FLUID STRUCTURE INTERACTIONS

FLOW INDUCED VIBRATIONS

OF STRUCTURES



PREAMBLE
There are two types of vibrations: resonance and instability.
Resonance occurs when a structure is excited at a natural
frequency. When damping is low, the structure 1is able to
absorb energy each oscillation cycle and dangerous amplitudes
can build up. There are two types of instability: static and
dynamic. Static instability occurs when a negative fluid
stiffness overcomes a positive structural stiffness. Usually,
because of nonlinearity, this instability is oscillatory:
oscillations are often referred to as relaxation
oscillations. Examples are wing stall flutter and gate wvalve
vibration. Dynamic instability occurs when a negative fluid
damping overcomes a positive structural damping. Examples
include galloping of slender structures and tube bundle
vibrations. In many cases, a system oscillates at a
structural natural frequency. In these cases, frequency is a
parameter 1in a semi empirical critical speed equation.
Natural frequencies depend on the inertia of the structure
and its stiffness. Usually the damping of the structure is
ignored. It usually has only a small influence on periods. If
the structure has a heavy fluid surrounding it, some of the
fluid mass must be considered part of the structure. The
structure appears more massive than it really is. For a

simple discrete mass stiffness system, there 1is only one



natural period. For distributed mass/stiffness systems, like
wires and beams, there are an infinite number of natural
periods. For each period, there is a mode shape. This shows
the level of wvibration at points along the structure.
Structural frequencies can be obtained analytically for
discrete mass/spring systems and for uniform wires and beams.
For complex structures, they can be obtained using
approximate procedures like the Galerkin Method of Weighted
Residuals. In some cases, the fluid structure interaction is
so complex that vibration frequencies depend on both the
structure and the fluid. Examples include flutter of wings

and panels and pipe whip due to internal flow.

These notes start with a description of some flow induced
vibrations of slender structures. Next vibration of lifting
bodies 1like wings and ©propellors is considered. Then
vibration of panels exposed to flow 1is discussed. Finally,

vibration in pipe networks is considered.



FLOW INDUCED VIBRATION OF SLENDER STRUCTURES

VORTEX INDUCED RESONANCE
Vortices shed from most slender structures in an asymmetric
pattern. The shedding causes a lateral vibration of the
structure. When the vortex shedding frequency is close to a
natural frequency of the structure, the structure undergoes
resonance. Once the structure begins to oscillate, it causes
a phenomenon known as lock in. The vortices shed at the
natural frequency. In other words, the structure motion
controls the vortex shedding. It also increases the
correlation length along the span. This means that vortex
shedding along the span occurs at the same time. This gives
rise to greater lateral loads. So, once shedding starts, it

quickly amplifies motion.

VORTEX INDUCED INSTABILITY
Beyond a certain critical flow speed, a shear layer that
has separated from a structure can reattach and create a
very strong attached vortex. This occurs only for certain
shapes. When such a shape is moving laterally in a flow,
the attached vortex pulls it even more laterally! The
phenomenon is known as galloping. The structure moves until

its stiffness stops 1t. The vortex disappears and the



structure starts moving back the other way. As it does so,
the vortex appears on the other side of the structure which
pulls it the other way. Another type of galloping is known
as wake galloping. This is an oval shaped orbit motion of a
cylindrical structure in the outer wake of another structure

which is just upstream.

WAKE BREATHING OF A CYLINDER IN A FLOW
There are two modes of wake breathing. In the first mode, the
Reynolds Number is near the point where the boundary layer
becomes turbulent and the wake Dbecomes smaller. When the
cylinder moves upstream into such a flow, its drag drops,
whereas when it moves downstream away from such a flow, its
drag rises. This promotes a streamwise vibration of the
cylinder. In the second mode of wake breathing, when the
cylinder moves 1into a wake, added mass phenomena cause the
wake to grow, whereas when the cylinder moves away from the
wake, 1t causes it to shrink. This promotes a streamwise

vibration of the cylinder.

FLOW INDUCED VIBRATIONS OF TUBE BUNDLES
There are three mechanisms that can cause tube bundles in a
flow to vibrate. One is known as the displacement mechanism.

As tubes move relative to each other, some passageways narrow



while others widen. Fluid speeds up in narrowed passageways
and slows down in widened passageways. Bernoulli shows that
in the narrowed passageways pressure decreases while in the
widened passageways it increases. Common sense would suggest
that if tube stiffness and damping are low, at some point as
flow increases, tubes must flutter or vibrate. The
displacement mechanism has one serious drawback. It predicts
that a single flexible tube in an otherwise rigid bundle
cannot flutter but it can undergo a nonlinear oscillation
called divergence. It is known from experiments that a single
flexible tube 1in an otherwise rigid bundle can flutter.
Another mechanism known as the velocity mechanism does
predict flutter 1in the single flexible tube case. This
mechanism is based on the idea that, when a tube is moving,
the fluid force on it due its motion lags behind the motion
because the upstream flow which influences the force needs
time to redistribute. This time lag introduces a negative
damping which can overcome the positive damping due to
structural and viscous phenomena. The time lag is roughly the
tube spacing divided by the flow speed within the bundle.
Details of this model are beyond the scope of this note. The
third mechanism for tube vibration involves vortex shedding

and turbulence within the bundle.



CRITICAL SPEED EQUATIONS
For a slender structure, the Strouhal Number S 1is the
transit time T divided by the vortex shedding period T:
S=T/T. The transit time T is D/U. Solving for flow speed U
gives: U = D/[ST]. During resonance, T=T where T 1is the

structural period. So the critical flow speed is:

U = D/[S T]

For the lateral vibration of a slender structure known as

galloping, the critical flow speed U is

U=1U, M/M, { a U, = D/T M, = pD?

The factor ( accounts for damping: it is typically in the
range 0.01 to 0.1. The parameter a accounts for the shape
of the structure. For a sgquare cross section structure a is
8 while for a circular cross section structure a is oo.

For tube bundle vibration, the critical flow speed is

U = B/T V[M&/p] U = BU, V[dM/M,]

The factor © accounts for damping, and the parameter
accounts for the bundle geometry. Typically & is 1in the

range 0.05 to 0.25 while B is in the range 2.5 to 6.0.



VIBRATION MODES OF SIMPLE WIRES AND BEAMS

For a wire under tension free to undergo lateral motion, the

governing equation is:

0/0x (TOY/0x) = M 0°Y/0t?
where Y is the lateral deflection, T 1s the tension in the
wire, M is its mass per unit length, x is position along the
wire and t i1s time. For a uniform wire with constant M and T,
this can be written as the wave equation:

a? 0°v/ox? = 0°Y/0t? a’? = T/M

where a is the wave speed. During steady free vibration of a

wire, one can write for each point on the wire:

Y =Y Sin ot

Substitution into the governing equation gives:

a? d’Y/dx® = - o* Y

A general solution is



Y = Y, Sin Bx

For a wire held at both ends, Y is zero at both ends. This

implies that B must be nmn/L, where n is any positive integer

and L is the length of the wire. Substitution into the g?

equation gives the natural frequencies:

©, = nma/L = nn/L V[T/M]

The corresponding natural periods are:

T, = 2L/n V[M/T]

The natural mode shapes are:

Sin [nnx/L]

For a beam free to undergo lateral motion, the governing

equation is

- 0°/0x® (EI 0°Y/0x?) = M 0°Y/0t?

where E 1s the beam material Elastic Modulus and I 1is the

section area moment of inertia.

During steady free vibration of a beam, one can write for

each point on the beam:



Y =Y Sin ot

Substitution into the equation of motion gives:

d?/dx? (EI d°¥/dx’) = o° M Y

For a uniform beam with constant M and EI, this becomes:

d'v/dx* = p* ¥ Y = w? M/[EI]

The general solution is:

Y = A Sin[Px] + B Cos[fx] + C Sinh[Bx] + D Cosh[fx]

where A and B and C and D are constants of integration. These

are determined by the boundary conditions.

For a beam with pivot supports, the boundary conditions are

zero deflection and zero bending moment at each end. This

implies that at each end:

Y =0 d’Y/dx?> = 0

In this case, the general solution reduces to:

Y = Y, Sin Bx



As for the wire, B must be nn/L, where n 1is any positive

integer and L is the length of the beam. Substitution into

the B* equation gives the natural frequencies:

w, = [no/L]1% V[EI]/M

The corresponding natural periods are:

T. = [L/n]? 2/0 WM/ [EI]

The natural mode shapes are:

Sin [nnx/L]

For a cantilever beam, the boundary conditions at the wall

are zero deflection and zero slope. This implies that

Y =20 d¥/dx = 0

Application of these conditions shows that:

At the free end of the beam, the bending moment and shear are

both zero. This implies that

d’Y/dx? = 0 d’y/dx® = 0



Application of these conditions gives

[SinPL+SinhBL] A + [CosPL+CoshpL] B

Il
o
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[CosPL+CoshPL] A - [SinPL-SinhPL] B

Manipulation of these equations gives the [ condition:

CosPyL Coshp,L + 1 = 0

This gives the natural frequencies of the beam. For each

frequency, one gets the natural mode shape:

(Sin[RpL] - Sinh[PnL]) (Sin[Pnx] - Sinh[pyx])

(Cos[BnL] + Cosh[BnL]) (Cos[PBnx] - Cosh[Bnx])

The first 3 natural frequencies are:

0, = 3.52/17 V[EI]/M
W, = 22.03/17 V[ET]/M
ws = 61.70/12 V[ET]/M

The corresponding natural periods are:

T, = 2nL2/3.52 WM/ [EI]
T, = 2nL%/22.03 M/ [ET]
Ty = 2nL°%/61.70 WM/ [ET]



VIBRATION MODES OF COMPLEX WIRES

The equation governing the lateral motion of a wire is:

- 0/0x (TOY/0x) + M 0°Y/ot? = 0

In this equation, Y 1s deflection of the wire from 1its
neutral position, T 1s its tension, x 1s location along the
wire, M is the mass of the wire and t is time. During steady

free vibration of a wire:

Y =Y Sin ot

Substitution into the equation of motion gives

Il
o

- d/dx (T dY/dx) - o’ MY

For a Galerkin finite element analysis, we assume that
deflection along the wire can be given as a sum of scaled

shape functions:

Y = X An

where n is deflection at a node and A is a shape function.
For shape functions, we use piecewise linear polynomials. The

sketch on the next page shows one for a typical node.






Substitution of the assumed form for Y into the governing
equation gives a residual. In a Galerkin analysis, weighted
averages of this residual along the wire are set to zero.

After some manipulation, one gets

L
j [dW/dx T d¥/dx - W 0> M ¥] dx = 0
0

where L 1is the length of the wire and W is a weighting
function. For a Galerkin analysis, shape functions are used

as weighting functions. For a typical node, these are:
ALZS AR:l_S

where ¢ 1is a local coordinate. The subscripts L and R
indicate elements immediately to the left and right of the
node. Notice the integration by parts of the space derivative
term in the integral. This introduces slope end boundary
conditions into the formulation. Such boundary conditions are
not needed for a wire held at both ends. Application of
vibration theory gives the vibration modes of the wire. A
computer program was written to do this. For a uniform wire
with L=10 and M=10 and T=100, theory gives w;=0.993. With 10

elements, Galerkin gives w;=0.998.



VIBRATION MODES OF COMPLEX BEAMS

The equation governing the lateral motion of a beam is:

0°/0x°> (EI0°Y/0x?) + M &°Y/ot®> = 0

In this equation, Y is deflection of the beam from its
neutral position, EI is its flexural rigidity, x 1is location
along the beam, M is the mass of the beam and t is time.

During steady free vibration of a beam:

Y =Y Sin ot

Substitution into the equation of motion gives

d?/dx? (EI d%¥/dx’) - o’ MY = 0

For a Galerkin finite element analysis, we assume that

deflection can be given as a sum of scaled shape functions:

Y = X [An + B m]

where n is the deflection at a node and m is the slope at the
node. A and B are shape functions. Theory shows that these
must be Hermite polynomials. Such polynomials must be used

because the stiffness term is order. The sketch on the

next page shows what they look like for a typical node.






Substitution of the assumed form for Y into the governing
equation gives a residual. In a Galerkin analysis, weighted
averages of this residual along the beam are set to zero.

After some manipulation, one gets

L
j [d%W/dx? ET d%¥/dx® - W 0> M ¥] dx = 0
0

where L 1is the length of the beam and W is a weighting
function. For a Galerkin analysis, shape functions are used

as weighting functions. For a typical node, these are:
A, = £7(3-2¢) Ag = 1-3e°+2¢°
B, = Se&’(e-1) Br = Se(e-1)7

where ¢ is a local coordinate and S is an element length. The
subscripts L and R indicate elements immediately to the left
and right of the node. Notice the double integration by parts
of the space derivative term in the integral. This introduces
tip shear and tip bending moment boundary conditions into the
formulation. These are both =zero for a cantilever beam.
Application of wvibration theory gives the vibration modes of
the beam. A computer program was written to do this. For a
uniform beam with L=1 and M=10 and EI=8.33, theory gives

w1=3.213. With 10 elements, Galerkin gives w;=3.210.



GOVERNING EQUATIONS FOR WIRES AND BEAMS

Sketch A shows a wire under tension. A force balance on a

small segment of the wire gives:

- TOY/O0x + [TOY/O0x + 0/0x (TOY/0x) Ax] = M Ax 0°Y/0t?

Manipulation gives the equation of motion:

0/0x (TOY/0x) = M 0°Y/ot?

Sketches B and C show a beam undergoing bending. A force

balance on a small segment of the beam gives:

-Q + (Q + 0Q/0x Ax) = M Ax 8°Y/ot?

Manipulation gives:

0Q/0x = M 0°Y/ot?

A moment balance on the beam segment gives:

- M + M+ OM/Ox Ax) + (Q + 0Q/0x Ax) Ax = 0

Manipulation gives

Q = - OM/ox



Sketch D shows how a beam is strained when bent. Inspection
of the sketch shows that the strain is:
¢ = Y/R
The stress is:
o=k ¢
where E is the Elastic Modulus. Geometry gives
RO® = 0Os 08/0s = 1/R
0s = 0x ® = 0Y/0x
Manipulation gives:
o°Y/0x* = 1/R
Moment considerations give:
M = [Jovyda = E/RJY*dA = EI/R = EI &Y/dx°
So, the equation of motion becomes
- 0°/0x* M = - 9?/ox® (EI 0°Y/0x®) = M 0°Y/ot?















LIFTING BODY INSTABILITIES

Flutter is a dynamic instability of a lifting body. When it
occurs, the heave and pitch motions of the body are 90° out
of phase. The passing stream does work on the body over an
oscillation cycle. Divergence 1is a static instability. It
occurs when the pitch moment due to fluid dynamics overcomes

the moment due to the structural pitch stiffness of the body.

FLUTTER AND DIVERGENCE OF FOILS
A foil is a section of a 1lifting body. Here dgquasi steady
fluid dynamics theory is used to get the loads on the foil.
This ignores the fact that, when a foil is heaving and
pitching, vortices are shed behind it because its circulation
keeps changing. These vortices influence the loads on the

foil. The equations governing motions of a foil are:

Kh + i dh/dt + M d°h/dt’ + Ma d’o/dt? + L = H

k o + 3 do/dt + I da/dt® + Ma d°h/dt?® + T = P

where h is the downward heave displacement of the foil, o is
its upward pitch displacement, M is the mass of the foil, I
is its rotary inertia, K is the heave stiffness of the foil,
k is its pitch stiffness, i is the heave damping coefficient
of the foil, j 1is its pitch damping coefficient, L 1is the

lift on the foil, T is the pitch moment and H and P are



disturbance loads. Quasi steady fluid dynamics theory gives

for the fluid dynamic loads L and T:

L = pU%/2 CCr B T = pU?/2 C? K

where
B = a + (dh/dt)/U + (3C/4-b)/U (do/dt)

kK = (C/4-b)/C Cp B + Cm/[8U] (da/dt)

where U 1is the speed of the foil, C is its chord length, a
indicates how far the center of gravity is behind the elastic
axis, b 1s the distance between the elastic axis and the
leading edge of the foil and Cp is a constant given by fluid

dynamics theory: it is approximately 2.

Note that the parameter [ 1s the instantaneous angle of
attack of the foil 3C/4 back from its leading edge. It is
made up of three components. The first component is the pitch
angle o. The second component is due to the change in flow
direction caused by the heave rate dh/dt. The third component
is due to the change in flow direction caused by the pitch
rate do/dt at the 3C/4 location. The 3C/4 1location is
suggested by flat plate foil theory. Theory shows that the
center of pressure on a foil is at C/4 back from the leading
edge. This gives rise to the first term in the pitch moment
parameter k. The second term 1is due to the distribution of

pressure over the foil.



One can Laplace Transform the governing equations and
manipulate to get a characteristic equation. Stability 1is
dependent on the roots of this equation. One can get the
roots numerically and plot them in a Root Locus Plot as a
function of foil speed. This would give the critical speed

corresponding to the onset of instability.

FLUTTER AND DIVERGENCE OF WINGS
Here strip theory is used to get the loads on a wing. The
wing is broken into strips spanwise and quasi steady fluid
dynamics theory is used to get the loads on each strip. This
ignores the fact that, when a wing is heaving and pitching,
vortices are shed behind it because its circulation keeps
changing. These vortices influence the loads on the wing. It
also ignores the fact that for a finite span wing vortices
are shed along 1its span but mainly at its tips. These
vortices create a downwash on the wing. This reduces the 1ift
on the wing because it lowers its apparent angle of attack.
It also tilts the load on the wing backwards and this gives
rise to a drag. The equations governing heave and pitch

motions of a wing are:

&?/0y® (EI&*h/dy?) + M °h/0t? + Ma &Po/ot?

+ pU?/2 CCp p = H



- 0/0y (GJoa/dy) + I &*o/0t? + Ma 0°h/ot?

+ pU?/2 C*x = P

In these equations, h i1s the downward heave displacement of
the wing and o is the upward pitch displacement of the wing.
EI and GJ account for the stiffness of the wing per unit
span. M and I are its inertias per unit span. The chord of
the wing is C and its span is Q. The speed of the wing is U.
The distance from the elastic axis to the center of gravity
is a. The distance from the leading edge to the elastic axis

is b. H and P are disturbance loads.

Fluid dynamic loads per unit span acting on the wing are

determined by the B and x parameters. These are:

B = o + (6h/0t)/U + (3C/4-b)/U (0a/0t)

K = (C/4-b)/C Cp B + Cri/8/U (Oo/0t)

For a Galerkin finite element analysis, we let h and o each

be a sum of scaled shape functions as follows:

h=2[An+ B m] a=2Dp

A and B and D are the shape functions. In the equation for

heave, n is the heave at a node while m is the heave slope at



a node. In the equation for pitch, p is the pitch at a node.

For a typical node, the shape functions are:

A, = €2(3-2¢) Ar = 1-3e%42¢°
B = Se?(e-1) Br = 58(8—1)2
D, = ¢ Dr = 1-¢

where ¢ is a local coordinate and S is an element length. The
subscripts L and R indicate elements immediately to the left
and right of a node. The polynomials used for heave are known
as Hermite polynomials. They must be used because the
stiffness term in the heave governing equation is 4" order.
They are not needed for pitch because its stiffness term is

only 2" order: linear shape functions are adequate for it.

Substitution of the assumed forms for h and o into the
governing equations gives residuals. In a Galerkin analysis,
weighted averages of these residuals along the span of the

wing are set to zero. After some manipulation, one gets

j [6°W/0y? EI 0°h/0y® + WM 0°h/ot”
+ WMa 0°ct/0t? + WpU?/2 CCp B - WH] dy = 0

j [OW/dy GT /Dy + WI do/ot?
+ WMa 0°h/0t? + WpU?/2 C* x - WP] dy = 0



where W and W are weighting functions. For a Galerkin
analysis, these are just the shape functions used to define h
and ao. In other words, W is A and B for each node while W is
D for each node. Notice the double integration by parts of
the space derivative term in the heave 1integral. This
introduces tip shear and tip Dbending moment Dboundary
conditions into the formulation. Both of these are zero for a
wing. Notice the single integration by parts of the space
derivative term in the pitch integral. This introduces tip

torsion into the formulation. Again this is zero for a wing.

After performing the integrations numerically using Gaussian
Quadrature, one gets a set of Ordinary Differential Equations
or ODEs in time. One <can Laplace Transform these and
manipulate to get a characteristic equation. Stability 1is
dependent on the roots of this equation. Instead of using
Laplace Transform approach, one can put the ODEs in a matrix
form and use matrix manipulation to get the roots of the
characteristic equation. One can plot them in a Root Locus
Plot as a function of wing speed. This would give the

critical speed corresponding to the onset of instability.






KELVIN HELMHOLTZ INSTABILITIES

Consider the flexible panel shown in Figure A. A fluid
flowing over such a panel can cause it to flutter. The
simplest analysis of this assumes the panel to be an
infinitely long thin plate. It also assumes that the flow
above and below the panel is potential flow. Conservation of

mass considerations give:

V2(PT =0 V2(PB =0

where T indicates the top flow and B indicates the bottom

flow. The kinematic constraints at walls are:

8([)T/8Z =0 at z = +dT
8@3/82

Il
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at z = _dB

The panel kinematic constraints are based on:

Dn/Dt = Dz/Dt

where n is the vertical deflection of the panel from its rest

state. The n for a point on the panel must follow the z for






that point. The constraint gives for the top and bottom of

the panel:

on/ot + U On/ox = 0pr/0z at z =0

on/ot = 0¢s/0z at z =0

The panel dynamic constraints are:

Opr/0t + U Opr/0x + Pg/pr + gn = 0 at z =0

Opg/0t + Ps/ps + gn = 0 at z =0

Finally, the equation of motion of the panel is:

o w dn/ot? = (P - Pr)w - Kn + T w 6°n/dx> - D w d'n/ox"

where o is the sheet density of the panel, w is the panel
width, K accounts for side support forces, T is the tension

in the panel and D=EI is its flexural rigidity.

The dynamic constraints give:

Py = - pr (Opr/0t + Udpr/0x) - prgn at z =0

P = - ps (0ps/0t) - P 9N at z =0

Substitution into the panel equation of motion gives:

o azﬂ/8t2 = - ps (Ops/0t) + o7 (Opr/0t + Ulpr/0x)

- g n + pErgn - K/wn + T &°n/dx> - D d'n/ox’



Consider the general solution forms:

or = [G Sinh[kz] + H Coshl[kz] ] e’
os = [I Sinh[kz] + J Coshlkz] ] e’*
n =no e
where kX = k(x - Cpt) = kx - ot where X is the

horizontal coordinate of a wave fixed frame, x 1is the
horizontal coordinate of an inertial frame, Cp 1is the wave
phase speed, k 1is the wave number and ® 1s the wave

frequency. The wall constraints give

¢r = @ro Coshl[k(dr—z)]/Cosh[kdr] e
©s = @mo Cosh[k(ds+z)]/Cosh[kds] e’**

n = no e

These satisfy everything except the panel kinematic
constraints and the panel equation of motion. Substitution

into the panel equations gives, after common terms are

cancelled away:

-jo no + Ujk no = -k @ro Tanh[kds]
-Jw No = +k @ Tanh[kdz]
or [-Jo + Ujk ] 00 — 8 [-J0] ¢eo + P79 No - P=9 No

- Tk2 No - Dk4 No - K/W No - 0[_j03]2 No = 0



Substitution into the last equation gives:

or[-jw+Ujk] [+jwno-Ujkne] / [kTanh [kdr] ]
- pesl-Jw]l [-joncl/[kTanh[kds]] + P29 no

- g No - Tkno - Dk'ne - K/wno - o[-jwl’ne = 0

Manipulation of this gives an equation of the form:

Aw + Bw + C = 0
A = pg/[kTanh[kdr]] + ps/[kTanh[kdg]] + o
B = - 2Upr/Tanh[kdr]
C = - S + U’kpr/Tanh[kdr]
S =+ Tk* + Dk + K/Ww - pig + psg
When B® - 4AC is negative, the roots of the quadratic for o

form a complex conjugate pair:

wr = o + BJ w, = a - BJ

o = -B/2A B = V[4AC-B%]/2A

Substitution of w; into the wave profile equation gives:



No eij — (AR+AIj) ej[kx—(a‘*ﬁj)t]

= (Ap+A1T) gl lkx-at]l J[-B3t]  _ (Ar+A1T) etht oI [kx-at]

=  (AxtArj) e™Pt [Cos (kx-at)+3Sin (kx-at) ]

The real part of this is:

[ Az Cos (kx-at) - A; Sin(kx-at) ] e'ft
= A e sin[(kx-at) + ¢]
This shows that, when B®-4AC is negative, the w; wave grows.

Similarly, one can show that the w, wave decays. Substitution

into B? - 4AC = 0 gives the critical speed:

U? = S V/W

V = pr/[kTanh[kdr]] + ps/[kTanh[kdg]] + ©

W = pgpr/ [Tanh[kdr] Tanh[kdg]] + kopr,Tanh[kdr]

This 1is sketched in Figure B. The plot shows that, if U is
below a certain 1level, the panel does not flutter. For U

beyond this level, it flutters for a range of k.






For a membrane under uniform pressure load

T d°A/dx® = P

Integration shows that the mean deflection is:

A =P w / [12 T]

This gives the side support stiffness

*

K' = [12 T] / w°

For a beam under uniform pressure load

EI d‘A/dx® = P

Integration shows that the mean deflection is:

A =P w / [120 EI]

This gives the side support stiffness

*

K" = [120 EI] / w*



PIPE INSTABILITIES DUE TO INTERNAL FLOW

The equation governing the lateral vibration of a pipe

containing an internal flow is

M 8°Y/ot? = - 0%/0x® (EI 8°Y/0x%) + T 0°Y/0x?

- PA 0°Y/0x* - PpAU® 0°Y/0x® - 2pAU 0°Y/0xot

For a pipe pivoted at both ends, a static force balance
shows that centrifugal forces generated by fluid motion can

cause buckling when U is greater than

U? = [ EI/[pA] n’/L?> + T/[pA] - P/p ]

For a pipe clamped at one end and open and free at the
other end, a stability analysis shows that the pipe can
undergo a flutter like phenomenon known as pipe whip. The
critical speed U can Dbe obtained from the sketch on the

next page. A straight line fit to the wavy curve there is

U= [4 + 14 M,/M] U,

U, = V[EI]/[M,L?] M, = PA
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PIPE WHIP INSTABILTY

The equation governing the lateral vibration of a pipe

containing an internal flow is

0 = M ov/ot’ + 0°/0x° (EI 0°Y/0x’) - T 0°Y/0x’

+ PA 0'Y/0x® + PpAU® 0°Y/0x® + 2pAU 0°Y/0x0t

In this equation, Y is the lateral deflection of the pipe
from its neutral position, M is the total mass of the pipe
per unit length, EI is its flexural rigidity, T is tension, P
is pressure, U is flow speed, A 1is pipe area, x 1s location
along the pipe and t is time. For a Galerkin finite element
analysis, we assume that the deflection of the pipe can be

given as a sum of scaled shape functions:

Y = 2 [An + B m]

where n is the deflection at a node and m is the slope at the
node. A and B are shape functions. Theory shows that these
must be Hermite polynomials. Such polynomials must be used
because the EI term is 4" order. The sketch on the next page

shows what they look like for a typical node.






Substitution of the assumed form for Y into the governing
equation gives a residual R. In a Galerkin analysis, weighted

averages of this residual along the pipe are set to zero:

where L 1is the length of the pipe and W is a weighting
function. For a Galerkin analysis, shape functions are used

as weighting functions. For a typical node, these are:

A, = £2(3-2¢) Ar = 1-3g%42¢°

Ss(s—l)2

B, = Se?(e-1) Br

where ¢ is a local coordinate and S is an element length. The
subscripts L and R indicate elements immediately to the left
and right of the node. After performing the integrations and
applying boundary conditions, one gets a set of ODEs in time.

One can put them in a matrix form and use matrix manipulation

to get the roots A of the system characteristic equation.

[GI] |d®/dt] + [GS] [®]| = [0]

[GI] A D] + [GS] D] = [0]

One can plot the roots in a Root Locus Plot to get the

critical speed corresponding to the onset of instability.



