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PREAMBLE 

Unsteady flow in pipe networks can be caused by a number of 

factors. A turbomachine with blades can send pressure waves 

down a pipe. If the period of these waves matches a natural 

period of the pipe wave speed resonance develops. A piston 

pump can send similar waves down a pipe. Waves on the surface 

of a water reservoir can also excite resonance of inlet 

pipes. One way to avoid resonance is to change the wave speed 

of the pipes in the network. For liquids, one can do this by 

adding a gas such as air. This can be bled into the network 

at critical locations or it can be held in a flexible tube 

which runs inside the pipes. One could also use a flexible 

pipe to change the wave speed. Sudden valve or turbomachine 

changes can send waves up and down pipes. These can cause the 

pipes to explode or implode. In some cases interaction 

between pipes and devices is such that oscillations develop 

automatically. Examples include oscillations set up by leaky 

valves and those set up by slow turbomachine controllers. To 

lessen the severity of transients in a hydraulic network, one 

can use gas accumulators. Hydro plants use surge pipes. 

Another way to lessen the severity of transients is use of 

relief valves. These are spring loaded valves which open when 

the pressure reaches a preset level. This can be high or low. 

For high pressure liquids, they create a pathway back to a 

sump. For low pressure liquids, they allow a gas such as air 



to enter the pipe. Bypass valves and check valves can be used 

to isolate turbomachines when they fail.  

 

There are three procedures that can be used to study unsteady 

flow in pipe networks. The most complex of these is the 

Method of Characteristics. This finds directions in space and 

time along which the partial differential equations of mass 

and momentum reduce to an ordinary differential equation in 

time. Computational Fluid Dynamics codes have been developed 

based on this method that can handle extremely complex pipe 

networks. A second procedure is known as Graphical 

Waterhammer. It is a graphical form of a procedure known as 

Algebraic Waterhammer. It makes extensive use of PU plots. A 

third procedure is known as the Impedance Method. This makes 

use of Laplace Transforms. It employs something called the 

Impedance Transfer Function. It resembles closely a method 

used to study Electrical Transmission Lines. 

 

These notes start with a physical description of how pressure 

waves propagate along a pipe. This is followed by a 

derivation of the basic wave equations. Then, wave speeds for 

waves in flexible tubes and mixtures are given. Next, an 

outline of Algebraic/Graphical Waterhammer is given. Finally, 

the Method of Characteristics is presented.  

 

 

 



WAVE PROPAGATION IN PIPES 

 

 

Consider flow in a rigid pipe with a valve at its downstream 

end and a reservoir at its upstream end. Assume that there 

are no friction losses. This implies that the pressure and 

flow speed are the same everywhere along the pipe.  

 

Imagine now that the valve is suddenly closed. This causes a 

high pressure or surge wave to propagate up the pipe. As it 

does so, it brings the fluid to rest. The fluid immediately 

next to the valve is stopped first. The valve is like a wall. 

Fluid enters an infinitesimal layer next to this wall and 

pressurizes it and stops. This layer becomes like a wall for 

an infinitesimal layer just upstream. Fluid then enters that 

layer and pressurizes it and stops. As the surge wave 

propagates up the pipe, it causes an infinite number of these 

pressurizations. When it reaches the reservoir, all of the 

inflow has been stopped, and pressure is high everywhere 

along the pipe. The pipe resembles a compressed spring. 

 

When the surge wave reaches the reservoir, it creates a 

pressure imbalance. The layer of fluid just inside the pipe 

has high pressure fluid downstream of it and reservoir 

pressure upstream. Fluid exits the layer on its upstream side 

and depressurizes it. The pressure drops back to the 

reservoir level. A backflow wave is created. The speed of the 

backflow is exactly the same as the speed of the original 

inflow. The pressure that was generated by taking the 

original inflow away is exactly what is available to generate 



the backflow. The backflow wave propagates down the pipe 

restoring pressure everywhere to its original level.  

 

When the backflow wave reaches the valve, it creates a flow 

imbalance. This causes a low pressure or suction wave to 

propagate up the pipe. As it does so, it brings the fluid to 

rest. Again, the valve is like a wall. Because of backflow, 

fluid exits an infinitesimal layer next to this wall and 

depressurizes it and stops. The pressure drops below the 

reservoir level by exactly the amount it was above the 

reservoir level in the surge wave.  

 

When the suction wave reaches the reservoir, all of the 

backflow has been stopped, and pressure is low everywhere 

along the pipe. The pipe resembles a stretched spring. At the 

reservoir, the suction wave creates a pressure imbalance. An 

inflow wave is created. The speed of the inflow is exactly 

the same as the speed of the backflow. The inflow wave 

travels down the pipe restoring pressure to its original 

level. Conditions in the pipe become what they were just 

before the valve was closed.  

 

During one cycle of vibration, there are 4 transits of the 

pipe by pressure waves. This means that the natural period of 

the pipe is 4 times the length of the pipe divided by the 

wave speed. Without friction, the vibration cycle repeats 

over and over. With friction, it gradually dies away.  

 

 

 

 



 

 

 

 



 

 

BASIC WAVE EQUATIONS    

 

 

Consider a wave travelling up a rigid pipe. In a reference 

frame moving with the wave, mass considerations give 

 

ρ A (U+a) = (ρ+Δρ) A (U+ΔU+a) 

 

where ρ is density, A is pipe area, U is flow velocity and 

a is wave speed. When a >> U, this reduces to 

 

0  =  ρ ΔU + a Δρ 

 

Momentum considerations give 

 

[(ρ+Δρ)A(U+ΔU+a) (U+ΔU+a) - ρA(U+a) (U+a)] = [P – [P+ΔP]] A 

 

ρA(U+a) [(U+ΔU+a) - (U+a)] = - ΔP A 

 

where P is pressure. When a >> U, this reduces to 

 

ρ a ΔU = - ΔP 

 

Manipulations give 

 

 

 



 

a =  [ΔP/Δρ] 

 

For a gas such as air moving down a pipe, one can assume 

ideal gas behavior for which:  

P/ρ = R T 

 

R is the ideal gas constant and T is the absolute 

temperature of the gas. For a wave propagating through a 

gas, one can assume processes are isentropic: in other 

words, adiabatic and frictionless. The wave moves so fast 

through the gas that there is no time for heat transfer or 

friction. The isentropic equation of state is:  

 

P = K ρ
k 

 

where K is another constant and k is the ratio of specific 

heats. Differentiation of this equation gives 

 

                ΔP/Δρ  =  K k ρ
k-1

 = K k ρ
k
 / ρ 

= k/ρ  K ρ
k
 = k P/ρ 

 

The ideal gas law into this gives 

 

ΔP/Δρ  = k R T 

 

So wave speed for a gas becomes  



 

a = k R T] 

 

For a liquid, fluid mechanics shows that 

 

                    ΔP  =  - K ΔV/V 

 

where K is the bulk modulus of the liquid. It is a measure 

of its compressibility. For a bit of fluid mass 

 

ΔM = Δ [ρ V] = V Δρ  +  ρ ΔV  =  0 

 

                  

This implies that  

 

 ΔP  =  K Δρ/ρ        ΔP/Δρ  =  K/ρ 

 

 

So wave speed for a liquid becomes 



a =  [K/ρ] 

 

The bulk modulus of a gas follows from  

 

a = k R T]  =  [K/ρ] 
 

K/ρ = k R T      K = k ρ R T  

    

K = k P 

 

 

 

 



WAVES IN FLEXIBLE TUBES   

 

Conservation of Mass for a flexible tube is 

 

ρ A (U+a) = (ρ+Δρ) (A+ΔA) (U+ΔU+a) 

 

Manipulation of this equation gives when U<<a 

 

ρA ΔU  + (U+a)A Δρ + ρ(U+a) ΔA = 0 

ΔU/a  + Δρ/ρ + ΔA/A = 0 

 

Conservation of Momentum for a flexible tube is 

 

 [ρA(U+a)] [(U+ΔU+a)-(U+a)] =  

PA + [P+ΔP] ΔA – [P+ΔP][A+ΔA] 

 

Manipulation of this equation gives when U<<a 

 

ρA(U+a) ΔU  + A ΔP  =  0 

ρa ΔU  + ΔP  =  0 

 

More manipulation gives 

 

ΔU = - ΔP/[ρa]           ΔU/a = -ΔP/[ρa
2
] 

 

Experiments show that 

 

ΔP = K Δρ/ρ             Δρ/ρ = ΔP/K   

 



 

For a thin wall tube, the hoop stress follows from 

 

[2e] σ = ΔP D           σ = ΔP D/[2e] 

 

where e is the wall thickness and D is the tube diameter.  

 

The hoop strain is  

 

ε = [πΔD]/[πD] = ΔD/D 

 

Substitution into the stress strain connection gives 

 

σ = E ε            ΔP D/[2e] = E ΔD/D    

 

where E is the Elastic Modulus of the wall material. 

 

Geometry gives 

 

A = π D
2
/4       ΔA = π 2D/4 ΔD 

 

ΔA/A = 2 ΔD/D = ΔP D/[Ee] 

 

With this Conservation of Mass becomes 

 

- ΔP/[ρa
2
]  +  ΔP/K  +  ΔP D/[Ee] = 0 

 

Manipulation of Conservation of Mass gives 

 

a =  [K/ρ]        

K  =  K / [ 1 + [DK]/[Ee] ] 



 

WAVES IN MIXTURES 

For a mixture the wave speed is: 

 

aM =  [KM/ρM] 
 

For a two component mixture the density follows from: 

 

MM = MA + MB     ρMVM =   ρAVA + ρBVB  

ρM = [ ρAVA + ρBVB ] / VM  

 

Experiments show that  

 

ΔP = - KM [ΔVM/VM] 

 

Manipulation gives the bulk modulus 

 

KM = - ΔP / [ΔVM/VM]        

VM = VA + VB      ΔVM =  ΔVA +  ΔVB 
 

For each component in the mixture:  

 

ΔP = - KA [ΔVA/VA]      ΔVA = - [VA/KA] ΔP 

ΔP = - KB [ΔVB/VB]      ΔVB = - [VB/KB] ΔP   

   

The mixture bulk modulus becomes: 

  

KM = [ VA + VB ] / [ VA/KA + VB/KB ]     

 

The mixture analysis is also valid for mixtures of small 

solid particles and a fluid, such as a dusty gas.  



 

 

ALGEBRAIC/GRAPHICAL WATERHAMMER 

 

Waterhammer analysis allows one to connect unknown pressure 

and flow velocity at one end of a pipe to known pressure and 

velocity at the other end of the pipe one transit time back 

in time. The derivation of the waterhammer equations starts 

with the conservation of momentum and mass equations for 

unsteady flow in a pipe. These are: 

 

ρ U/t + ρU U/x + P/x - ρg Sinα + f/D ρU|U|/2 = 0 

P/t + U P/x + ρa2 U/x = 0 

 

where P is pressure and U is velocity. For the case where 

gravity and friction are insignificant and the mean flow 

speed is approximately zero, these reduce to: 

 

ρ U/t + P/x = 0 

P/t + ρa2 U/x = 0 

 

Manipulation gives the wave equations: 

 

2P/t2 = a2 2P/x2 

2U/t2 = a2 2U/x2 

 



 

 

The general solution consists of two waves: one wave which 

travels up the pipe known as the F wave and the other which 

travels down the pipe known as the f wave.  

 

In terms of these waves, pressure and velocity are: 

 

P – Po  =  f(N) + F(M) 

 

U - Uo  =  [f(N) - F(M)] / [ρa] 

 

where N and M are wave fixed frames given by: 

 

N = x – a t     M = x + a t 

 

For a given point N on the f wave, the N equation shows that 

x must increase as time increases, which means the wave must 

be moving down the pipe. For a given point M on the F wave, 

the M equation shows that x must decrease as time increases, 

which means the wave must be moving up the pipe. Substitution 

of the general solution into mass or momentum or the wave 

equations shows that they are valid solutions. 

 

 

 



 

 

Multiplying U by ρa and subtracting it from P gives: 

 

[P–Po] – ρa[U-Uo]  = 2F(M) 

 

Let the F wave travel from the downstream end of the pipe to 

the upstream end. For a point on the wave, the value of F 

would be the same. This implies  

 

ΔP = + ρa ΔU 

 

Multiplying U by ρa and adding it to P gives: 

 

 [P–Po] + ρa[U-Uo]  = 2f(N) 

 

Let the f wave travel from the upstream end of the pipe to 

the downstream end. For a point on the wave, the value of f 

would be the same. This implies  

 

ΔP = - ρa ΔU 

  

The ΔP vs ΔU equations allow us to connect unknown conditions 

at one end of a pipe at some point in time to known 

conditions at the other end back in time. They are known as 

the algebraic/graphical waterhammer equations. 

 



 

 

 

 

 

 



 

DERIVATION OF WAVE EQUATIONS 

 

Conservation of Momentum and Mass are:   

 

ρ U/t + P/x = 0 

P/t + ρa2 U/x = 0 

 

Differentiation of Momentum with respect to t gives  

 

ρ 2U/t2 + (P/x)/t = 0 

 

Differentiation of Mass with respect to x gives  

 

(P/t)/x + ρa2 2U/x2 = 0 

 

Subtraction of Mass from Momentum gives 

 

ρ 2U/t2 = ρa2 2U/x2 

 

2U/t2 = a2 2U/x2 

 

Similar manipulations of Momentum and Mass give 

 

ρa
2
 (U/t)/x + a2 2P/x2 = 0 

 

2P/t2 + ρa2 (U/x)/t = 0 

 

2P/t2 = a2 2P/x2 

 

 



 

 

GENERAL SOLUTIONS FOR WAVE EQUATIONS 

 

The general solutions are  

 

P - Po  =  f(N) + F(M) 

U – Uo  =  [f(N) - F(M)] / [ρa] 

 

where N and M are wave fixed coordinates 

 

N = x – a t     M = x + a t 

 

Substitution into Momentum gives 

 

ρ U/t + P/x = 0 

 

 ( ρ f/N N/t  -  ρ F/M M/t ) / [ρa] 

+  f/N N/x  +  F/M M/x  

= 0 

 

( ρ f/N [-a]  -  ρ F/M [+a] ) / [ρa] 

+  f/N [1]  +  F/M [1]  

= 0 

 

-  f/N  -  F/M  +  f/N   +  F/M   =  0  

 0  =  0 

 

So the general solutions satisfy Momentum. One can also show 

that they satisfy Mass and the Wave equations.  



 

  

 

SUDDEN VALVE CLOSURE 

 

Imagine a pipe with a reservoir at its upstream end and a 

valve at its downstream end. The valve is initially open. 

Then it is suddenly shut. From that point onward, the 

velocity at the valve is zero. We ignore losses. Because of 

this, the pressure at the reservoir is fixed at its initial 

level. We start at point 1 which is at the reservoir and move 

along an f wave to point 2 which is at the valve. A surge 

wave is created at the valve. We then move from the valve 

along an F wave to point 3 which is at the reservoir. A 

backflow wave is created at the reservoir. We then move from 

the reservoir along an f wave to point 4 which is at the 

valve. A suction wave is created at the valve. We then move 

from the valve along an F wave to point 1 which is at the 

reservoir. An inflow wave is created at the reservoir. From 

this point onward the cycle repeats. Friction gradually 

dissipates the waves and the velocity homes in on zero. 

 

 

 

 

 

 



 

 

 

 

 

 



 

LEAKY VALVES 

 

A stable leaky valve is basically one that has a P versus U 

characteristic which resembles that of a wide open valve. 

This has a parabolic shape with positive slope throughout. 

An unstable leaky valve has a characteristic that has a 

positive slope at low pressure but negative slope at high 

pressure. Basically, the valve tries to shut itself at high 

pressure. The flow rate just upstream of a valve is pipe 

flow speed times pipe area. The flow rate within the valve 

is valve flow speed times valve area. In a stable leaky 

valve, the areas are both constant. The valve flow speed 

increases with pipe pressure so the pipe flow speed also 

increases. In an unstable leaky valve, the flow speed 

within the valve also increases with pipe pressure but the 

valve area drops because of suction within the valve. The 

suction is generated by high speed flow through the small 

passageway within the valve. It pulls on flexible elements 

within the valve and attempts to shut it. Graphical 

waterhammer plots for stable and unstable leaky valves are 

given below. As can be seen, they both resemble the sudden 

valve closure plot, but the stable one is decaying while 

the unstable one is growing. In the unstable case, greater 

suction is needed each time a backflow wave comes up to the 

valve because the flow requirements of the valve keep 

getting bigger. In the stable case, less suction is needed 

because the flow requirements keep getting smaller.  

 

 

 

 



 

 

 

 

 

 

 



 

 

 

 

 

 

 



 

METHOD OF REACHES 

 

Pipes in a pipe network often have different lengths. The 

method of reaches divides the pipes into segments that have 

the same transit time. The segments are known as reaches. The 

sketch on the next page shows a pipe divided into 4 reaches. 

Conditions at points i j k are known. Conditions at point J 

are unknown. Waterhammer analysis gives for point J: 

 

ΔP = - ρa ΔU 

PJ = Pi - [ρa][UJ-Ui]  

 

ΔP = + ρa ΔU 

PJ = Pk + [ρa][UJ-Uk]  

 
 
Manipulation of these equations gives: 

 
 

PJ = (Pk+Pi)/2 - [ρa][Uk-Ui]/2  

 

UJ = (Uk+Ui)/2 - [Pk-Pi]/[2ρa]  

 

This is the template for finding conditions at points inside 

the pipe. At the ends of a pipe, water hammer analysis would 

connect the end points to j points inside the pipe. 



 

 



 

TREATMENT OF PIPE JUNCTIONS 

 

Pipes in a pipe network are connected at junctions. The 

sketch on the next page shows a junction which connects 3 

pipes. Lower case letters indicate known conditions. Upper 

case letters indicate unknown conditions. A junction is often 

small. This allows us to assume that the junction pressure is 

common to all pipes. It also allows us to assume that the net 

flow into or out of the junction is zero. Conservation of 

Mass considerations give:   

 

ρ AN UN  +   ρ AH UH  +   ρ AW UW   =  0 

 

Waterhammer analysis gives: 

 

PN - Pm  =  + [ρaN] [UN-Um]  

PH - Pg  =  + [ρaH] [UH-Ug]  

PW - Pv  =  + [ρaW] [UW-Uv]  

 

Manipulation gives 

 

UN = Um + [PN-Pm]/[ρaN] 

UH = Ug + [PH-Pg]/[ρaH] 

UW = Uv + [PW-Pv]/[ρaW] 

 

 

 



 

In these equations PN = PH = PW = PJ. Substitution into 

Conservation of Mass gives:  

 

ρ AN [ Um + [PJ-Pm]/[ρaN] ]   

+ ρ AH [ Ug + [PJ-Pg]/[ρaH] ] 

+ ρ AW [ Uv + [PJ-Pv]/[ρaW] ]  =  0 

 

Manipulation gives the junction pressure: 

 

 

PJ = [X – Y] / Z 

 

where 

 

  X = [ AN/aN Pm + AH/aH Pg + AW/aW Pv ]   

 

Y = ρ [ ANUm + AHUg + AWUv ]   

 

Z = [ AN/aN + AH/aH + AW/aW ] 

 

 

The velocities at the junction are: 

  

UN = Um + [PJ-Pm]/[ρaN] 

UH = Ug + [PJ-Pg]/[ρaH] 

UW = Uv + [PJ-Pv]/[ρaW] 

 

 

 



 

 

 

 



ACCUMULATOTS 

 

Accumulators are used to dampen transients in pipe networks. 

They generally consist of a neck or constriction containing 

liquid which is connected directly to the pipe network. A 

pocket of gas is at the other end of the neck. The gas is 

usually contained inside a flexible bladder.  

 

There are two ways to model an accumulator. The first is the 

Helmholtz Resonator mass spring model where the slug of 

liquid in the neck bounces on the gas spring. This gives the 

natural frequency of the accumulator and one tries to match 

that to the natural period of the network. The second model 

is a transient model where the equation of motion of the slug 

of liquid in the neck and the equations for the gas pocket 

are solved step by step in time and this is coupled a water 

hammer analysis transient model. 

 

 

The Helmholtz Resonator model starts with the equation of 

motion of a mass on a spring: 

 

m d
2
ΔZ/dt

2
 + k ΔZ = f  

 

where m is the mass of liquid in the neck and k is the spring 

due to gas compressibility.  

 

 



 

 



 

 

The natural frequency and period of the accumulator are 

 

ω =  √ [k/m]        T = 2π/ω 

 

The mass m of the slug of liquid in the neck is 

 

m = ρ A L 

 

where ρ is the density of the liquid in the neck, A is the 

area of the neck and L is the length of the neck. 

 

Conservation of Mass for the gas pocket gives 

 

Δ [ σ V ] = V Δσ + σ ΔV = 0 

 

Thermodynamics gives 

 

ΔP/Δσ = a
2
      a = √[nRT] 

 

Geometry gives 

 

ΔV = - A ΔZ 

 

Substitution into mass gives 

 

V ΔP/a
2
 – σ A ΔZ = 0 

 

ΔP = [σ A a
2
 / V] ΔZ 

 

 



 

 

The force on the slug of liquid is  

 

ΔF = ΔP A = [σ A
2
 a

2
 / V] ΔZ = k ΔZ 

 

This gives the spring constant k 

 

k = [σ A
2
 a

2
 / V] 

 

Substitution into the frequency equation gives 

 

ω = √ [ [σ A
2
 a

2
 / V] / [ρ A L] ] 

 

= √ [ [σ A a
2
] / [ρ V L] ] 

 

For the transient model the equation governing the motion of 

the slug of liquid in the neck is: 

 

m dU/dt = [ PJ – PG ] A – fL/D ρ U|U|/2 A 

 

where PJ is the junction pressure and PG is the gas pressure. 

The volume of gas is governed by  

 

dV/dt = - U A 

 

The pressure of the gas is 

 

PG = N σ
n
 = N (M/V)

n



 

 

TREATMENT OF VALVES 

 

A sketch of a valve is shown on the next page. The governing 

equation for the flow through it is: 

 

PN – PX = K U|U| 

 

For constant pipe properties  

 

                 U = UN = UX      P = PN - PX 

 

P = K U|U| 

 

Water hammer analysis gives 

 

PN – Pm = - ρa (UN – Um) 

  

PX – Py = + ρa (UX – Uy) 

 

Substitution into the valve equation gives 

 

[Pm - ρa (U – Um)] – [Py + ρa (U – Uy)] = K U|U| 

 

This gives U at each time step. Back substitution gives the 

pressure upstream and downstream of the valve.                

 

  

 



 

 

 

 

 



 

METHOD OF CHARACTERISTICS 

 

The method of characteristics is a way to determine the 

pressure and velocity variations in a pipe network when 

valves are adjusted or turbomachines undergo load changes. 

The equations governing flow in a typical pipe are: 

 

ρ U/t + ρU U/x + P/x - ρg Sinα + f/D ρU|U|/2 = 0 

P/t + U P/x + ρa2 U/x = 0 

 

where  P is pressure, U is velocity, t is time, x is distance 

along the pipe, ρ is the fluid density, g is gravity, α is 

the pipe slope, f is the pipe friction factor, D is the pipe 

diameter and a is the wave speed. The wave speed is: 

 

a
2
 = K/ρ      K = K / [1 + DK/Ee] 

 

where K is the bulk modulus of the fluid, E is the Youngs 

Modulus of the pipe wall and e is its thickness. 

 

The governing equations can be combined as follows: 

 

ρ U/t  +  ρ U U/x  +  P/x  +  ρ C 

+  λ  (P/t + U P/x + ρa2 U/x) = 0 

 

 



 

where 

 

C =  f/D U|U|/2 - g Sinα 

 

Manipulation gives  

         

ρ (U/t + [U+λa2] U/x) 

+ λ (P/t + [1/λ+U] P/x) + ρC  = 0 

 

According to Calculus  

 

dP/dt = P/t + dx/dt P/x 

dU/dt = U/t + dx/dt U/x 

 

Inspection of the last three equations suggests: 

   

dx/dt = U + λa
2
 = 1/λ + U 

  

In this case, the PDE becomes the ODE: 

 

ρ dU/dt + λ dP/dt + ρ C = 0 

 

The dx/dt equation gives  

 

 

 



 

λa
2
 = 1/λ    or    λ

2
 = 1/a

2
     or    λ = ± 1/a 

 

So there are 2 values of λ. They give  

 

ρ dU/dt  +  1/a dP/dt  +  ρ C  =  0      dx/dt = U + a 

ρ dU/dt  -  1/a dP/dt  +  ρ C  =  0      dx/dt = U - a 

 

The dx/dt equations define directions in space and time along 

which the PDE becomes an ODE. Using finite differences, each 

ODE and dx/dt equation can be written as:  

 

ρ ΔU/Δt  +  1/a ΔP/Δt  +  ρ C  =  0      Δx/Δt = U + a 

ρ ΔU/Δt  -  1/a ΔP/Δt  +  ρ C  =  0      Δx/Δt = U - a 

 

Manipulation gives 

 

ρa ΔU  +  ΔP  +  Δt ρa C  =  0 

ρa ΔU  -  ΔP  +  Δt ρa C  =  0 

 

When the wave speed a is much greater than the flow speed U 

and when Δx is the length of the pipe L and Δt is the pipe 

transit time T, these equations are basically the water 

hammer equations but with friction added.  

 

 

 



 

 

For pipes divided into reaches, one gets 

 

UP - UL + (PP-PL)/[ρa] + CL(tP-tL) = 0   xP-xL = (UL+a)(tP-tL) 

UP - UR - (PP-PR)/[ρa] + CR(tP-tR) = 0   xP-xR = (UR-a)(tP-tR) 

 

Manipulation gives 

 

UP = (UL+UR)/2 + (PL-PR)/[2ρa] - Δt(CL+CR)/2 

PP = (PL+PR)/2 + [ρa](UL-UR)/2 - Δt[ρa](CL-CR)/2 

 

Linear interpolation gives U and P at points L and R in terms 

of known U and P at grid points A and B and C: 

 

UL = UA + (xL-xA)/(xB-xA) (UB-UA) 

UR = UC + (xR-xC)/(xB-xC) (UB-UC) 

PL = PA + (xL-xA)/(xB-xA) (PB-PA) 

PR = PC + (xR-xC)/(xB-xC) (PB-PC) 

 

At each end of the pipe, a boundary condition relates the PP 

and UP there. A finite difference equation also relates the 

PP and UP there. So, one can solve for the PP and UP there.  
 

 

 

 

 

 

 

 



 

 

 

 



 

 

%     UNSTEADY FLOW IN A PIPE 

 

%     METHOD OF CHARACTERISTICS  

 

%     RESERVOIR / PIPE / VALVE 

 

%     PRESSURE = POLD / PNEW 

%     VELOCITY = UOLD / UNEW 

 

%     HEAD = RESERVOIR HEAD 

%     PIPE = HEAD PRESSURE 

 

%     SLOPE = VALVE SLOPE  

 

%     OD = PIPE DIAMETER   

%     OL = PIPE LENGTH 

%     CF = FRICTION FACTOR 

 

%     SOUND = SOUND SPEED 

%     GRAVITY = GRAVITY 

%     DENSITY = DENSITY 

      

%     NIT = NUMBER OF TIME STEPS 

%     MIT = NUMBER OF PIPE NODES 

%     DELT = STEP IN TIME 

 

%     DATA 

      DELT=0.001; 

      CF=0.5; 

      CMAX=+10.0; 

      CMIN=0.0; 

      OD=0.15;OL=100.0; 

      SOUND=1000.0; 

      GRAVITY=10.0; 

      DENSITY=1000.0; 

      SLOPE=-100000.0; 

      HEAD=20.0;SPEED=0.1; 

      NIT=5000;MIT=100;KIT=1; 

      PIPE=HEAD*DENSITY*GRAVITY; 

% 

      ONE=PIPE; 

      TWO=0.0;  

      ZERO=0.0; 

      BIT=MIT/2; 

      GIT=MIT-1; 

      DELX=OL/(MIT-1); 

      FLD=CF*OL/OD; 

      PMAX=CMAX*PIPE; 

      PMIN=CMIN*PIPE; 

      WAY=SPEED*SPEED/2.0; 



      LOSS=FLD*WAY/GRAVITY; 

      G=LOSS*DENSITY*GRAVITY; 

      DELP=G/GIT; 

      for IM=1:MIT 

      POLD(IM)=ONE; 

      UOLD(IM)=SPEED;      

      X(IM)=TWO; 

      ONE=ONE-DELP; 

      TWO=TWO+DELX; 

      end 

      PV=POLD(MIT); 

      UV=UOLD(MIT); 

 

%     START LOOP ON TIME  

      TIME=0.0; 

      for IT=1:NIT 

      TIME=TIME+DELT; 

      T(IT)=TIME; 

%     POINTS INSIDE PIPE 

      for IM=2:MIT-1 

      XA=X(IM-1); 

      XB=X(IM); 

      XC=X(IM+1); 

      PA=POLD(IM-1); 

      PB=POLD(IM); 

      PC=POLD(IM+1); 

      UA=UOLD(IM-1); 

      UB=UOLD(IM); 

      UC=UOLD(IM+1); 

      XL=XB-(UB+SOUND)*DELT; 

      XR=XB-(UB-SOUND)*DELT; 

      UL=UA+(XL-XA)/(XB-XA)*(UB-UA); 

      PL=PA+(XL-XA)/(XB-XA)*(PB-PA); 

      UR=UC+(XR-XC)/(XB-XC)*(UB-UC); 

      PR=PC+(XR-XC)/(XB-XC)*(PB-PC); 

      UNEW(IM)=0.5*(UL+UR+(PL-PR)/DENSITY/SOUND ... 

      -DELT*(CF/2.0/OD*(UL*abs(UL)+UR*abs(UR)))); 

      PNEW(IM)=0.5*(PL+PR+(UL-UR)*DENSITY*SOUND-DENSITY ... 

       *SOUND*CF/2.0/OD*DELT*(UL*abs(UL)-UR*abs(UR))); 

      end 

%     DOWNSTREAM END OF PIPE 

      if(KIT==1) UNEW(MIT)=ZERO;end; 

      if(KIT==2) UNEW(MIT)=UV ... 

      +(POLD(MIT)-PV)/SLOPE;end; 

      if(UNEW(MIT)<=ZERO) ... 

      UNEW(MIT)=ZERO;end; 

      XA=X(MIT-1); 

      XB=X(MIT); 

      PA=POLD(MIT-1); 

      PB=POLD(MIT); 

      UA=UOLD(MIT-1); 

      UB=UOLD(MIT); 



      XL=XB-(UB+SOUND)*DELT; 

      UL=UA+(XL-XA)/(XB-XA)*(UB-UA); 

      PL=PA+(XL-XA)/(XB-XA)*(PB-PA); 

      PNEW(MIT)=PL-(UNEW(MIT)-UL)*DENSITY*SOUND ... 

      -DELT*DENSITY*SOUND*(CF/2.0/OD*UL*abs(UL)); 

      if(PNEW(MIT)<=PMIN) PNEW(MIT)=PMIN;end; 

      if(PNEW(MIT)>=PMAX) PNEW(MIT)=PMAX;end; 

      if(PNEW(MIT)==PMAX | PNEW(MIT)==PMIN) ... 

      UNEW(MIT)=UL-(PNEW(MIT)-PL)/DENSITY/SOUND ... 

      -DELT*(CF/2.0/OD*UL*abs(UL));end; 

%     UPSTREAM END OF PIPE 

      XB=X(1); 

      XC=X(2); 

      PB=POLD(1); 

      PC=POLD(2); 

      UB=UOLD(1); 

      UC=UOLD(2); 

      XR=XB-(UB-SOUND)*DELT; 

      UR=UC+(XR-XC)/(XB-XC)*(UB-UC); 

      PR=PC+(XR-XC)/(XB-XC)*(PB-PC); 

      PNEW(1)=PIPE; 

      UNEW(1)=UR+(PNEW(1)-PR)/DENSITY/SOUND ... 

      -DELT*(CF/2.0/OD*UR*abs(UR)); 

%     STORING P AND U 

      for IM=1:MIT 

      POLD(IM)=PNEW(IM); 

      UOLD(IM)=UNEW(IM); 

      if (IM==BIT) PIT(IT)=PNEW(IM); ... 

      HIT(IT)=PIT(IT)/DENSITY/GRAVITY; ... 

      BAR(IT)=HIT(IT)/10.0; ... 

      UIT(IT)=UNEW(IM);end; 

      end 

%     END OF TIME LOOP  

      end 

% 

 

      plot(T,UIT) 

      plot(UIT,HIT)  

      plot(UIT,BAR)   

      plot(UIT,PIT)        

      plot(T,PIT)        

      plot(T,BAR)  

      xlabel('TIME') 

      ylabel('BAR')   

 

 
 

 

 

 

 

 



 

 

 

 

 

 

 

SUDDEN VALVE CLOSURE 

 

 

 



 

 

 

 

 

 

STABLE LEAKY VALVE



 

 

 

 

UNSTABLE LEAKY VALVE 

 

 

 



REACHES WITH FRICTION 

 

Pipes in a pipe network often have different lengths. The 

method of reaches divides the pipes into segments that have 

the same transit time. The segments are known as reaches. The 

sketch on the next page shows a pipe divided into 4 reaches. 

Conditions at points i j k are known. Conditions at point J 

are unknown. Waterhammer analysis gives for point J: 

 

[ρa] dU/dt + dP/dt + [ρa]C  =  0 

PJ - Pi = - [ρa][UJ-Ui] - Δt [ρa]Ci 

 

[ρa] dU/dt - dP/dt + [ρa]C  =  0 

PJ - Pk = + [ρa][UJ-Uk] + Δt [ρa]Ck 

 

 

Manipulation of these equations gives: 
 

 

PJ = (Pk+Pi)/2 - [ρa][Uk-Ui]/2  + Δt [ρa][Ck-Ci]/2 
 

UJ = (Uk+Ui)/2 - [Pk-Pi]/[2ρa] - Δt [Ck+Ci]/2 

 

This is the template for finding conditions at points inside 

the pipe. At the ends of a pipe, water hammer analysis would 

connect the end points to j points inside the pipe. 



 

 

 
 

 

 

 



 

JUNCTIONS WITH FRICTION 

 

Pipes in a pipe network are connected at junctions. The 

sketch on the next page shows a junction which connects 3 

pipes. Lower case letters indicate known conditions. Upper 

case letters indicate unknown conditions. A junction is often 

small. This allows us to assume that the junction pressure is 

common to all pipes. It also allows us to assume that the net 

flow into or out of the junction is zero. Conservation of 

Mass considerations give:   

 

+  ρ AN UN  +   ρ AH UH  +   ρ AW UW   =  0 

 

Waterhammer analysis gives: 

 

PN - Pm = + [ρaN][UN-Um] + Δt [ρa]Cm 

PH - Pg = + [ρaH][UH-Ug] + Δt [ρa]Cg 

PW - Pv = + [ρaW][UW-Uv] + Δt [ρa]Cv 

 

Manipulation gives 

 

UN = Um + [PN-Pm]/[ρaN] - Δt Cm 

UH = Ug + [PH-Pg]/[ρaH] - Δt Cg 

UW = Uv + [PW-Pv]/[ρaW] - Δt Cv 

 



 

In these equations PN = PH = PW = PJ. Substitution into 

Conservation of Mass gives:  

 

+ ρ AN [ Um + [PJ-Pm]/[ρaN] - Δt Cm]    

+ ρ AH [ Ug + [PJ-Pg]/[ρaH] - Δt Cg] 

+ ρ AW [ Uv + [PJ-Pv]/[ρaW] - Δt Cv]    =  0 

 

Manipulation gives the junction pressure: 

 

PJ = [X – Y] / Z 

 

  X = [ + AN/aN Pm + AH/aH Pg + AW/aW Pv ]   

 

Y = ρ [ + AN[Um-ΔtCm] + AH[Ug-ΔtCg] + AW[Uv-ΔtCv] ] 

   

Z = [ + AN/aN + AH/aH + AW/aW ] 

 

The velocities at the junction are: 

 

UN = Um + [PJ-Pm]/[ρaN] - Δt Cm 

UH = Ug + [PJ-Pg]/[ρaH] - Δt Cg 

UW = Uv + [PJ-Pv]/[ρaW] - Δt Cv 

 

 

 

 

 



 

 

 

 

 

 

 



 

 

THREE PHASE VALVE STROKING 

 

Three phase valve stroking is a process where a valve is 

opened or closed very fast in such a way that pressures are 

kept within preset limits and no waves are left at the end.  

It is described below for a complete closure case.   

 

In phase I the valve is moved in such a way that the 

pressure at the valve rises linearly in time from PLOW to 

PHIGH in 2T pipe transit times. At the end of phase I the 

pressure variation along the pipe is linear and the 

velocity everywhere because of a combination of pressure 

surges and back flows has been reduced by P/[a] where P 

is PHIGH minus PLOW. In phase II the valve is moved in such a 

way that the pressure variation along the pipe stays 

constant and the velocity drops by 2P/[a] everywhere every 

2T transit times. The pressure variation remains constant 

because pressure surges generated by valve motion are 

cancelled by suction waves at the valve caused by back 

flows. The constant pressure variation causes a constant 

deceleration of the fluid in the pipe. Phase III takes 2T 

pipe transit times to complete. During this time the 

velocity everywhere drops P/[a] and pressure falls 

linearly at the valve from PHIGH to PLOW. The valve is moved 

in such a way that suction waves at the valve caused by 

back flows are allowed to bring the pressure down again to 

PLOW. Because phases I and III reduce the velocity by a 



total of 2P/[a] phase II must take (U-2P/[a])/(2P/[a]) 

2T seconds to complete. One can calculate what the valve 

area should be at each instant in time during stroking. A 

fast acting feedback control system can then be used to 

move the valve in the desired manner. 

 

Phase I sets up conditions in the pipe for phase II. 

Similarly, phase II sets up conditions in the pipe for 

phase III. In phase II, the pressure surge rate is twice 

that of phases I and III. In a set period of time, one 

pressure surge maintains a backflow that would have 

otherwise been stopped by a suction wave. The other 

pressure surge balances a pressure release. There are no 

suction waves in phase II and all backflows are maintained. 

Every point in the pipe has a velocity reduction due to a 

surge wave and one due to a backflow. In phase III, the 

pressure surge rate is cut in half. This allows suction 

waves to form at the valve. These propagate up the pipe and 

eliminate backflows. Conditions in the pipe are controlled 

by these waves and by waves already there from phase II. 

During the first half of phase III, conditions in the pipe 

are still under the influence of phase II. Velocity falls 

faster at the reservoir than at the valve because of this. 

Half way through phase III, there is a linear pressure 

variation and a linear velocity variation along the pipe. 

During the second half of phase III, a wave travels down 

the pipe which brings the pressure back to PLOW everywhere 

and the velocity to zero everywhere. 

 

 



 

 

 

 

 

 


