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PREAMBLE 

There are two types of vibrations: resonance and instability. 

Resonance occurs when a structure is excited at a natural 

frequency. When damping is low, the structure is able to 

absorb energy each oscillation cycle and dangerous amplitudes 

can build up. There are two types of instability: static and 

dynamic. Static instability occurs when a negative fluid 

stiffness overcomes a positive structural stiffness. Usually, 

because of nonlinearity, this instability is oscillatory: 

oscillations are often referred to as relaxation 

oscillations. Examples are wing stall flutter and gate valve 

vibration. Dynamic instability occurs when a negative fluid 

damping overcomes a positive structural damping. Examples 

include galloping of slender structures and tube bundle 

vibrations. In many cases, a system oscillates at a 

structural natural frequency. In these cases, frequency is a 

parameter in a semi empirical critical speed equation.  

Natural frequencies depend on the inertia of the structure 

and its stiffness. Usually the damping of the structure is 

ignored. It usually has only a small influence on periods. If 

the structure has a heavy fluid surrounding it, some of the 

fluid mass must be considered part of the structure. The 

structure appears more massive than it really is. For a 

simple discrete mass stiffness system, there is only one 



natural period. For distributed mass/stiffness systems, like 

wires and beams, there are an infinite number of natural 

periods. For each period, there is a mode shape. This shows 

the level of vibration at points along the structure.       

Structural frequencies can be obtained analytically for 

discrete mass/spring systems and for uniform wires and beams. 

For complex structures, they can be obtained using 

approximate procedures like the Galerkin Method of Weighted 

Residuals. In some cases, the fluid structure interaction is 

so complex that vibration frequencies depend on both the 

structure and the fluid. Examples include flutter of wings 

and panels and pipe whip due to internal flow.  

 

These notes start with a description of some flow induced 

vibrations of slender structures.  Next vibration of lifting 

bodies like wings and propellors is considered. Then 

vibration of panels exposed to flow is discussed. Finally, 

vibration in pipe networks is considered.  

 
 

  

 

 

 

 



FLOW INDUCED VIBRATION OF SLENDER STRUCTURES 

  

 VORTEX INDUCED RESONANCE 

Vortices shed from most slender structures in an asymmetric 

pattern. The shedding causes a lateral vibration of the 

structure. When the vortex shedding frequency is close to a 

natural frequency of the structure, the structure undergoes 

resonance. Once the structure begins to oscillate, it causes 

a phenomenon known as lock in. The vortices shed at the 

natural frequency. In other words, the structure motion 

controls the vortex shedding. It also increases the 

correlation length along the span. This means that vortex 

shedding along the span occurs at the same time. This gives 

rise to greater lateral loads. So, once shedding starts, it 

quickly amplifies motion. 

  

 VORTEX INDUCED INSTABILITY 

Beyond a certain critical flow speed, a shear layer that 

has separated from a structure can reattach and create a 

very strong attached vortex. This occurs only for certain 

shapes. When such a shape is moving laterally in a flow, 

the attached vortex pulls it even more laterally! The 

phenomenon is known as galloping. The structure moves until 

its stiffness stops it. The vortex disappears and the 



structure starts moving back the other way. As it does so, 

the vortex appears on the other side of the structure which 

pulls it the other way.  Another type of galloping is known 

as wake galloping. This is an oval shaped orbit motion of a 

cylindrical structure in the outer wake of another structure 

which is just upstream.  

 

WAKE BREATHING OF A CYLINDER IN A FLOW 

There are two modes of wake breathing. In the first mode, the 

Reynolds Number is near the point where the boundary layer 

becomes turbulent and the wake becomes smaller. When the 

cylinder moves upstream into such a flow, its drag drops, 

whereas when it moves downstream away from such a flow, its 

drag rises. This promotes a streamwise vibration of the 

cylinder. In the second mode of wake breathing, when the 

cylinder moves into a wake, added mass phenomena cause the 

wake to grow, whereas when the cylinder moves away from the 

wake, it causes it to shrink. This promotes a streamwise 

vibration of the cylinder.  

 

FLOW INDUCED VIBRATIONS OF TUBE BUNDLES 

There are three mechanisms that can cause tube bundles in a 

flow to vibrate. One is known as the displacement mechanism. 

As tubes move relative to each other, some passageways narrow 



while others widen. Fluid speeds up in narrowed passageways 

and slows down in widened passageways. Bernoulli shows that 

in the narrowed passageways pressure decreases while in the 

widened passageways it increases. Common sense would suggest 

that if tube stiffness and damping are low, at some point as 

flow increases, tubes must flutter or vibrate. The 

displacement mechanism has one serious drawback. It predicts 

that a single flexible tube in an otherwise rigid bundle 

cannot flutter but it can undergo a nonlinear oscillation 

called divergence. It is known from experiments that a single 

flexible tube in an otherwise rigid bundle can flutter. 

Another mechanism known as the velocity mechanism does 

predict flutter in the single flexible tube case. This 

mechanism is based on the idea that, when a tube is moving, 

the fluid force on it due its motion lags behind the motion 

because the upstream flow which influences the force needs 

time to redistribute. This time lag introduces a negative 

damping which can overcome the positive damping due to 

structural and viscous phenomena. The time lag is roughly the 

tube spacing divided by the flow speed within the bundle. 

Details of this model are beyond the scope of this note. The 

third mechanism for tube vibration involves vortex shedding 

and turbulence within the bundle. 

 



 

CRITICAL SPEED EQUATIONS 

For a slender structure, the Strouhal Number S is the 

transit time T divided by the vortex shedding period T: 

S=T/T. The transit time T is D/U. Solving for flow speed U 

gives: U = D/[ST]. During resonance, T=T where T is the 

structural period. So the critical flow speed is: 

 
U = D/[S T] 

 
For the lateral vibration of a slender structure known as 

galloping, the critical flow speed U is 

   
U = Uo M/Mo ζ a      Uo = D/T    Mo = ρD2 

 
The factor ζ accounts for damping: it is typically in the 

range 0.01 to 0.1. The parameter a accounts for the shape 

of the structure. For a square cross section structure a is 

8 while for a circular cross section structure a is . 

For tube bundle vibration, the critical flow speed is 

 
U = β/T √[Mδ/ρ]       U = βUo √[δM/Mo] 

 
The factor δ accounts for damping, and the parameter β 

accounts for the bundle geometry. Typically δ is in the 

range 0.05 to 0.25 while β is in the range 2.5 to 6.0. 



 
VIBRATION MODES OF SIMPLE WIRES AND BEAMS 

 

For a wire under tension free to undergo lateral motion, the 

governing equation is: 

 

/x (TY/x) = M 2Y/t2 

                  

where Y is the lateral deflection, T is the tension in the 

wire, M is its mass per unit length, x is position along the 

wire and t is time. For a uniform wire with constant M and T, 

this can be written as the wave equation: 

 

a2 2Y/x2 = 2Y/t2       a2 = T/M 

 

where a is the wave speed. During steady free vibration of a 

wire, one can write for each point on the wire: 

 

Y = Y Sin ωt 

 

Substitution into the governing equation gives: 

 

a2 d2Y/dx2 = - ω2 Y 

d2Y/dx2 = - β2 Y      β2 = ω2/a2 

 

A general solution is 

 



Y  =  Yo Sin βx 

 

For a wire held at both ends, Y is zero at both ends. This 

implies that β must be nπ/L,  where n is any positive integer 

and L is the length of the wire. Substitution into the β2 

equation gives the natural frequencies:  

 

ωn = nπa/L = nπ/L [T/M] 

 

The corresponding natural periods are: 

 

Tn = 2L/n [M/T] 

 

The natural mode shapes are:  

 

Sin [nπx/L] 

 

For a beam free to undergo lateral motion, the governing 

equation is 

 

- 2/x2 (EI 2Y/x2) = M 2Y/t2 

 

where E is the beam material Elastic Modulus and I is the 

section area moment of inertia. 

 

During steady free vibration of a beam, one can write for 

each point on the beam:  



 

Y = Y Sin ωt 

 

Substitution into the equation of motion gives: 

 

d2/dx2 (EI d2Y/dx2) = ω2 M Y 

 

For a uniform beam with constant M and EI, this becomes: 

 

d4Y/dx4 = β4 Y        β4 = ω2 M/[EI] 

              

The general solution is:  

 

Y = A Sin[βx] + B Cos[βx] + C Sinh[βx] + D Cosh[βx] 

                      

where A and B and C and D are constants of integration. These 

are determined by the boundary conditions.  

 

For a beam with pivot supports, the boundary conditions are 

zero deflection and zero bending moment at each end. This 

implies that at each end: 

 

Y = 0      d2Y/dx2 = 0 

 

In this case, the general solution reduces to:    

            

Y  =  Yo Sin βx 



As for the wire, β must be nπ/L, where n is any positive 

integer and L is the length of the beam. Substitution into 

the β4 equation gives the natural frequencies:  

 

ωn = [nπ/L]2 [EI]/M 

 

The corresponding natural periods are: 

 

Tn = [L/n]2 2/π M/[EI] 

 

The natural mode shapes are:  

 

Sin [nπx/L] 

 

For a cantilever beam, the boundary conditions at the wall 

are zero deflection and zero slope. This implies that 

   

Y = 0      dY/dx = 0 

 

Application of these conditions shows that: 

 

C = - A       D = - B 

 

At the free end of the beam, the bending moment and shear are 

both zero. This implies that 

 

d2Y/dx2 = 0     d3Y/dx3 = 0 



Application of these conditions gives  

 

[SinβL+SinhβL] A + [CosβL+CoshβL] B = 0 

[CosβL+CoshβL] A - [SinβL-SinhβL] B = 0 

 

Manipulation of these equations gives the β condition: 

  

CosβnL CoshβnL  +  1  =  0 

 

This gives the natural frequencies of the beam. For each 

frequency, one gets the natural mode shape: 

 

(Sin[βnL] - Sinh[βnL]) (Sin[βnx] - Sinh[βnx]) 

+ 

(Cos[βnL] + Cosh[βnL]) (Cos[βnx] - Cosh[βnx]) 

 

The first 3 natural frequencies are: 

 
ω1 = 3.52/L2 [EI]/M 
 ω2 = 22.03/L2 [EI]/M 
 ω3 = 61.70/L2 [EI]/M 

 

The corresponding natural periods are:  

 
T1 = 2πL2/3.52 M/[EI] 
 T2 = 2πL2/22.03 M/[EI] 
 T3 = 2πL2/61.70 M/[EI] 

 

 



  

VIBRATION MODES OF COMPLEX WIRES 

 

The equation governing the lateral motion of a wire is: 
                         
                           

- /x (TY/x)  +  M 2Y/t2  =  0 
                       

In this equation, Y is deflection of the wire from its 

neutral position, T is its tension, x is location along the 

wire, M is the mass of the wire and t is time. During steady 

free vibration of a wire:  
 

Y = Y Sin ωt 
 

Substitution into the equation of motion gives  
 

- d/dx (T dY/dx)  -  ω2 M Y =  0 
 

For a Galerkin finite element analysis, we assume that 

deflection along the wire can be given as a sum of scaled 

shape functions:  
 

Y  =   A n 
        

where n is deflection at a node and A is a shape function. 

For shape functions, we use piecewise linear polynomials. The 

sketch on the next page shows one for a typical node.   

 

 



 

 

 



 

 

Substitution of the assumed form for Y into the governing 

equation gives a residual. In a Galerkin analysis, weighted 

averages of this residual along the wire are set to zero. 

After some manipulation, one gets 
 
 
             L                       

 [dW/dx T dY/dx - W ω2 M Y] dx  =  0 

             0         
  

where L is the length of the wire and W is a weighting 

function. For a Galerkin analysis, shape functions are used 

as weighting functions. For a typical node, these are: 
 

AL = ε       AR = 1-ε 
   

where ε is a local coordinate. The subscripts L and R 

indicate elements immediately to the left and right of the 

node. Notice the integration by parts of the space derivative 

term in the integral. This introduces slope end boundary 

conditions into the formulation. Such boundary conditions are 

not needed for a wire held at both ends. Application of 

vibration theory gives the vibration modes of the wire. A 

computer program was written to do this. For a uniform wire 

with L=10 and M=10 and T=100, theory gives ω1=0.993. With 10 

elements, Galerkin gives ω1=0.998.  

 

 



VIBRATION MODES OF COMPLEX BEAMS 

 

The equation governing the lateral motion of a beam is: 
                         
                           

2/x2 (EI2Y/x2)  +  M 2Y/t2  =  0 

                       

In this equation, Y is deflection of the beam from its 

neutral position, EI is its flexural rigidity, x is location 

along the beam, M is the mass of the beam and t is time. 

During steady free vibration of a beam:  
 

Y = Y Sin ωt 
 

Substitution into the equation of motion gives  
 

d2/dx2 (EI d2Y/dx2)  -  ω2 M Y  =  0 
 

For a Galerkin finite element analysis, we assume that 

deflection can be given as a sum of scaled shape functions: 
 

Y  =   [A n + B m] 
        

where n is the deflection at a node and m is the slope at the 

node. A and B are shape functions. Theory shows that these 

must be Hermite polynomials. Such polynomials must be used 

because the stiffness term is 4th order. The sketch on the 

next page shows what they look like for a typical node.   

 

 



 

 
 



 

Substitution of the assumed form for Y into the governing 

equation gives a residual. In a Galerkin analysis, weighted 

averages of this residual along the beam are set to zero. 

After some manipulation, one gets 
 
 
           L                         

  [d2W/dx2 EI d2Y/dx2 - W ω2 M Y] dx  =  0 

           0            
  

where L is the length of the beam and W is a weighting 

function. For a Galerkin analysis, shape functions are used 

as weighting functions. For a typical node, these are: 
 

AL = ε2(3-2ε)     AR = 1-3ε2+2ε3 
  

BL = Sε2(ε-1)     BR = Sε(ε-1)2 
   

where ε is a local coordinate and S is an element length. The 

subscripts L and R indicate elements immediately to the left 

and right of the node. Notice the double integration by parts 

of the space derivative term in the integral. This introduces 

tip shear and tip bending moment boundary conditions into the 

formulation. These are both zero for a cantilever beam. 

Application of vibration theory gives the vibration modes of 

the beam. A computer program was written to do this. For a 

uniform beam with L=1 and M=10 and EI=8.33, theory gives 

ω1=3.213. With 10 elements, Galerkin gives ω1=3.210. 

 



GOVERNING EQUATIONS FOR WIRES AND BEAMS 

 

Sketch A shows a wire under tension. A force balance on a 

small segment of the wire gives: 

 

- TY/x  +  [TY/x + /x (TY/x) Δx]  =  M Δx 2Y/t2 

 

Manipulation gives the equation of motion:  
 

/x (TY/x)  =  M 2Y/t2 
 

Sketches B and C show a beam undergoing bending. A force 

balance on a small segment of the beam gives:  

 

- Q  +  (Q + Q/x Δx)  =  M Δx 2Y/t2 

 

Manipulation gives:  
 

Q/x  =  M 2Y/t2 
 

A moment balance on the beam segment gives:  

 

- M  +  (M + M/x Δx)  +  (Q + Q/x Δx) Δx  =  0 
 

Manipulation gives : 
 

Q  =  - M/x 



 

Sketch D shows how a beam is strained when bent. Inspection 

of the sketch shows that the strain is: 
 

ε = Y/R 
 

The stress is: 
 

σ = E ε 

 

where E is the Elastic Modulus. Geometry gives 

 

RΘ = s     Θ/s = 1/R 

s = x       Θ = Y/x 
 

Manipulation gives: 
                

2Y/x2 = 1/R 

 

Moment considerations give: 

 

M  =   σY dA  =  E/R  Y2 dA  =  EI/R  =  EI 2Y/x2 

 

So, the equation of motion becomes 

 

- 2/x2 M  =  - 2/x2 (EI 2Y/x2)  =  M 2Y/t2 



 







 
 

 

 



 

LIFTING BODY INSTABILITIES 

 

Flutter is a dynamic instability of a lifting body. When it 

occurs, the heave and pitch motions of the body are 90o out 

of phase. The passing stream does work on the body over an 

oscillation cycle. Divergence is a static instability. It 

occurs when the pitch moment due to fluid dynamics overcomes 

the moment due to the structural pitch stiffness of the body.  

  

 FLUTTER AND DIVERGENCE OF FOILS 

A foil is a section of a lifting body. Here quasi steady 

fluid dynamics theory is used to get the loads on the foil. 

This ignores the fact that, when a foil is heaving and 

pitching, vortices are shed behind it because its circulation 

keeps changing. These vortices influence the loads on the 

foil. The equations governing motions of a foil are: 

                      

K h  +  i dh/dt  +  M d2h/dt2  +  Ma d2α/dt2   +  L  =  H 

k α  +  j dα/dt  +  I d2α/dt2  +  Ma d2h/dt2   +  T  =  P 

 

where h is the downward heave displacement of the foil, α is 

its upward pitch displacement, M is the mass of the foil, I 

is its rotary inertia, K is the heave stiffness of the foil, 

k is its pitch stiffness, i is the heave damping coefficient 

of the foil, j is its pitch damping coefficient, L is the 

lift on the foil, T is the pitch moment and H and P are 



disturbance loads. Quasi steady fluid dynamics theory gives 

for the fluid dynamic loads L and T:  

 

L = ρU2/2 CCP β      T = ρU2/2 C2 κ 

 

where 

β = α + (dh/dt)/U + (3C/4-b)/U (dα/dt) 

κ = (C/4-b)/C CP β + Cπ/[8U] (dα/dt) 

 

where U is the speed of the foil, C is its chord length, a 

indicates how far the center of gravity is behind the elastic 

axis, b is the distance between the elastic axis and the 

leading edge of the foil and CP is a constant given by fluid 

dynamics theory: it is approximately 2π.  

 

Note that the parameter β is the instantaneous angle of 

attack of the foil 3C/4 back from its leading edge. It is 

made up of three components. The first component is the pitch 

angle α. The second component is due to the change in flow 

direction caused by the heave rate dh/dt. The third component 

is due to the change in flow direction caused by the pitch 

rate dα/dt at the 3C/4 location. The 3C/4 location is 

suggested by flat plate foil theory. Theory shows that the 

center of pressure on a foil is at C/4 back from the leading 

edge. This gives rise to the first term in the pitch moment 

parameter κ. The second term is due to the distribution of 

pressure over the foil.  



One can Laplace Transform the governing equations and 

manipulate to get a characteristic equation. Stability is 

dependent on the roots of this equation. One can get the 

roots numerically and plot them in a Root Locus Plot as a 

function of foil speed. This would give the critical speed 

corresponding to the onset of instability. 

 

 FLUTTER AND DIVERGENCE OF WINGS 

Here strip theory is used to get the loads on a wing. The 

wing is broken into strips spanwise and quasi steady fluid 

dynamics theory is used to get the loads on each strip. This 

ignores the fact that, when a wing is heaving and pitching, 

vortices are shed behind it because its circulation keeps 

changing. These vortices influence the loads on the wing. It 

also ignores the fact that for a finite span wing vortices 

are shed along its span but mainly at its tips. These 

vortices create a downwash on the wing. This reduces the lift 

on the wing because it lowers its apparent angle of attack. 

It also tilts the load on the wing backwards and this gives 

rise to a drag. The equations governing heave and pitch 

motions of a wing are: 
                         
 
           

2/y2 (EI2h/y2)  +  M 2h/t2  +  Ma 2α/t2 

+  ρU2/2 CCP β  =  H 

                              

 



                                   

-  /y (GJα/y)  +  I 2α/t2  +  Ma 2h/t2 

+  ρU2/2 C2 κ  =  P 

                       

In these equations, h is the downward heave displacement of 

the wing and α is the upward pitch displacement of the wing. 

EI and GJ account for the stiffness of the wing per unit 

span. M and I are its inertias per unit span. The chord of 

the wing is C and its span is Q. The speed of the wing is U. 

The distance from the elastic axis to the center of gravity 

is a. The distance from the leading edge to the elastic axis 

is b. H and P are disturbance loads.  

 

Fluid dynamic loads per unit span acting on the wing are 

determined by the β and κ parameters. These are: 

 

β = α + (h/t)/U + (3C/4-b)/U (α/t) 

κ = (C/4-b)/C CP β + Cπ/8/U (α/t) 

 

For a Galerkin finite element analysis, we let h and α each 

be a sum of scaled shape functions as follows: 

 

h =  [A n + B m]      α =  D p 

 

A and B and D are the shape functions. In the equation for 

heave, n is the heave at a node while m is the heave slope at 



a node. In the equation for pitch, p is the pitch at a node.  

For a typical node, the shape functions are: 

 

             AL = ε2(3-2ε)     AR = 1-3ε2+2ε3   

             BL = Sε2(ε-1)     BR = Sε(ε-1)2 

             DL = ε            DR = 1-ε   

        

where ε is a local coordinate and S is an element length. The 

subscripts L and R indicate elements immediately to the left 

and right of a node. The polynomials used for heave are known 

as Hermite polynomials. They must be used because the 

stiffness term in the heave governing equation is 4th order. 

They are not needed for pitch because its stiffness term is 

only 2nd order: linear shape functions are adequate for it.  

 

Substitution of the assumed forms for h and α into the 

governing equations gives residuals. In a Galerkin analysis, 

weighted averages of these residuals along the span of the 

wing are set to zero. After some manipulation, one gets  
 
                           

               [2W/y2 EI 2h/y2 + WM 2h/t2                          

             + WMa 2α/t2 + WρU2/2 CCP β - WH] dy = 0             
                                    

              [W/y GJ α/y + WI 2α/t2                          

             + WMa 2h/t2 + WρU2/2 C2 κ - WP] dy = 0 
 
 
 



where W and W are weighting functions. For a Galerkin 

analysis, these are just the shape functions used to define h 

and α. In other words, W is A and B for each node while W is 

D for each node. Notice the double integration by parts of 

the space derivative term in the heave integral. This 

introduces tip shear and tip bending moment boundary 

conditions into the formulation. Both of these are zero for a 

wing. Notice the single integration by parts of the space 

derivative term in the pitch integral. This introduces tip 

torsion into the formulation. Again this is zero for a wing.  

  

After performing the integrations numerically using Gaussian 

Quadrature, one gets a set of Ordinary Differential Equations 

or ODEs in time. One can Laplace Transform these and 

manipulate to get a characteristic equation. Stability is 

dependent on the roots of this equation. Instead of using 

Laplace Transform approach, one can put the ODEs in a matrix 

form and use matrix manipulation to get the roots of the 

characteristic equation. One can plot them in a Root Locus 

Plot as a function of wing speed. This would give the 

critical speed corresponding to the onset of instability. 

 
 

 

 

 



 

 

 

 



 

KELVIN HELMHOLTZ INSTABILITIES 

 

Consider the flexible panel shown in Figure A. A fluid 

flowing over such a panel can cause it to flutter. The 

simplest analysis of this assumes the panel to be an 

infinitely long thin plate. It also assumes that the flow 

above and below the panel is potential flow. Conservation of 

mass considerations give: 

    

2φT = 0         2φB = 0 

 

where T indicates the top flow and B indicates the bottom 

flow. The kinematic constraints at walls are: 

 

φT/z = 0      at z = +dT 

φB/z = 0      at z = -dB 

 

The panel kinematic constraints are based on: 

 

Dη/Dt  =  Dz/Dt 

 

where η is the vertical deflection of the panel from its rest 

state. The η for a point on the panel must follow the z for 



 

 



that point. The constraint gives for the top and bottom of 

the panel: 
 

η/t  +  U η/x  =  φT/z    at  z = 0 

η/t  =  φB/z    at  z = 0 
 

The panel dynamic constraints are: 
 

φT/t  +  U φT/x  +  PT/ρT  +  gη  =  0    at  z = 0 

φB/t  +  PB/ρB  +  gη  =  0    at  z = 0 
      

Finally, the equation of motion of the panel is: 
 

σ w 2η/t2 = (PB - PT )w  - K η + T w 2η/x2 - D w 4η/x4 
 

where σ is the sheet density of the panel, w is the panel 

width, K accounts for side support forces, T is the tension 

in the panel and D=EI is its flexural rigidity.  

 

The dynamic constraints give: 
 

PT  =  - ρT (φT/t + UφT/x)  -  ρT gη    at  z = 0 

PB  =  - ρB (φB/t)  -  ρB gη    at  z = 0 
 

Substitution into the panel equation of motion gives: 
 

σ 2η/t2  =  - ρB (φB/t)  +  ρT (φT/t + UφT/x) 

-  ρBg η  +  ρTg η  -  K/w η  +  T 2η/x2  -  D 4η/x4 



Consider the general solution forms: 

 

φT = [G Sinh[kz] + H Cosh[kz] ]  ejkX      

φB = [I Sinh[kz] + J Cosh[kz] ]  ejkX      

η = ηO ejkX 

 

where  kX  =  k(x - CPt)  =  kx – ωt   where X is the 

horizontal coordinate of a wave fixed frame, x is the 

horizontal coordinate of an inertial frame, CP is the wave 

phase speed, k is the wave number and ω is the wave 

frequency. The wall constraints give 

 

φT = φTO  Cosh[k(dT-z)]/Cosh[kdT]  ejkX      

φB = φBO  Cosh[k(dB+z)]/Cosh[kdB]  ejkX      

η = ηO ejkX 

 

These satisfy everything except the panel kinematic 

constraints and the panel equation of motion. Substitution 

into the panel equations gives, after common terms are 

cancelled away: 

 

-jω ηO  +  Ujk ηO  =  -k φTO Tanh[kdT] 

-jω ηO  =  +k φBO Tanh[kdB] 

 

ρT [-jω + Ujk ] φTO -  ρB [-jω] φBO +  ρTg ηO  -  ρBg ηO 

-  Tk2 ηO  -  Dk4 ηO  -  K/w ηO  -  σ[-jω]2 ηO  =  0 

 



Substitution into the last equation gives: 

 

ρT[-jω+Ujk][+jωηO-UjkηO]/[kTanh[kdT]] 

  -  ρB[-jω][-jωηO]/[kTanh[kdB]]  +  ρTg ηO 

- ρBg ηO  -  Tk2 ηO  -  Dk4 ηO  - K/w ηO  - σ[-jω]2 ηO  =  0 

 

Manipulation of this gives an equation of the form: 

 

A ω2  +  B ω  +  C  =  0  
            

A  =  ρT/[kTanh[kdT]]  +  ρB/[kTanh[kdB]]  +  σ        

 

B  =  - 2UρT/Tanh[kdT]  

 

C  =  - S  +  U2kρT/Tanh[kdT]   

 

S = + Tk2  +  Dk4  +  K/w  -  ρTg  +  ρBg   

 

When B2 - 4AC is negative, the roots of the quadratic for ω 

form a complex conjugate pair: 

  

ω1 = α + βj       ω2 = α - βj 

α = -B/2A         β = [4AC-B2]/2A 

 

Substitution of ω1 into the wave profile equation gives: 

 

 



ηO ejkX  =  (ΔR+ΔIj) ej[kx-(α+βj)t] 
 

=  (ΔR+ΔIj) ej[kx-αt] ej[-βjt]  =  (ΔR+ΔIj) e+βt ej[kx-αt] 
  

=  (ΔR+ΔIj) e+βt [Cos(kx-αt)+jSin(kx-αt)] 

 

The real part of this is: 

 

[ ΔR Cos(kx-αt) - ΔI Sin(kx-αt) ] e+βt 
 

=  Δ  e+βt Sin[(kx-αt) + ε] 

 

This shows that, when B2-4AC is negative, the ω1 wave grows. 

Similarly, one can show that the ω2 wave decays. Substitution 

into B2 - 4AC = 0 gives the critical speed: 

 

U2  =  S V/W  

 

V  = ρT/[kTanh[kdT]] + ρB/[kTanh[kdB]] + σ 

W = ρBρT/[Tanh[kdT]Tanh[kdB]] + kσρT/Tanh[kdT] 

 

This is sketched in Figure B. The plot shows that, if U is 

below a certain level, the panel does not flutter. For U 

beyond this level, it flutters for a range of k.  

 



 

 



 

For a membrane under uniform pressure load 

 

T d2Δ/dx2 = P 

 

Integration shows that the mean deflection is: 

 

Δ = P w2 / [12 T] 

 

This gives the side support stiffness  

 

K* = [12 T] / w2 

 

For a beam under uniform pressure load 

 

EI d4Δ/dx4 = P 

 

Integration shows that the mean deflection is: 

 

Δ = P w4 / [120 EI] 

 

This gives the side support stiffness  

 

K* = [120 EI] / w4 

    

 



 

 
PIPE INSTABILITIES DUE TO INTERNAL FLOW 

 
 

The equation governing the lateral vibration of a pipe 

containing an internal flow is  

 

M 2Y/t2  =   -  2/x2 (EI 2Y/x2)  +  T 2Y/x2 

-  PA 2Y/x2  -  ρAU2 2Y/x2  -  2ρAU 2Y/xt 

 

For a pipe pivoted at both ends, a static force balance 

shows that centrifugal forces generated by fluid motion can 

cause buckling when U is greater than 

 

U2 = [ EI/[ρA] π2/L2 + T/[ρA] - P/ρ ] 

                  

For a pipe clamped at one end and open and free at the 

other end, a stability analysis shows that the pipe can 

undergo a flutter like phenomenon known as pipe whip. The 

critical speed U can be obtained from the sketch on the 

next page. A straight line fit to the wavy curve there is 

  

U = [4 + 14 Mo/M] Uo 

Uo = [EI]/[MoL2]       Mo = ρA 



 

 



  

PIPE WHIP INSTABILTY 

 

 

The equation governing the lateral vibration of a pipe 

containing an internal flow is  

 
0  =   M 2Y/t2   +   2/x2 (EI 2Y/x2)  -  T 2Y/x2 

+  PA 2Y/x2  +  ρAU2 2Y/x2  +  2ρAU 2Y/xt 

 
In this equation, Y is the lateral deflection of the pipe 

from its neutral position, M is the total mass of the pipe 

per unit length, EI is its flexural rigidity, T is tension, P 

is pressure, U is flow speed, A is pipe area, x is location 

along the pipe and t is time. For a Galerkin finite element 

analysis, we assume that the deflection of the pipe can be 

given as a sum of scaled shape functions: 

 
                    Y  =   [A n + B m] 

        
where n is the deflection at a node and m is the slope at the 

node. A and B are shape functions. Theory shows that these 

must be Hermite polynomials. Such polynomials must be used 

because the EI term is 4th order. The sketch on the next page 

shows what they look like for a typical node.   

 



 

 

 

 

 

 

 



Substitution of the assumed form for Y into the governing 

equation gives a residual R. In a Galerkin analysis, weighted 

averages of this residual along the pipe are set to zero: 

                        L 

    W R dx  =  0 

                        0 
                     
where L is the length of the pipe and W is a weighting 

function. For a Galerkin analysis, shape functions are used 

as weighting functions. For a typical node, these are: 

 
             AL = ε2(3-2ε)     AR = 1-3ε2+2ε3  

             BL = Sε2(ε-1)     BR = Sε(ε-1)2 

   
where ε is a local coordinate and S is an element length. The 

subscripts L and R indicate elements immediately to the left 

and right of the node. After performing the integrations and 

applying boundary conditions, one gets a set of ODEs in time. 

One can put them in a matrix form and use matrix manipulation 

to get the roots  of the system characteristic equation.  

 
[GI] |d/dt| + [GS] || = |0| 

[GI]  |o| + [GS] |o| = |0| 
 

One can plot the roots in a Root Locus Plot to get the 

critical speed corresponding to the onset of instability. 


