OF PIPE
if (KIT==1) UNEW (MIT)=ZERO;end;
if (KIT==2) UNEW (MIT)=UV
+ (POLD (MIT) -PV) /SLOPE; end;
if (UNEW (MIT)<=ZERO)
UNEW (MIT)=ZERO; end;
XA=X (MIT-1) ;
XB=X (MIT) ;
PA=POLD (MIT-1) ;
PB=POLD (MIT) ;
UA=UOLD (MIT-1) ;
UB=UOLD (MIT) ;
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XL=XB- (UB+SOUND) *DELT;

UL=UA+ (XL-XA) / (XB-XA) * (UB-UA) ;

PL=PA+ (XL-XA) / (XB-XA) * (PB-PA) ;

PNEW (MIT)=PL- (UNEW (MIT)-UL) *DENSITY*SOUND
-DELT*DENSITY*SOUND* (CF/2.0/0D*UL*abs (UL)) ;
1f (PNEW (MIT)<=PMIN) PNEW (MIT)=PMIN;end;

1f (PNEW (MIT)>=PMAX) PNEW (MIT)=PMAX;end;

1f (PNEW (MIT)==PMAX | PNEW (MIT)==PMIN)

UNEW (MIT)=UL- (PNEW (MIT)-PL) /DENSITY/SOUND
-DELT* (CF/2.0/0D*UL*abs (UL) ) ; end;

UPSTREAM END OF PIPE

XB=X (1) ;

XC=X(2) ;

PB=POLD (1) ;
PC=POLD (2) ;
UB=UOLD (1) ;

UC=UOLD(2) ;

XR=XB- (UB-SOUND) *DELT;

UR=UC+ (XR-XC) / (XB-XC) * (UB-UC) ;

PR=PC+ (XR-XC) / (XB-XC) * (PB-PC) ;
PNEW (1) =PIPE;

UNEW (1) =UR+ (PNEW (1) -PR) /DENSITY/SOUND
-DELT* (CF/2.0/0D*UR*abs (UR) ) ;

STORING P AND U

for IM=1:MIT

POLD (IM) =PNEW (IM) ;

UOLD (IM)=UNEW (IM) ;

if (IM==BIT) PIT(IT)=PNEW(IM):;

HIT(IT)=PIT(IT)/DENSITY/GRAVITY;
BAR(IT)=HIT(IT)/10.0;
UIT(IT)=UNEW(IM) ;end;

end

END OF TIME LOOP

end

plot (T,UIT)
plot (UIT,HIT)
plot (UIT, BAR)
plot (UIT,PIT)
plot (T, PIT)
plot (T, BAR)
xlabel ("TIME"')
yvlabel ("BAR'")
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REACHES WITH FRICTION

Pipes in a pipe network often have different lengths. The
method of reaches divides the pipes into segments that have
the same transit time. The segments are known as reaches. The
sketch on the next page shows a pipe divided into 4 reaches.
Conditions at points i 37 k are known. Conditions at point J

are unknown. Waterhammer analysis gives for point J:

[pa] dUu/dt + dP/dt + [palC = O
P; - P; = - [pa] [Us-U;] - At [palC;
[pa] dU/dt - dP/dt + [pal]C = 0

P; - Px = + [pa] [U;-Ux] + At [pa]Cx

Manipulation of these equations gives:

Py = (PxtPi) /2 - [pal [Ux-U;il/2 + At [pal [Cxk-Cil/2

Us; = (UxtU;) /2 = [Px=Pil/[2pa]l - At [Cyx+Ci]l/2

This is the template for finding conditions at points inside

the pipe. At the ends of a pipe, water hammer analysis would

connect the end points to j points inside the pipe.



JUNCTIONS WITH FRICTION



Pipes in a pipe network are connected at Jjunctions. The
sketch on the next page shows a junction which connects 3
pipes. Lower case letters indicate known conditions. Upper
case letters indicate unknown conditions. A junction is often
small. This allows us to assume that the junction pressure 1is
common to all pipes. It also allows us to assume that the net
flow into or out of the Jjunction is =zero. Conservation of

Mass considerations give:

+ p AN UN + p AH UH + p Aw UW = O
Waterhammer analysis gives:
Py = Pn = + [pax] [Uy-Un] + At [pa]Cp
Py - Py = + [pau] [Us-Ug] + At [palCy
Py = Py = + [pay] [Uy-Uy] + At [palCy
Manipulation gives
Uy = Un + [PN_Pm]/[paN] - At Cy
UH = Ug + [PH_Pg]/[paH] - At Cg
Uy = Uy + [PW_PV]/[paW] - At Cy
In these equations Py = Py = Py = Pjy. Substitution into

Conservation of Mass gives:



+ 9 AN [ Um + [PJ_Pm]/[paN] - At Cm]
+ p Ay [ Uy + [Py—Pgl/[pau]l - At Cql

+ o Ay [ Uy, + [P;=Py]/[paw] - At Cy] = 0

Manipulation gives the Jjunction pressure:

P; = [X -Y] / Z

X =1+ AN/aN Pn + AH/aH Pg + AW/aWPV ]

Y = p [ + Ayl[Up=AtCpl + Ag[Ug-AtCy) + Agl[Uy—AtCy] ]

Z = [ + Ay/ay + Ag/as + Ay/ay ]

The velocities at the junction are:

Uy = Up + [PJ_Pm]/[paN] - At Cy
Uy = Ug + [PJ_Pg]/[paH] - At Cg

UW = Uv + [PJ_PVJ/[paW] - At CV






THREE PHASE VALVE STROKING

Three phase valve stroking is a process where a valve 1is
opened or closed very fast in such a way that pressures are
kept within preset limits and no waves are left at the end.

It is described below for a complete closure case.

In phase I the wvalve 1s moved 1in such a way that the
pressure at the valve rises linearly in time from Proy to
Purge 1in 2T pipe transit times. At the end of phase I the
pressure variation along the pipe 1is linear and the

velocity everywhere because of a combination of pressure

surges and back flows has been reduced by AP/[pa] where AP
is Pyreg minus Proy. In phase II the valve is moved in such a

way that the pressure variation along the pipe stays

constant and the velocity drops by 2AP/[pa] everywhere every
2T transit times. The pressure variation remains constant
because pressure surges generated by valve motion are
cancelled by suction waves at the valve caused by back
flows. The constant pressure variation causes a constant
deceleration of the fluid in the pipe. Phase III takes 2T

pipe transit times to complete. During this time the

velocity everywhere drops AP/ [pal and pressure falls
linearly at the wvalve from Pyigy to Proy. The wvalve is moved
in such a way that suction waves at the wvalve caused by
back flows are allowed to bring the pressure down again to

Prow. Because phases I and III reduce the velocity by a



total of 2AP/[pal] phase II must take (U-2AP/[pal)/ (2AP/[pal)
2T seconds to complete. One can calculate what the wvalve
area should be at each instant in time during stroking. A
fast acting feedback control system can then be used to

move the valve in the desired manner.

Phase I sets up conditions 1in the pipe for phase 1II.
Similarly, phase II sets up conditions in the pipe for
phase III. In phase II, the pressure surge rate 1is twice
that of phases I and III. In a set period of time, one
pressure surge maintains a Dbackflow that would have
otherwise Dbeen stopped by a suction wave. The other
pressure surge balances a pressure release. There are no
suction waves 1in phase II and all backflows are maintained.
Every point in the pipe has a velocity reduction due to a
surge wave and one due to a backflow. In phase III, the
pressure surge rate 1s cut in half. This allows suction
waves to form at the valve. These propagate up the pipe and
eliminate backflows. Conditions in the pipe are controlled
by these waves and by waves already there from phase II.
During the first half of phase III, conditions in the pipe
are still under the influence of phase II. Velocity falls
faster at the reservoir than at the valve because of this.
Half way through phase III, there 1is a linear pressure
variation and a linear velocity variation along the pipe.
During the second half of phase III, a wave travels down
the pipe which brings the pressure back to Proy everywhere

and the velocity to zero everywhere.
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DISCRETE VALVE STROKING

The following sketches show a stroking maneuver that has
been broken down into 16 discrete steps. The top sketch is
for pressure and the bottom sketch is for wvelocity. The

spacing of the steps in time is one quarter transit time.

The first four steps show small surge waves gradually
propagating up the pipe causing velocity reductions as they
go. The next four steps show where surge waves propagating
up the pipe are superimposed on pressure releases and back
flows propagating down the pipe. These eight steps are for
phase I. The end result 1is a linear pressure variation
along the pipe. The pressure at the wvalve is high and the
velocity is the same everywhere. In phase II, the linear
pressure variation 1s maintained and this causes a uniform
deceleration of the fluid along the pipe. The last eight
steps are for phase III. The first 4 steps there are
influenced by phase II. After these 4 steps, the velocity
is zero at the upstream end of the pipe and there is a new
linear pressure variation along the pipe. During the last 4
steps, a wave propagates down the pipe making the velocity

zero everywhere and bringing pressure back to low.



FLUID STRUCTURE INTERACTIONS

WATER WAVE INTERACTION

WITH STRUCTURES



PREAMBLE

Most water waves are generated by storms at sea. Many waves
are present 1in a storm sea state: each has a different
wavelength and period. Theory shows that the speed of
propagation of a wave or its phase speed is a function of
water depth. It travels faster in deeper water. Theory also
shows that the speed of a wave 1is a function of its
wavelength. Long wavelength waves travel faster than short
wavelength waves. This explains why storm generated waves,
which approach shore, are generally a single wavelength.
Because waves travel at different speeds, they tend to
separate or disperse. When waves approach shore, they are
influenced by the seabed by a process known as refraction.
This can focus or spread out wave energy onto a site. Close
to shore water depth is not the same everywhere: so points on
wave crests move at different speeds and crests become bent.
This explains why crests which approach a shore line tend to
line up with it: points in deep water travel faster than
points in shallow water and overtake them. Wave energy
travels at a speed known as the group speed. This 1is
generally not the same as the phase speed. However for
shallow water both speeds are the same and they depend only
on the water depth. A large low pressure system moving over
shallow water would generate an enormous wave 1f the system

speed and the wave energy speed were the same. Basically wave



energy gets trapped in the system frame when the system speed
matches the wave energy speed. Tides are basically shallow
water waves. Here the pull of the Moon mimics a low pressure
system. Theory shows that if water depth was 22km everywhere
on Earth the Moon pull would produce gigantic tides. They
would probably drain the oceans and swamp the continents

everyday. Fortunately the average water depth is only 3km.

There are two mechanisms that have been proposed for wave
generation by winds. One 1is the classic Kelvin Helmholtz
stability mechanism where water waves extract energy from the
wind and grow. This mechanism explains the generation of
small wavelength waves. Energy in small wavelength waves can
leak 1into longer wavelength waves but not into wvery 1long
wavelength swells. There must be another mechanism to explain
them. This mechanism considers a storm to be made up of an
infinite number of pressure waves each with a different speed
and wavelength moving over the water surface. When the speed
and wavelength of a pressure wave matches the speed and
wavelength of a wave that can exist in the water, a resonance
occurs which causes that water wave to grow. A pressure wave
can be Dbroken down into a series of infinitesimal pulses.
FEach pulse as it moves over the water generates a stern wave
much like that directly behind a ship. Resonance occurs when

all of the stern waves add up.



STRUCTURE SIZE

Water waves can interact with structures and cause them to
move or experience loads. For wave structure interaction, an
important parameter is 5D/A where D 1is the characteristic
dimension of the structure and A 1is the wavelength.
Structures are considered large if 5D/A is much greater than
unity: they are considered small if 5D/A is much less than
unity. Small structures are transparent to waves. Large

structures scatter waves.

For large structures, wave energy can reflect from it or
diffract around it. Panel Method CFD based on Potential Flow
Theory can be used to study the scattering process. This is

beyond the scope of this note.

When a wave passes a small structure, there can be two kinds
of loads on the structure: wake load due to the formation of
wakes back of the structure and inertia load due to pressures
in the water caused by acceleration and deceleration of water
particles in the wave. In deep water, water particles move in
circular orbits. In finite depth water, the orbits are
ellipses. Let the orbit dimension normal to the structure be
d and let the characteristic dimension of the structure be D.
When 5D<<d, a well defined wake forms behind the structure.

When  5D>>d, such a wake does not form. When 5D 1is



approximately equal to d, flows are extremely complex. Let T
be the wave period and let T be the time it takes a water
particle to move pass the structure. It turns out that 5T<KT
corresponds to 5D<<d while 5T>>T corresponds to 5D>>d. When
5D<<d, wakes form because transit time is short relative to
wave period. So, water is moving sufficiently long in one
direction to pass the structure. When 5D>>d, wakes do not
form because transit time is long relative to wave period.
So, before water particles can pass the structure, they

reverse direction.

WATER WAVES

The wave profile equation has the form:

n = no Sin(kX)

where X = x - Cpt where X is the horizontal coordinate of a
wave fixed frame, x 1s the horizontal coordinate of an
inertial frame, Cp 1s the wave phase speed, k is the wave
number and o = k Cp is the wave frequency. The wave number k

is related to the wave length A as follows: k = 2m/A.

The water particle velocities are:

c
Il

+ H/2 2u/T Cosh[k(z+h)]/Sinh[kh] Sin (kX)

W = - H/2 2u/T Sinh[k(z+h)]/Sinh[kh] Cos (kX)



These can be used to get drag loads on small structures.

The water particle accelerations are:

du/dt - H/2 (2n/T)? Cosh[k(z+h)]/Sinh[kh] Cos (kX)

dw/dt - H/2 (2n/T)? Sinh[k(z+h)]/Sinh[kh] Sin (kX)

These can be used to get inertia loads on small structures.

The water particle positions are:

Xp X, + H/2 Coshl[k(z+h)]/Sinh[kh] Cos (kX)

Zp zo + H/2 Sinh[k(z+h)]/Sinh[kh] Sin (kX)

These give the water particle orbit size.

The wave pressure is:
AP = pg n Cosh[k(z+h)]/Cosh[kh]
The dispersion relationships:
c: = +(g/k Tanh[kh])

® = V(gk Tanh[kh])

These show that deep water waves travel faster than shallow
water waves. They also show that 1long wave length waves

travel faster than short wave length waves.



Wave energy travels at a speed known as the group speed. This
is generally not the same as the phase speed of a wave. One

can show that the group speed is given by:
Cce = dw/dk = Cp (1/2 + [kh]/Sinh[2kh])
The wave energy density is:
E = 1/8 pg H

One can show that wave energy flux is:

Group speed is responsible for many important phenomena. Some

of these were mentioned earlier.

Waves at sea after a storm are random. They are made up of an
infinite number of frequencies. A spectrum shows how the
energy in a wave field 1s spread out over a range of
frequencies. A popular 2 parameter fit to a wave amplitude

spectrum is the ITTC fit:

S, = A/’ e/

A=346H%/T" B=691/T"

where H is significant wave height and T is significant wave

period. JONSWAP is a popular 3 parameter fit.



A Response Amplitude Operator or RAO can be used to connect a

wave spectrum to a body motion or load response spectrum
Sk = RAO® S,

An RAO 1is basically a Magnitude Ratio. For a specific wave
period, it is the amplitude of body response divided by the
wave amplitude. One can get RAOs from theoretical analysis.

One can also get RAOs from experiments.

All sorts of statistical and probabilistic information can be
obtained from spectra. For bodies, the analysis makes use of
the following moments of the spectrum:

o0

M, = 1/2 | Sa(e) o do
0

One can show that the significant response height and period

of a body motion or load are:
2 Rg = 4 M, Ts = 2m My/M;

The probability of a response exceeding a certain level is:

P(R,>R,) = e™* X = R.R./ [2Mg]



WAVE INTERACTION WITH BODIES

REAL FLUID FORMULATION

PREAMBLE
At low speeds, fluid particles move along smooth paths:
motion has a laminar or layered structure. At high speeds,
particles have superimposed onto their basic streamwise
observable motion a random walk or chaotic motion. Particles
move as groups in small spinning bodies known as eddies. The
flow pattern is said to be turbulent. A turbulent wake flow
is one that contains some large eddies together with a lot of
small ones. Such a flow could be found around the GBS on a
stormy day. The large eddies generally stay roughly in one
place. Fluid in them swirls around and around or recirculates
in roughly closed orbits. The smaller eddies are associated
with turbulence and are carried along by the local flow. The
large eddies can usually be found inside wakes. Most of the
smaller ones can be found near wake boundaries. They are
generated in regions where velocity gradients are high like
at the edges of wakes or in the boundary layers close to
structures. They are dissipated in regions where gradients
are low like in sheltered areas like corners. Turbulent wake

flows are governed by the basic conservation laws. However,



they are so complex that analytical solutions are impossible.
One could develop computational fluid dynamics or CFD codes
based on the conservation law equations. Unfortunately, the
small eddies are so small that an extremely fine grid spacing
and a very small time step would Dbe needed to follow
individual eddies in a flow. Small eddies are typically
around lmm in diameter. One would need a grid spacing smaller
than 0.1lmm to follow such eddies. CFD converts each governing
equation into a set of algebraic equations or AEs: one AE for
each PDE for each xyz grid point. Workable CFD 1is not
possible because computers cannot handle the extremely large
number of AEs generated. For example, a 100m x 100m x 100m
volume of water near a structure like the GBS would need 10°
x 10° x 10° or 10" grid points if the grid spacing was 0.lmm.
Also very many time steps would be needed to complete a
simulation run. No computer currently exists that can handle
so many grid points and so many time steps. The random
motions of molecules in a gas diffuse momentum: they give gas
its viscosity. Small eddies in a turbulent flow also diffuse
momentum: they make fluid appear more viscous than it really
is. This apparent increase in viscosity controls overall flow
patterns and loads on structures. Models which account for
this apparent increase 1n viscosity are known as eddy

viscosity models. They can be obtained from the momentum



equations by a complex time averaging process. The time
averaging introduces the so called Reynolds Stresses into the
momentum equations, and these are modelled using the eddy
viscosity concept. Models have Dbeen developed which can
estimate how eddy viscosity wvaries throughout a flow.
Workable CFD 1is now possible because one can now use much
larger grid spacing and time steps: it is no longer necessary
to follow individual eddies around in a flow. When small
eddies are accounted for in this way, they no longer show up
in flow: they are suppressed by eddy viscosity. For the GBS
case, a grid spacing around 1m would now be adequate. This
means a 100m x 100m x 100m volume of water near the GBS would

now need only 10% x 10 x 10% or 10° grid points.

CONSERVATION LAWS FOR HYDRODYNAMICS FLOWS
Hydrodynamics flows are often turbulent. Conservation of

momentum considerations for such flows give:

o ( 0U/ot + UOU/Ox + VOU/Oy + WOU/O0z ) + A = - OP/0x

+ [ 0/0x (u 0U/0x) + 0/0y (n 0U/0y) + 0/0z (n 0U/0z) ]

o ( ov/ot + UOV/0Ox + VOV/Oy + Wov/0z ) + B = - 0P/0y

+ [ 0/0x (n OV/Ox) + 0/0y (u 0V/Oy) + 0/0z (u 0V/0z) ]



o ( OW/o0t + UOW/0x + VOW/Oy + Wow/dz ) + C = — 0P/0z - pg

+ [ 0/0x (n OW/0x) + 0/0y (n OW/0y) + 0/0z (n OW/0z) ]

where U V W are respectively the velocity components in the x
y z directions, P is pressure, p is the density of water and
u is 1its effective viscosity. The time averaging process
introduces source like terms A B C into the momentum
equations. Each 1is a complex function of velocity and

viscosity gradients as indicated below:

A = 0Ou/dy OV/0x — Ou/0x OV/Oy + Ou/0z OW/0x - Ou/0x OW/0z
B = Ou/dx 0U/0y - ou/0y 0U/0x + Ou/0z OW/0y — 0Ou/dy OW/0z
C = Ou/0y 0V/0z - ou/0z OV/Oy + Ou/0x 0U/0z — Ou/0z 0OU/0x

Conservation of mass considerations give:

OP/0t + o c® ( dU/Ox + OV/Oy + OW/0z ) = O

where ¢ is the speed of sound in water. Although water is
basically incompressible, CFD takes it to be compressible.
Mass 1is used to adjust pressure at points in the grid when

the divergence of the velocity vector is not =zero.



A special function F known as the volume of fluid or VOF
function is used to locate the water surface. For water, F is
taken to be unity: for air, it is taken to be zero. Regions
with F between unity and zero must contain the water surface.

Material volume considerations give:

OF/0t + UOF/0x + VOF/0y + WOF/0z = 0

TURBULENCE MODEL
Engineers are usually not interested in the details of the
eddy motion. Instead they need models which account for the
diffusive character of turbulence. One such model is the k-t
model, where k is the local intensity of turbulence and ¢ is

its local dissipation rate. Its governing equations are:

ok/ot + U0k/Ox + VOk/Oy + Wok/0z = Tp - Tp

+ [ 0/0x (n/a 0k/0x) + 0/0y (nu/a 0k/dy) + 0/0z (n/a 0k/0z) ]

Oe/0t + Ulde/0Ox + VOe/0y + Woe/O0z = Dp — Dp

+ [ 0/0x (u/b 0e/0x) + 0/0y (u/b 0e/dy) + 0/0z (u/b 0g/0z) ]

where

Tp:G}Jt/p DP=TPC1€/k



Ty = Cp € Dp = C, €2 / k

Mt Cs k% / ¢ B =M

where

G = 2 [ (du/ox)? + (oV/oy)® + (OW/0z)” ]
+ [ 0U/Oy +0V/0x 1 ¢ + [ O0U/Oz +OW/Ox ] ?
+ [ oWw/0y +0V/0z ] 2

where Cp=1.0 C:=1.44 Cy=1.92 C3=0.9 a=1.0 b=1.3 are
constants based on data from geometrically simple
experiments, ;1 1is the laminar wviscosity, u:¢ 1s extra
viscosity due to eddy motion and G is a production function.
The k-g¢ equations account for the convection, diffusion,
production and dissipation of turbulence. Special wall
functions are used to simplify consideration of the sharp

normal gradients in velocity and turbulence near walls.

COMPUTATIONAL FLUID DYNAMICS
For CFD, the flow field is discretized by a Cartesian or xyz
system of grid lines. Small volumes or cells surround points
where grid lines cross. Flow is not allowed in cells occupied

by fixed bodies. Ways to handle moving bodies are still under



development. Flow can enter or leave the region of interest
through its Dboundaries. For hydrodynamics problems, an
oscillating pressure over a patch of the water surface could
be used to generate waves. An oscillating flow at a vertical
wall could also be used for this. For CFD, each governing

equation is put into the form:

oM/0t = N

At points within the CFD grid, each governing equation is

integrated numerically across a time step to get:

M(t+At) = M(t) + At N(t)

where the wvarious derivatives 1in N are discretized using
finite difference approximations. The discretization gives
algebraic equations for the scalars P F k ¢ at points where
grid lines cross and equations for the velocity components at
staggered ©positions between the grid points. Central
differences are used to discretize the viscous terms in the
momentum and turbulence equations. To ensure numerical
stability, a combination of central and upwind differences 1is
used for the convective terms. Collocation or lumping is used
for the T and D terms. To march the unknowns forward in time,
the momentum equations are used to update U V W, the mass

equation 1is used to update P and correct U V W, the VOF



equation is used to update F and the location of the water

surface and the turbulence equations are used to update k €.

APPLICATIONS OF FLOW-3D CODE
FLOW-3D is a CFD software package for hydrodynamics and other

flows <www.flow3d.com>. It can handle all sorts of complex

phenomena such as wave breaking and phase changes such as
vaporization and solidification. No other CFD package can
handle these phenomena. A unique feature of FLOW-3D known as
the General Moving Object or GMO can simulate the complex
motions of floating bodies in steep waves. The motions of the
bodies can be prescribed or they can be coupled to the motion
of the fluid. It allows for extremely complicated motions and
flows. One can think of a GMO as a bubble in a flow where
the pressure on the inside surface of the bubble is adjusted
in such a way that its boundary matches the shape of a body.
FLOW 3D uses a complex interpolation scheme to fit the body
into the Cartesian grid. The sketch on the next page shows a

FLOW-3D simulation of an o0il rig in waves.


http://www.flow3d.com/




SPECTRAL ANALYSIS OF SENSOR SIGNALS

FOURIER SERIES

A Fourier Series breaks down a periodic signal with a known
period into its harmonics. The general equation for a Fourier

Series representation of a signal is

f(t) = X [ Ak Sin[kot] + By Cos[kot] ]

Manipulation shows that

+T/2

A, = 2/T | f(t) sin[kot] dt
-T/2

+T/2

B, = 2/T | f(t) cos[kmot] dt
-T/2

For discrete data these take the form

N
A, = 2/T ¥ f[nAt] Sin[kow[nAt]] At
n=1
N
By = 2/T X flnAt] Cos[k®[nAt]] At
n=1

Fy = Bx + Ay J



FOURIER TRANSFORM

The general equation for a Fourier Transform is

+00

Al®) = [ f(t) sin[ot] dt
—00
+00

B(w) = | f(t) Cos[mt] dt
—00

While the Fourier Series deals with the harmonics of a
periodic signal with a known period, the Fourier Transform

deals with a signal with an infinite number of periods.

For discrete data the Fourier Transform becomes

N

Al®) = Y f[nAt] Sin[®[nAt]] At
n=1
N

B(w) = Y f[nAt] Cos[®[nAt]] At
n=1

F(w)= B(w) + A(®)]J

This acts on data streams that are not infinitely long.
Windows are used to compress data at the extremes to avoid

errors due to the finite length of the stream.



HYDRODYNAMICS

SCALING LAWS

All sorts of probabilistic and statistical information can be
obtained from the response spectrum of a structure in random
waves. The desired spectrum needs to be known before the
structure is actually built. Getting it would be part of the
design process. There are two ways to get the response
spectrum. One way 1is to measure response profile data and use
that to generate the spectrum. One can get this response
profile data by putting a small scale model of the structure
in random seas in a physical wave tank. Obviously, we need to
know how the model data scales to prototype size. One can
also put a model or prototype in random seas in a numerical
wave tank. The other way to get a response spectrum is to
measure the response amplitude operator of the structure. It

connects the wave spectrum to the response spectrum:

Sk = RAO® S,



A wave spectrum for a particular location can be obtained
from historical data or it can be obtained from wave profile
data measured at the location. For motion studies, the RAO is
usually a ratio of amplitudes. In this case, the RAO 1is
already a dimensionless number. One would expect the peak RAO

to be the same at model and prototype scales.

Model frequencies are usually higher than prototype
frequencies. Wave theory connects the frequencies. The

dispersion relationship for deep water waves 1is

w = 2a/T k = 2no/A

Manipulation gives

[2n/T1% = g[2m/A]

[211/Ty]® = g2/ ] [211/Tp]® = gl2m/Ap]

Division of model by prototype gives

[TP/TM] Z = XP/XM



Geometric scaling requires that

Ap/Ayv = Dp/Dy

This gives

[Tp/Tul® = Dp/Du

[wp/ wu] 7 = Dw/Dp

This implies that for a 100:1 geometry ratio the period ratio
is 10:1 while the frequency ratio is 0.1:1. Note that a

response spectrum by definition is

Sz = [Rol?/hw

This implies that for a 100:1 geometry ratio the spectrum
ratio would be 100000:1. For finite depth water

®w?’ = gk Tanh[kh]

This gives the same scaling laws as those for deep water.



The resistance to forward motion of ships is often studied at
model scale. Most of the resistance is due to wave generation
by the ship. One wusually plots the resistance force

coefficient Cp versus the Froude Number Fjy:

Cob = R / [A pU?/2] Fr = U / V[g D]

For a ship moving at a steady speed, the phase speed of
generated waves directly behind it matches the ship speed.

The dispersion relationship gives for phase speed:

Cw = V[g/k] = V[gh/[21]]

Manipulation gives

Co/NIghs] Cu/ N [ghu]

U/ N [gDy]

Up/N [gDs]

So the Froude Number definition follows from the dispersion

relationship. It is basically a speed coefficient.



o\°

% HYDRODYNAMICS LAB

o\°

clear all

DRAFT=0.55; DEPTH=1.5;

MASS=27.7; POT=11.9;

SPRING=359.0; HEAVE=0.1;

OMEGA=0.00001, STEP=0.01;

HEIGHT=0.1l; PERIOD=2.0;

MOMENTO0=0.0; MOMENT1=0.0;

GRAVITY=9.81; PI=3.14159;

for count=1:1000
A=346.0*HEIGHT"2/PERIOD"4;
B=691/PERIOD"4;
WAVE=A/OMEGA"5*exp (-B/OMEGA"4) ;
HZ (count)=OMEGA/ (2.0*PI); SZ (count)=WAVE;
WAVENUMBER=OMEGA"2/GRAVITY;
CORRECT=tanh (WAVENUMBER*DEPTH) ;
WAVENUMBER=WAVENUMBER/CORRECT;
G=exp (-WAVENUMBER*DRAFT) ;
ONE=cosh (WAVENUMBER* (-DRAFT+DEPTH) ) ;
TWO=cosh (WAVENUMBER*DEPTH) ; G=ONE/TWO;
P=(SPRING-MASS*OMEGA"2); QO=POT*OMEGA;
M=SPRING*G*P/ (P*"2+Q"2) ;
N=-SPRING*G*Q/ (P"2+Q"2) ;
M=G* (SPRING*P+Q*Q) / (P"2+Q"2) ;
N=G* (P*Q-SPRING*Q) / (P"24+Q0"2) ;
RAO=sqgrt (M"2+N"2); RESPONSE=RAO*RAO*WAVE;
MR (count)=RA0; SR (count)=RESPONSE;
MOMENTO0=MOMENTO+RESPONSE*STEP/2.0;
MOMENT1=MOMENT1+RESPONSE*OMEGA*STEP/2.0;
OMEGA=0OMEGA+STEP;

end

SIGR=4.0*sqgrt (MOMENTO) /2.0

SIGT=2.0*PI*MOMENTO/MOMENT1

PROB=exp (-HEAVE"2/ (2.0*MOMENTO) )

plot (HZ,SZ*500,HZ,SR*500,HZ, MR)



o\°

o\°

SIGNALS LAB DATA

o\°

o\°

FAST FOURIER TRANSEFORM

o\°

clear all
name="'Bookl.txt';

S=load (name) ;

out=254/2;

depth=2.0;

gravity=9.81;

delt=0.00004; cycle=1/delt;
nit=1000000; mit=2*nit;
bit=nit+1; £(1)=0.0;
w(l)=0.0; wn(l)=0.0;

% period=2.0;
% omega=2*pi/period;
CEW=1.0,;CFP=1.0;
SW=S(1,2); SP=S(1,3);
for it=1:nit

iot=it+1;

time=it*delt;

t(it)=time;

wave (1t)=(S(it,2) -SW) *CFW;
heave (it)=(S(it, 3)-SP) *CFP;
% shake (it)=sin (omega*time) ;
f(iot)=cycle/2*iot/nit;

end
width=cycle/mit;
wave=wave-mean (wave) ;

zw=fft (wave,mit) /nit;
pw=2%*abs (zw(l:bit));

gw=2*pw (1:bit) .*conj (2*pw (1l:bit)) /width;



figure (6)
plot (£ (l:out),gw(l:out))
xlabel ('hz")

ylabel ('data')
title('spectrum')

figure (5)

plot (£ (l:out),pw(l:out))
xlabel ('hz'")

ylabel ('data')
title('FFT")

figure (4)

plot (t,wave)

xlabel ('time')

ylabel ('data')
title('test')
heave=heave-mean (heave) ;
zp=fft (heave,mit) /nit;
pp=2*abs (zp(l:bit));
gp=2*zp (l:bit) .*conj (2*zp(l:bit)) /width;
figure (3)
plot(f(l:out),gp(l:out))
xlabel ('hz'")

ylabel ('data')

title ('spectrum')
figure (2)
plot(f(l:out),pp(l:out))
xlabel('hz")

ylabel ('data')
title('FFT")

figure (1)

plot (t, heave)

xlabel ('time'")

ylabel ('data')
title('test')



o\°

o\°

SIGNALS LAB DATA

o\°

o\°

STANDARD FOURIER TRANSEFORM

o\°

o\°

clear all

name="'Bookl.txt';

S=load (name) ;

gravity=9.81;

depth=2.0;

nit=1000000; mit=300;

sat=1000; nit=nit/sat;
delt=0.00004*sat;

span=delt*nit;

SW=S(1,2); SP=S(1,3);

CEW=1.0;CFP=1.0;

% period=2.0;

% omega=2*pi/period;

for nat=1:nit

time=nat*delt;

t (nat)=time;

window=sin (pi*time/span) ;window=1.0;
wave (nat)= (S (nat*sat, 2) -SW) *window*CFW;
heave (nat)=(S (nat*sat, 3) -SP) *window*CFP;
% shake (nat)=sin (omega*time) *window;
end



wave=wave-mean (wave) ;

abc=0.0;

xyz=0.0;

omega=0.0;

for mat=1:mit

omega=omega+pi/100;

hz (mat)=omega/ (2*pi) ;

time=0.0;

for nat=1:nit

time=time+delt;

one=sin (omega*time) *delt;

two=cos (omega*time) *delt;

abc=abc+wave (nat) *one;

xyz=xyztwave (nat) *two;

end

sum= (abc*2+xyz"2)"0.5;

uvw=2*sum/span;

level (mat) =uvw;

energy (mat)=uvw*uvw
/(pi/100) ;

abc=0.0; xyz=0.0;

end

figure (6)

plot (hz,enerqgy)

xlabel ('hz'")

ylabel ('data')

title ('spectrum')

figure (5)

plot (hz, level)

xlabel('hz")

ylabel ('data')

title ('SFT'")

figure (4)

plot (t,wave)

xlabel ('"time'")

ylabel ('data')

title('test')



heave=heave-mean (heave) ;

abc=0.0;

xyz=0.0;

omega=0.0;

for mat=1:mit

omega=omega+pi/100;

hz (mat)=omega/ (2*pi) ;

time=0.0;

for nat=1:nit

time=time+delt;

one=sin (omega*time) *delt;

two=cos (omega*time) *delt;

abc=abc+heave (nat) *one;

xyz=xyztheave (nat) *two;

end

sum= (abc*2+xyz"2)"0.5;

uvw=2*sum/span;

level (mat) =uvw;

energy (mat)=uvw*uvw
/(pi/100) ;

abc=0.0; xyz=0.0;

end

figure (3)

plot (hz,enerqgy)

xlabel ('hz'")

ylabel ('data')

title ('spectrum')

figure (2)

plot (hz, level)

xlabel('hz")

ylabel ('data')

title ('SFT'")

figure (1)

plot (t, heave)

xlabel ('"time'")

ylabel ('data')

title('test')



