FLUID STRUCTURE INTERACTIONS

UNSTEADY FLOW

IN PIPE NETWORKS



PREAMBLE
Unsteady flow in pipe networks can be caused by a number of
factors. A turbomachine with blades can send pressure waves
down a pipe. If the period of these waves matches a natural
period of the pipe wave speed resonance develops. A piston
pump can send similar waves down a pipe. Waves on the surface
of a water reservoir can also excite resonance of inlet
pipes. One way to avoid resonance is to change the wave speed
of the pipes in the network. For liquids, one can do this by
adding a gas such as air. This can be bled into the network
at critical locations or it can be held in a flexible tube
which runs inside the pipes. One could also use a flexible
pipe to change the wave speed. Sudden valve or turbomachine
changes can send waves up and down pipes. These can cause the
pipes to explode or implode. In some cases interaction
between pipes and devices is such that oscillations develop
automatically. Examples include oscillations set up by leaky
valves and those set up by slow turbomachine controllers. To
lessen the severity of transients in a hydraulic network, one
can use gas accumulators. Hydro plants use surge pipes.
Another way to lessen the severity of transients is use of
relief valves. These are spring loaded valves which open when
the pressure reaches a preset level. This can be high or low.
For high pressure liquids, they create a pathway back to a

sump. For low pressure liquids, they allow a gas such as air



to enter the pipe. Bypass valves and check valves can be used

to isolate turbomachines when they fail.

There are three procedures that can be used to study unsteady
flow in pipe networks. The most complex of these 1is the
Method of Characteristics. This finds directions in space and
time along which the partial differential equations of mass
and momentum reduce to an ordinary differential equation in
time. Computational Fluid Dynamics codes have been developed
based on this method that can handle extremely complex pipe
networks. A  second procedure is known as Graphical
Waterhammer. It is a graphical form of a procedure known as
Algebraic Waterhammer. It makes extensive use of PU plots. A
third procedure is known as the Impedance Method. This makes
use of Laplace Transforms. It employs something called the
Impedance Transfer Function. It resembles closely a method

used to study Electrical Transmission Lines.

These notes start with a physical description of how pressure
waves propagate along a pipe. This 1s followed by a
derivation of the basic wave equations. Then, wave speeds for
waves 1n flexible tubes and mixtures are given. Next, an
outline of Algebraic/Graphical Waterhammer is given. Finally,

the Method of Characteristics is presented.



WAVE PROPAGATION IN PIPES

Consider flow in a rigid pipe with a wvalve at its downstream
end and a reservoir at 1its upstream end. Assume that there
are no friction losses. This implies that the pressure and

flow speed are the same everywhere along the pipe.

Imagine now that the valve is suddenly closed. This causes a
high pressure or surge wave to propagate up the pipe. As it
does so, it brings the fluid to rest. The fluid immediately
next to the valve is stopped first. The valve is like a wall.
Fluid enters an infinitesimal layer next to this wall and
pressurizes it and stops. This layer becomes like a wall for
an infinitesimal layer just upstream. Fluid then enters that
layer and pressurizes it and stops. As the surge wave
propagates up the pipe, it causes an infinite number of these
pressurizations. When it reaches the reservoir, all of the
inflow has been stopped, and pressure is high everywhere

along the pipe. The pipe resembles a compressed spring.

When the surge wave reaches the reservoir, it creates a
pressure imbalance. The layer of fluid just inside the pipe
has high pressure fluid downstream of 1t and reservoir
pressure upstream. Fluid exits the layer on its upstream side
and depressurizes 1it. The pressure drops Dback to the
reservoir level. A backflow wave is created. The speed of the
backflow is exactly the same as the speed of the original
inflow. The pressure that was generated by taking the

original inflow away is exactly what is available to generate



the backflow. The backflow wave propagates down the pipe

restoring pressure everywhere to its original level.

When the backflow wave reaches the wvalve, it creates a flow
imbalance. This causes a low pressure or suction wave to
propagate up the pipe. As it does so, it brings the fluid to
rest. Again, the valve is like a wall. Because of backflow,
fluid exits an infinitesimal layer next to this wall and
depressurizes it and stops. The pressure drops below the
reservoir level by exactly the amount it was above the

reservoir level in the surge wave.

When the suction wave reaches the reservoir, all of the
backflow has been stopped, and pressure is low everywhere
along the pipe. The pipe resembles a stretched spring. At the
reservoir, the suction wave creates a pressure imbalance. An
inflow wave 1s created. The speed of the inflow is exactly
the same as the speed of the backflow. The inflow wave
travels down the pipe restoring pressure to 1its original
level. Conditions in the pipe become what they were Jjust

before the valve was closed.

During one cycle of vibration, there are 4 transits of the
pipe by pressure waves. This means that the natural period of
the pipe is 4 times the length of the pipe divided by the
wave speed. Without friction, the vibration cycle repeats

over and over. With friction, it gradually dies away.






BASIC WAVE EQUATIONS

Consider a wave travelling up a rigid pipe. In a reference

frame moving with the wave, mass considerations give

o A (U+ta) = (ptAp) A (U+AU+a)

where p 1is density, A 1is pipe area, U is flow velocity and

a is wave speed. When a >> U, this reduces to

0 = p AU + a Ap

Momentum considerations give

[ (p+Ap) A (U+AU+a) (U+AU+a) - pA(U+a) (U+a)] = [P - [P+AP]] A

PA (U+a) [ (U+AU+a) - (U+a)] = - AP A

where P is pressure. When a >> U, this reduces to

o a AU = - AP

Manipulations give



a =V [AP/Ap]

For a gas such as air moving down a pipe, one can assume
ideal gas behavior for which:

P/o =R T

R is the ideal gas <constant and T 1s the absolute
temperature of the gas. For a wave propagating through a
gas, one can assume processes are isentropic: in other
words, adiabatic and frictionless. The wave moves so fast
through the gas that there is no time for heat transfer or

friction. The isentropic equation of state is:

where K 1is another constant and k is the ratio of specific

heats. Differentiation of this equation gives

AP/Np = K k pk_l =K k pk / p

k
= k/p K p =k P/p

The ideal gas law into this gives
AP/Ap =k R T

So wave speed for a gas becomes



a="[k R T]
For a liquid, fluid mechanics shows that

AP = - K AV/V

where K is the bulk modulus of the ligquid. It is a measure

of its compressibility. For a bit of fluid mass

AM =A [pV] =V Ap + pAV = 0

This implies that

AP = K Ap/p AP/Np = K/p

So wave speed for a ligquid becomes
a =\ [K/p]

The bulk modulus of a gas follows from

a= V[kRT] =+ [K/p]
K/p =k RT K=k pRT

K=%kP



WAVES IN FLEXIBLE TUBES

Conservation of Mass for a flexible tube is

o A (U+a) = (ptAp) (A+AA) (U+AU+a)

Manipulation of this equation gives when U<<a

PpA AU + (U+a)A Ap + p(U+a) AA

Il
o

AU/a + Ap/p + AA/A =0

Conservation of Momentum for a flexible tube 1is

[PA(U+a)] [(U+AU+a) - (U+a)] =

PA + [P+AP] AA — [P+AP] [A+AA]

Manipulation of this equation gives when U<<a

PA(U+a) AU + A AP = 0

pa AU + AP = 0

More manipulation gives

AU = - AP/ [pa] AU/a = -AP/[pa?]

Experiments show that

AP = K Ap/p Ap/p = AP/K



For a thin wall tube, the hoop stress follows from

[2e] o = AP D o = AP D/ [2e]

where e 1is the wall thickness and D is the tube diameter.

The hoop strain is

¢ = [nAD]/[nD] = AD/D

Substitution into the stress strain connection gives

o=E ¢ AP D/[2e] = E AD/D

where E is the Elastic Modulus of the wall material.

Geometry gives

A =1 D°/4 AA = 1 2D/4 AD

AA/A = 2 AD/D = AP D/ [Ee]

With this Conservation of Mass becomes

- AP/[pa’] + AP/K + AP D/[Ee] = 0O

Manipulation of Conservation of Mass gives

a =\ [K/p]

K = K/ [ 1+ [DK]/[Ee] ]



WAVES IN MIXTURES

For a mixture the wave speed is:

For a two component mixture the density follows from:

My = Ma + Mg PMVM = EaVa + PBVe

ou = [ paVa + Ve 1 / Vu

Experiments show that

AP = - Ky [AVy/Vy]

Manipulation gives the bulk modulus

Ky = — AP / [AVyu/Vy]

VM = VA + VB AVM = AVA + AVB

For each component in the mixture:

AP = - Ka [AVa/Va] AVy = = [Va/Kal AP
AP = - Kg [AVg/Vg] AVg = - [Vg/Kg] AP
The mixture bulk modulus becomes:
Ku = [ Va+ Vg ]l / [ Va/Ka + Vg/Kg 1]

The mixture analysis 1is also valid for mixtures of

solid particles and a fluid, such as a dusty gas.

small



ALGEBRAIC/GRAPHICAL WATERHAMMER

Waterhammer analysis allows one to connect unknown pressure
and flow velocity at one end of a pipe to known pressure and
velocity at the other end of the pipe one transit time back
in time. The derivation of the waterhammer equations starts
with the conservation of momentum and mass equations for

unsteady flow in a pipe. These are:

o 0U/ot + pU 0U/0x + O0P/0Ox - pg Sinoa + £/D pU|U|/2 =0

OP/0t + U OP/0x + pa’ 0U/0x = 0

where P 1is pressure and U 1is velocity. For the case where
gravity and friction are insignificant and the mean flow

speed 1s approximately zero, these reduce to:

o 0U/0t + 0P/0x = O

O0P/0t + pa’ 0U/dx = 0

Manipulation gives the wave equations:

0°P/ot? = a? 0°p/ox?

0°U/ot? = a? 0°u/ox’



The general solution consists of two waves: one wave which
travels up the pipe known as the F wave and the other which

travels down the pipe known as the f wave.

In terms of these waves, pressure and velocity are:

N=x-at M

X + a t

For a given point N on the f wave, the N equation shows that
X must increase as time increases, which means the wave must
be moving down the pipe. For a given point M on the F wave,
the M equation shows that x must decrease as time increases,
which means the wave must be moving up the pipe. Substitution
of the general solution into mass or momentum or the wave

equations shows that they are valid solutions.



Multiplying U by pa and subtracting it from P gives:

[P-P,] - palU-U,] = 2F(M)

Let the F wave travel from the downstream end of the pipe to
the upstream end. For a point on the wave, the wvalue of F

would be the same. This implies

AP = + pa AU

Multiplying U by pa and adding it to P gives:

[P-P,] + palU-U,] = 2f£(N)

Let the f wave travel from the upstream end of the pipe to
the downstream end. For a point on the wave, the value of f

would be the same. This implies

AP = - pa AU

The AP vs AU equations allow us to connect unknown conditions
at one end of a pipe at some point in time to known
conditions at the other end back in time. They are known as

the algebraic/graphical waterhammer equations.
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DERIVATION OF WAVE EQUATIONS

Conservation of Momentum and Mass are:

o 8U/dt + 8P/0x = 0

OP/ot + pa’ dU/ox = 0

Differentiation of Momentum with respect to t gives

o 8°U/8t? + 8(dP/6x) /At = O

Differentiation of Mass with respect to x gives

0(0P/0t) /0x + pa” 0°U/0x* = 0

Subtraction of Mass from Momentum gives

o 0°U/0t? = pa’ 0°U/0x?

0°U/ot? = a? 0°u/ox?

Similar manipulations of Momentum and Mass give

pa2 0(0U/dt) /O0x + a’ &PP/ox®> = 0

&°P/0t? + pa’ 0(0U/0x) /ot = 0

0°P/ot? = a? 0°p/ox?



GENERAL SOLUTIONS FOR WAVE EQUATIONS

The general solutions are

Uu-U, = [f(N) - FM] / [pal

where N and M are wave fixed coordinates

Z
Il

X —a t M Xx + a t

Substitution into Momentum gives

o 0U/0t + OP/0x = 0

( p Of/ON ON/Ot - p OF/OM oM/ot ) / [pal
+ Of/ON ON/Ox + OF/0M OM/0x

=0

( p Of/ON [-a] - p OF/OoM [+al ) / [pal

+ Of/ON [1] + OF/0M [1]
=0
- Of/ON - OF/0M + Of/ON + OF/0M = 0
0 = 0

So the general solutions satisfy Momentum. One can also show

that they satisfy Mass and the Wave equations.



SUDDEN VALVE CLOSURE

Imagine a pipe with a reservoir at 1its upstream end and a
valve at its downstream end. The wvalve is initially open.
Then it is suddenly shut. From that point onward, the
velocity at the valve 1is zero. We ignore losses. Because of
this, the pressure at the reservoir is fixed at its initial
level. We start at point 1 which is at the reservoir and move
along an f wave to point 2 which is at the wvalve. A surge
wave 1s created at the wvalve. We then move from the wvalve
along an F wave to point 3 which is at the reservoir. A
backflow wave is created at the reservoir. We then move from
the reservoir along an f wave to point 4 which is at the
valve. A suction wave 1is created at the valve. We then move
from the wvalve along an F wave to point 1 which is at the
reservoir. An inflow wave 1is created at the reservoir. From
this point onward the <cycle repeats. Friction gradually

dissipates the waves and the velocity homes in on zero.






LEAKY VALVES

A stable leaky wvalve is basically one that has a P versus U
characteristic which resembles that of a wide open valve.
This has a parabolic shape with positive slope throughout.
An unstable 1leaky wvalve has a characteristic that has a
positive slope at low pressure but negative slope at high
pressure. Basically, the valve tries to shut itself at high
pressure. The flow rate Jjust upstream of a wvalve is pipe
flow speed times pipe area. The flow rate within the wvalve
is wvalve flow speed times wvalve area. In a stable leaky
valve, the areas are both constant. The valve flow speed
increases with pipe pressure so the pipe flow speed also
increases. In an unstable 1leaky wvalve, the flow speed
within the wvalve also increases with pipe pressure but the
valve area drops because of suction within the wvalve. The
suction 1is generated by high speed flow through the small
passageway within the wvalve. It pulls on flexible elements
within the wvalve and attempts to shut it. Graphical
waterhammer plots for stable and unstable leaky valves are
given below. As can be seen, they both resemble the sudden
valve closure plot, but the stable one is decaying while
the unstable one is growing. In the unstable case, greater
suction is needed each time a backflow wave comes up to the
valve Dbecause the flow requirements of the wvalve keep
getting bigger. In the stable case, less suction is needed

because the flow requirements keep getting smaller.



STABLE LEAKY VALVE



UNSTABLE LEAXY VALVE



METHOD OF REACHES

Pipes in a pipe network often have different lengths. The
method of reaches divides the pipes into segments that have
the same transit time. The segments are known as reaches. The
sketch on the next page shows a pipe divided into 4 reaches.
Conditions at points i 7 k are known. Conditions at point J

are unknown. Waterhammer analysis gives for point J:

B>
g
Il

- pa AU

P; = P; - [pa] [Us-Ui]

AP = + pa AU

P; = Px + [pa] [Us=Ux]

Manipulation of these equations gives:

3y}
g
I

(PxtPi) /2 - [pal [Ux-Uil/2

Us; = (Upt+Ui) /2 - [Px=-Pi]/[2pal

This is the template for finding conditions at points inside

the pipe. At the ends of a pipe, water hammer analysis would

connect the end points to j points inside the pipe.






TREATMENT OF PIPE JUNCTIONS

Pipes 1in a pipe network are connected at Jjunctions. The
sketch on the next page shows a junction which connects 3
pipes. Lower case letters indicate known conditions. Upper
case letters indicate unknown conditions. A junction is often
small. This allows us to assume that the junction pressure is
common to all pipes. It also allows us to assume that the net
flow into or out of the Jjunction is =zero. Conservation of

Mass considerations give:

pAN UN + pAH UH + pAW UW = 0

Waterhammer analysis gives:

Pv = Pn = + [pax] [Uy—Uy]
Py - Pg = + [pax] [UH_Ug]
Py — Py = + [paw] [Us-Uy]

Manipulation gives

Uy = Un + [Py—Pnl/[pax]
Us = Uy + [Py—Pgl/ [pan]
Uy = Uy + [Py=Pyl/[pau]



In these eqgquations Py = Py = Py = Ps. Substitution

Conservation of Mass gives:

9 AN [ Um + [PJ_Pm]/[paN] ]
+ o Ay [ Uy + [Py=Pgl/[paul ]

+ oAy [ U, + [Ps-Py]/[paw] 1] = O

Manipulation gives the junction pressure:

P; = [X - Y] / 7

where

X =1 AN/aN Pn + AH/aH Pg + AW/aWPV ]

Y

© [ AyUn + AUy + AyUy ]

7 = [AN/aN‘l‘ AH/aH‘l‘ Aw/aw]

The velocities at the junction are:

Uy = Uy + [Py—Pn] / [paN]
Us = Uy + [Py—Pgl/ [pan]
Uy = Uy + [Ps—Py] / [paW]

into






ACCUMULATOTS

Accumulators are used to dampen transients in pipe networks.
They generally consist of a neck or constriction containing
liguid which 1is connected directly to the pipe network. A
pocket of gas is at the other end of the neck. The gas 1is

usually contained inside a flexible bladder.

There are two ways to model an accumulator. The first is the
Helmholtz Resonator mass spring model where the slug of
liguid in the neck bounces on the gas spring. This gives the
natural frequency of the accumulator and one tries to match
that to the natural period of the network. The second model
is a transient model where the equation of motion of the slug
of ligquid in the neck and the equations for the gas pocket
are solved step by step in time and this is coupled a water

hammer analysis transient model.

The Helmholtz Resonator model starts with the equation of

motion of a mass on a spring:

m d°AZ/dt? + k AZ = f

where m is the mass of liquid in the neck and k is the spring

due to gas compressibility.






The natural frequency and period of the accumulator are

w = N [k/m] T = 2n/w

The mass m of the slug of liquid in the neck is

m= 0 AL

where p is the density of the liquid in the neck, A is the

area of the neck and L is the length of the neck.

Conservation of Mass for the gas pocket gives

A [ oV ] =VAo+ oAV =0

Thermodynamics gives

2

AP/Ac = a a = V[nRT]

Geometry gives

AV = - A AZ

Substitution into mass gives

V AP/a’ - o A AZ = 0

AP = [0 A a° / V] AZ



The force on the slug of liquid is

AF = AP A = [oc A% a%2 / V] AZ = k AZ

This gives the spring constant k

k = [o A% a2 / V]

Substitution into the frequency equation gives

w=~N [ [ca?>a?/ V] / [pAaL]l ]

=~ [ [cAa’] / [pV L] ]

For the transient model the equation governing the motion of

the slug of liquid in the neck is:

m dU/dt = [ P; - Pg ] A - fL/D p U|U|/2 A

where P; is the junction pressure and Pg is the gas pressure.

The volume of gas is governed by

dv/dt = - U A

The pressure of the gas is

P = N o' =N (M/V)"



TREATMENT OF VALVES

A sketch of a valve is shown on the next page. The governing

equation for the flow through it is:

PN_ PXZKU|U|

For constant pipe properties

Py — P = - pa (Uy — Un)

Px — Py = + pa (Ux — Uy)

Substitution into the valve equation gives

[Pn — pa (U - Uy] - [Py + pa (U-Uy] =K U|U|

This gives U at each time step. Back substitution gives the

pressure upstream and downstream of the wvalve.






METHOD OF CHARACTERISTICS

The method of characteristics 1is a way to determine the
pressure and velocity variations 1in a pipe network when
valves are adjusted or turbomachines undergo load changes.

The equations governing flow in a typical pipe are:

o 0U/0t + pU 0U/0Ox + OP/Ox - pg Sina + £/D pU|U|/2 = 0

O0P/0t + U OP/0x + pa’ 0U/0x = 0

where P 1is pressure, U is velocity, t is time, x is distance
along the pipe, p is the fluid density, g is gravity, o is
the pipe slope, f is the pipe friction factor, D is the pipe
diameter and a is the wave speed. The wave speed is:

a’ = K/p K=K/ [l + DK/Ee]

where K is the bulk modulus of the fluid, E is the Youngs

Modulus of the pipe wall and e is its thickness.

The governing equations can be combined as follows:

p du/ot + p U OU/Ox + OP/Ox + p C

+ A (0P/Ot + U 0P/0x + pa® 0U/0x) = O



where

C = f£/DUIU|/2 - g Sinx

Manipulation gives

o (8U/0t + [U+Aa’] 0U/0ox)

+ N (OP/0Ot + [1/A+U] OP/0Ox) + pC =0

According to Calculus

dp/dt op/ot + dx/dt 0P/0x

du/dt

ou/ot + dx/dt 0U/0x

Inspection of the last three equations suggests:

dx/dt = U + 2a® = 1/A + U

In this case, the PDE becomes the ODE:

o du/dt + A dP/dt + p C = 0

The dx/dt equation gives



Aa® = 1/x or A o= 1/a° or A== 1/a
So there are 2 values of A. They give
o du/dt + 1/a dp/dt + p C = 0 dx/dt = U + a
p du/dt - 1/a dp/dt + p C = 0 dx/dt = U - a

The dx/dt equations define directions in space and time along
which the PDE becomes an ODE. Using finite differences, each

ODE and dx/dt equation can be written as:

p AU/At + 1/a AP/At 4+ p C = 0 Ax/At = U + a

o AU/At - 1/a AP/At + pC = 0 Ax/At = U - a

Manipulation gives

Il
o

pa AU + AP + At pa C

pa AU - AP + At pa C = 0

When the wave speed a is much greater than the flow speed U
and when Ax is the length of the pipe L and At is the pipe
transit time T, these equations are basically the water

hammer equations but with friction added.



For pipes divided into reaches, one gets

Up - Uy + (Pp=P1)/[pal + Cp(te-ty) =0 Xp=X1, = (Upta) (te—ty)

Up - Ug - (Pp=Pr)/I[pal + Cg(te-tr) =0 Xp—Xr = (Ur—a) (tp—tg)

Manipulation gives

Up = (UptUgr) /2 + (Pp-Pr)/[2pa]l - At (Cp+Cr)/2

Pp = (Py+Pr) /2 + [pal (U-Ur)/2 - At[pa]l (C1-Cr)/2

Linear interpolation gives U and P at points L and R in terms

of known U and P at grid points A and B and C:

U, = Un + (X7%Xa)/ (xp=%a) (Up—Ua)
Ur = Uc + (%r=%c)/ (X=%c) (Us=Uc)
PL = Pa + (x1-x%a)/ (xs—Xa) (Ps—Pa)
Pr = Pc + (xr=Xc)/ (xg=%c) (Pg—Pc)

At each end of the pipe, a boundary condition relates the Pp
and Up there. A finite difference equation also relates the

Pr and Up there. So, one can solve for the Pp and Up there.
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UNSTEADY FLOW IN A PIPE
METHOD OF CHARACTERISTICS
RESERVOIR / PIPE / VALVE

PRESSURE = POLD / PNEW
VELOCITY = UOLD / UNEW

HEAD = RESERVOIR HEAD
PIPE = HEAD PRESSURE

SLOPE = VALVE SLOPE

OD = PIPE DIAMETER
OL = PIPE LENGTH
CF = FRICTION FACTOR

SOUND = SOUND SPEED
GRAVITY = GRAVITY
DENSITY DENSITY

NIT = NUMBER OF TIME STEPS
MIT = NUMBER OF PIPE NODES
DELT = STEP IN TIME

DATA

DELT=0.001;

CF=0.5;

CMAX=+10.0;

CMIN=0.0;
0OD=0.15;0L=100.0;
SOUND=1000.0;
GRAVITY=10.0;
DENSITY=1000.0;
SLOPE=-100000.0;
HEAD=20.0;SPEED=0.1;
NIT=5000;MIT=100;KIT=1;
PIPE=HEAD*DENSITY*GRAVITY;

ONE=PIPE;

TWO=0.0;

ZERO=0.0;

BIT=MIT/2;
GIT=MIT-1;

DELX=0L/ (MIT-1) ;
FLD=CF*0OL/0D;
PMAX=CMAX*PIPE;
PMIN=CMIN*PIPE;
WAY=SPEED*SPEED/2.0;
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LOSS=FLD*WAY/GRAVITY;
G=LOSS*DENSITY*GRAVITY;
DELP=G/GIT;

for IM=1:MIT

POLD (IM)=ONE;

UOLD (IM)=SPEED;

X (IM) =TWO;
ONE=ONE-DELP;
TWO=TWO+DELX;

end

PV=POLD (MIT) ;

UV=UOLD (MIT) ;

START LOOP ON TIME
TIME=0.0;
for IT=1:NIT
TIME=TIME+DELT;
T(IT)=TIME;
POINTS INSIDE PIPE
for IM=2:MIT-1
XA=X (IM-1) ;
XB=X (IM) ;
XC=X (IM+1) ;
PA=POLD (IM-1) ;
PB=POLD (IM) ;
PC=POLD (IM+1) ;
UA=UOLD (IM-1) ;
UB=UOLD (IM) ;
UC=UOLD (IM+1) ;
XL=XB- (UB+SOUND) *DELT;
XR=XB- (UB-SOUND) *DELT;
UL=UA+ (XL-XA) / (XB-XA) * (UB-UA) ;
(
(

PRy

( )7
PL=PA+ (XL-XA) / (XB-XA) * (PB-PA) ;
UR=UC+ (XR-XC) / (XB-XC) * (UB-UC) ;
PR=PC+ (XR-XC) / (XB-XC) * (PB-PC) ;
UNEW (IM)=0.5* (UL+UR+ (PL-PR) /DENSITY/SOUND
-DELT* (CF/2.0/0D* (UL*abs (UL) +UR*abs (UR) ) ) ) ;
PNEW (IM)=0.5* (PL+PR+ (UL-UR) *DENSITY*SOUND-DENSITY
*SOUND*CF/2.0/0D*DELT* (UL*abs (UL) -UR*abs (UR) ) ) ;
end
DOWNSTREAM END OF PIPE
if (KIT==1) UNEW (MIT)=ZERO;end;
if (KIT==2) UNEW (MIT)=UV
+ (POLD (MIT) -PV) /SLOPE; end;
if (UNEW (MIT)<=ZERO)
UNEW (MIT)=ZERO; end;
XA=X (MIT-1) ;
XB=X (MIT) ;
PA=POLD (MIT-1) ;
PB=POLD (MIT) ;
UA=UOLD (MIT-1) ;
UB=UOLD (MIT) ;
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XL=XB- (UB+SOUND) *DELT;

UL=UA+ (XL-XA) / (XB-XA) * (UB-UA) ;

PL=PA+ (XL-XA) / (XB-XA) * (PB-PA) ;

PNEW (MIT)=PL- (UNEW (MIT)-UL) *DENSITY*SOUND
-DELT*DENSITY*SOUND* (CF/2.0/0D*UL*abs (UL)) ;
1f (PNEW (MIT)<=PMIN) PNEW (MIT)=PMIN;end;

1f (PNEW (MIT)>=PMAX) PNEW (MIT)=PMAX;end;

1f (PNEW (MIT)==PMAX | PNEW (MIT)==PMIN)

UNEW (MIT)=UL- (PNEW (MIT)-PL) /DENSITY/SOUND
-DELT* (CF/2.0/0D*UL*abs (UL) ) ; end;

UPSTREAM END OF PIPE

XB=X (1) ;

XC=X(2) ;

PB=POLD (1) ;
PC=POLD (2) ;
UB=UOLD (1) ;

UC=UOLD(2) ;

XR=XB- (UB-SOUND) *DELT;

UR=UC+ (XR-XC) / (XB-XC) * (UB-UC) ;

PR=PC+ (XR-XC) / (XB-XC) * (PB-PC) ;
PNEW (1) =PIPE;

UNEW (1) =UR+ (PNEW (1) -PR) /DENSITY/SOUND
-DELT* (CF/2.0/0D*UR*abs (UR) ) ;

STORING P AND U

for IM=1:MIT

POLD (IM) =PNEW (IM) ;

UOLD (IM)=UNEW (IM) ;

if (IM==BIT) PIT(IT)=PNEW(IM):;

HIT(IT)=PIT(IT)/DENSITY/GRAVITY;
BAR(IT)=HIT(IT)/10.0;
UIT(IT)=UNEW(IM) ;end;

end

END OF TIME LOOP

end

plot (T,UIT)
plot (UIT,HIT)
plot (UIT, BAR)
plot (UIT,PIT)
plot (T, PIT)
plot (T, BAR)
xlabel ("TIME"')
yvlabel ("BAR'")
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REACHES WITH FRICTION

Pipes in a pipe network often have different 1lengths. The
method of reaches divides the pipes into segments that have
the same transit time. The segments are known as reaches. The
sketch on the next page shows a pipe divided into 4 reaches.
Conditions at points i1 7 k are known. Conditions at point J

are unknown. Waterhammer analysis gives for point J:

[pa] du/dt + dP/dt + [palC = O
P; - P; = - [pa] [Us-U;] - At [palC;
[pa] dU/dt - dP/dt + [pal]C = 0

P; - Px = + [pa] [Us-Ux] + At [pa]Cy

Manipulation of these equations gives:

P; = (PxtPi) /2 - [pal [Ux-U;il/2 + At [pal [Cxk-Cil/2

Us; = (UxtU;) /2 = [Px=Pil/[2pa]l - At [Cyx+Cil/2

This is the template for finding conditions at points inside

the pipe. At the ends of a pipe, water hammer analysis would

connect the end points to j points inside the pipe.






JUNCTIONS WITH FRICTION

Pipes in a pipe network are connected at Jjunctions. The
sketch on the next page shows a junction which connects 3
pipes. Lower case letters indicate known conditions. Upper
case letters indicate unknown conditions. A junction is often
small. This allows us to assume that the junction pressure 1is
common to all pipes. It also allows us to assume that the net
flow into or out of the Jjunction is =zero. Conservation of

Mass considerations give:

+ pAN UN + pAH UH + pAW UW = 0

Waterhammer analysis gives:

Py = Pn = + [pay] [Uy-Un] + At [palCq
Py = Py = + [pax] [Us-Ug] + At [palCq

PW - Pv = + [paW] [UW_UV] + At [pa]cv

Manipulation gives

Uy = Uy + [PN_Pm]/[paN] - At Cy
UH = Ug + [PH_Pg]/[paH] - At Cg

Uy = Uy + [PW_Pv]/[paW] - At Cy



In these eqgquations Py = Py = Py = Ps. Substitution

Conservation of Mass gives:

+ 9 AN [ Um + [PJ_Pm]/[paN] - At Cm]
+ p Ay [ Uy + [Pyj—Pgl/[pau]l - At Cql
+ o Ay [ Uy, + [P;=Py]/[paw] - At Cy] = 0

Manipulation gives the junction pressure:

P; = [X - Y] / 7

X =1+ AN/aN Pn + AH/aH Pg + AW/aWPV ]

Y = p [ + Ay[Up-AtCp]l + AglUy;~AtCql + Agl[Uy-AtCy] ]

Z = [ + Ay/ay + Ag/an + Ay/ay ]

The velocities at the junction are:

Uy = Uy + [PJ_Pm]/[paN] - At Cy
Uy = Ug + [PJ_Pg]/[paH] - At Cg

Uy = Uy + [PJ_PV]/[paW] - At Cy

into






THREE PHASE VALVE STROKING

Three phase valve stroking is a process where a valve 1is
opened or closed very fast in such a way that pressures are
kept within preset limits and no waves are left at the end.

It is described below for a complete closure case.

In phase I the wvalve 1s moved 1in such a way that the
pressure at the valve rises linearly in time from Proy to
Purge 1in 2T pipe transit times. At the end of phase I the
pressure variation along the pipe 1is linear and the

velocity everywhere because of a combination of pressure

surges and back flows has been reduced by AP/[pa] where AP
is Pyreg minus Proy. In phase II the valve is moved in such a

way that the pressure variation along the pipe stays

constant and the velocity drops by 2AP/[pa] everywhere every
2T transit times. The pressure variation remains constant
because pressure surges generated by valve motion are
cancelled by suction waves at the valve caused by back
flows. The constant pressure variation causes a constant
deceleration of the fluid in the pipe. Phase III takes 2T

pipe transit times to complete. During this time the

velocity everywhere drops AP/ [pal and pressure falls
linearly at the wvalve from Pyigy to Proy. The wvalve is moved
in such a way that suction waves at the wvalve caused by
back flows are allowed to bring the pressure down again to

Prow. Because phases I and III reduce the velocity by a



total of 2AP/[pal] phase II must take (U-2AP/[pal)/ (2AP/[pal)
2T seconds to complete. One can calculate what the wvalve
area should be at each instant in time during stroking. A
fast acting feedback control system can then be used to

move the valve in the desired manner.

Phase I sets up conditions 1in the pipe for phase 1II.
Similarly, phase II sets up conditions in the pipe for
phase III. In phase II, the pressure surge rate 1is twice
that of phases I and III. In a set period of time, one
pressure surge maintains a Dbackflow that would have
otherwise Dbeen stopped by a suction wave. The other
pressure surge balances a pressure release. There are no
suction waves 1in phase II and all backflows are maintained.
Every point in the pipe has a velocity reduction due to a
surge wave and one due to a backflow. In phase III, the
pressure surge rate 1s cut in half. This allows suction
waves to form at the valve. These propagate up the pipe and
eliminate backflows. Conditions in the pipe are controlled
by these waves and by waves already there from phase II.
During the first half of phase III, conditions in the pipe
are still under the influence of phase II. Velocity falls
faster at the reservoir than at the valve because of this.
Half way through phase III, there 1is a linear pressure
variation and a linear velocity variation along the pipe.
During the second half of phase III, a wave travels down
the pipe which brings the pressure back to Proy everywhere

and the velocity to zero everywhere.
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