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PREAMBLE 

 

Most water waves are generated by storms at sea. Many waves 

are present in a storm sea state: each has a different 

wavelength and period. Theory shows that the speed of 

propagation of a wave or its phase speed is a function of 

water depth. It travels faster in deeper water. Theory also 

shows that the speed of a wave is a function of its 

wavelength. Long wavelength waves travel faster than short 

wavelength waves. This explains why storm generated waves, 

which approach shore, are generally a single wavelength. 

Because waves travel at different speeds, they tend to 

separate or disperse. When waves approach shore, they are 

influenced by the seabed by a process known as refraction. 

This can focus or spread out wave energy onto a site. Close 

to shore water depth is not the same everywhere: so points on 

wave crests move at different speeds and crests become bent. 

This explains why crests which approach a shore line tend to 

line up with it: points in deep water travel faster than 

points in shallow water and overtake them. Wave energy 

travels at a speed known as the group speed. This is 

generally not the same as the phase speed. However for 

shallow water both speeds are the same and they depend only 

on the water depth. A large low pressure system moving over 

shallow water would generate an enormous wave if the system 



speed and the wave energy speed were the same. Basically wave 

energy gets trapped in the system frame when the system speed 

matches the wave energy speed. Tides are basically shallow 

water waves. Here the pull of the Moon mimics a low pressure 

system. Theory shows that if water depth was 22km everywhere 

on Earth the Moon pull would produce gigantic tides. They 

would probably drain the oceans and swamp the continents 

everyday. Fortunately the average water depth is only 3km.  

 

Water waves can interact with structures and cause them to 

move or experience loads. For wave structure interaction, an 

important parameter is 5D/λ where D is the characteristic 

dimension of the structure and λ is the wavelength. 

Structures are considered large if 5D/λ is much greater than 

unity: they are considered small if 5D/λ is much less than 

unity. Small structures are transparent to waves. Large 

structures scatter waves.  

 

These notes start with a description of water wave theory. Then 

interaction of waves with small structures is considered. 

Finally interaction with large structures is considered.  

 

 

 



WATER WAVES 

 

To calculate wave interactions with structures, one needs a 

detailed knowledge of the wave field. Water wave theory 

provides this. It will be assumed for much of what is given 

below that wave amplitudes are very small. It turns out that 

this is good even for waves not far from breaking. Water 

waves in deep water propagate for long distances with little 

loss of energy. They lose energy in shallow water due to 

interaction with the seabed. They also lose energy when they 

move pass small structures and when they break on beaches. 

Water wave theory ignores these energy losses. It assumes 

that water has zero viscosity and it is incompressible. It 

also assumes that its motion is irrotational. This means that 

water particles do not spin. With these assumptions, the 

conservation laws reduce to potential flow forms.  

 

Conservation of mass considerations give: 

                

                     .v = 0        2φ = 0    .  

 

The velocity vector v in terms of the potential φ is 

 

                      v = φ = Ui + Vj + Wk   .        

 

 

 



 

 

 

 

 

 

 



Conservation of momentum considerations give: 

 

        ρ v/t  + ρ  v.v/2   +   P  +   ρgz  =  0   

          

          φ/t  +  φ.φ/2   +  P/ρ  +  gz  =  C  .   

 

It turns out that, for water waves, mass is the main 

governing equation: momentum is used as a boundary condition. 

The kinematic or motion constraint at the seabed is: 

 

                   φ/z = 0      at z = -h   . 

 

where h is the water depth. The kinematic or motion 

constraint at the water surface is based on: 

 

                      Dη/Dt  =  Dz/Dt   

 

where η is the vertical deflection of the water from the 

still water line. The η for a point on the water must follow 

the z for that point. The constraint gives: 

 

        η/t  +  φ/x η/x  =  φ/z       at  z = η    . 

 

For small amplitude waves, this becomes: 

 

             η/t   =   φ/z        at  z = 0    . 

  



The dynamic or load constraint at the water surface is: 

 

   φ/t  +  φ.φ/2  +  P/ρ  +  gη  =  0     at  z = η  . 

      

For small amplitude waves, this becomes: 

 

              φ/t  +  gη  =  0     at  z = 0  . 

 

Manipulation of the water surface constraints allows one to 

eliminate η from the formulation. One gets: 

 

           2φ/t2  +  gφ/z  =  0      at  z = 0  . 

 

The Separation of Variables solution procedure gives: 

 

             φ = φO Cosh[k(z+h)]/Cosh[kh] Cos(kX)    

 

where  kX  =  k(x - CPt)  =  kx - ωt  where X is the 

horizontal coordinate of a wave fixed frame, x is the 

horizontal coordinate of an inertial frame, CP is the wave 

phase speed, k is the wave number and ω is the wave 

frequency. The wave number k is related to the wave length λ 

as follows: k = 2π/λ. 

 

The wave profile equation has the form:   

 

                       η = ηO Sin(kX)   . 



 

Substitution into the combined water surface constraint gives 

the dispersion relationships: 

 

                   CP  =  (g/k Tanh[kh])  

                    ω =  (gk Tanh[kh])   . 

  

These show that deep water waves travel faster than shallow 

water waves. They also show that long wave length waves 

travel faster than short wave length waves.  

 

Substitution into the water surface constraints gives the 

connection between potential amplitude and wave amplitude: 

 

                   φO  =  - gT/[2π] H/2 

 

where T is the wave period and H is the wave height.         

 

Differentiation gives the water particle velocities: 

 

   U  =  φ/x  =  - φO k Cosh[k(z+h)]/Cosh[kh] Sin(kX) 

       =  + H/2 2π/T Cosh[k(z+h)]/Sinh[kh] Sin(kX) 

 

   W  =  φ/z  =  + φO k Sinh[k(z+h)]/Cosh[kh] Cos(kX)  

       =  - H/2 2π/T Sinh[k(z+h)]/Sinh[kh] Cos(kX)   . 

 

These can be used to get drag loads on small structures. 



More differentiation gives the particle accelerations: 

 

    dU/dt = - H/2 (2π/T)2 Cosh[k(z+h)]/Sinh[kh] Cos(kX) 

    dW/dt = - H/2 (2π/T)2 Sinh[k(z+h)]/Sinh[kh] Sin(kX)   . 

 

These can be used to get inertia loads on small structures. 

 

The particle positions are:  

   

    xp  =  xo  + H/2 Cosh[k(z+h)]/Sinh[kh] Cos(kX) 

    Zp  =  zo  + H/2 Sinh[k(z+h)]/Sinh[kh] Sin(kX)  . 

 

These give the water particle orbit size.  

 

The momentum equation gives the wave pressure 

 

              ΔP  =  ρg η Cosh[k(z+h)]/Cosh[kh]  . 

 

This can be used to get pressure loads on structures.  

 

For deep water, the solution becomes: 

 

            φ = φO e-kz Cos(kX)      η = ηO Sin(kX)  . 

 

With this, the dispersion relationships become: 

 

                  CP = g/k       ω = gk   . 



 

Other wave parameters become:  

 

                 U = + H/2 2π/T ekz Sin(kX)     

                 W = - H/2 2π/T ekz Cos(kX)  

 

            dU/dt = - H/2 (2π/T)2 ekz Cos(kX)     

            dW/dt = - H/2 (2π/T)2 ekz Sin(kX) 

 

                xp = xo + H/2 ekz  Cos(kX)    

                Zp = zo + H/2 ekz  Sin(kX)   

 

                       ΔP  =  ρg η ekz    . 

 

Wave energy travels at a speed known as the group speed. This 

is generally not the same as the phase speed of a wave.  One 

can show that the group speed is given by: 

 

           CG  =  dω/dk  =  CP (1/2 + [kh]/Sinh[2kh])  . 

 

The wave energy density is: 

 

                     E = 1/8 ρg H2  . 

 

One can show that wave energy flux is: 

 

                      P =  CG  E  . 



   

Group speed is responsible for many important phenomena. Some 

of these were mentioned earlier. 

 

Waves at sea after a storm are random. They are made up of an 

infinite number of frequencies. A spectrum shows how the 

energy in a wave field is spread out over a range of 

frequencies. A popular 2 parameter fit to a wave amplitude 

spectrum is the ITTC fit: 

 

                      Sη = A/ω5 e-B/ω4      

                  A=346H2/T4      B=691/T4 

 

where H is significant wave height and T is significant wave 

period. JONSWAP is a popular 3 parameter fit. 

 

A Response Amplitude Operator or RAO can be used to connect a 

wave spectrum to a body motion or load response spectrum  

             

                       SR = RAO2 Sη   .  

 

An RAO is basically a Magnitude Ratio. For a specific wave 

period, it is the amplitude of body response divided by the 

wave amplitude. For small structures, Morisons Equation can 

be used to get RAOs. For large structures, they can be 

obtained using the CFD procedure known as the Panel Method. 

One can also get RAOs from experiments. 



 

All sorts of statistical and probabilistic information can be 

obtained from spectra. For bodies, the analysis makes use of 

the following moments of the spectrum:  

 

                                                                  
                   Mn = 1/2     SR(ω) ωn dω     . 
                              0                         

One can show that the significant response height and period 

of a body motion or load are:  

  

                 2 RS = 4 M0      TS = 2π M0/M1 . 

 

The probability of a response exceeding a certain level is: 

 

               P(Ro>R) = e-X        X = RR/[2M0]    .  

 

The theory assumes that spectra follow a Rayleigh 

Distribution. Actual spectra deviate from this and 

predictions must often be corrected. A correction factor 

based on moments is:  

 

             CF = 1-εε       ε = [M0M4-M2M2]/[M0M4]    

 

where ε is known as the broadness parameter. 



 



WAVE INTERACTION WITH BODIES 

 REAL FLUID FORMULATION 
 

PREAMBLE 

At low speeds, fluid particles move along smooth paths: 

motion has a laminar or layered structure. At high speeds, 

particles have superimposed onto their basic streamwise 

observable motion a random walk or chaotic motion. Particles 

move as groups in small spinning bodies known as eddies. The 

flow pattern is said to be turbulent. A turbulent wake flow 

is one that contains some large eddies together with a lot of 

small ones. Such a flow could be found around the GBS on a 

stormy day. The large eddies generally stay roughly in one 

place. Fluid in them swirls around and around or recirculates 

in roughly closed orbits. The smaller eddies are associated 

with turbulence and are carried along by the local flow. The 

large eddies can usually be found inside wakes. Most of the 

smaller ones can be found near wake boundaries. They are 

generated in regions where velocity gradients are high like 

at the edges of wakes or in the boundary layers close to 

structures. They are dissipated in regions where gradients 

are low like in sheltered areas like corners. Turbulent wake 

flows are governed by the basic conservation laws. However, 

they are so complex that analytical solutions are impossible. 



One could develop computational fluid dynamics or CFD codes 

based on the conservation law equations. Unfortunately, the 

small eddies are so small that an extremely fine grid spacing 

and a very small time step would be needed to follow 

individual eddies in a flow. Small eddies are typically 

around 1mm in diameter. One would need a grid spacing smaller 

than 0.1mm to follow such eddies. CFD converts each governing 

equation into a set of algebraic equations or AEs: one AE for 

each PDE for each xyz grid point. Workable CFD is not 

possible because computers cannot handle the extremely large 

number of AEs generated. For example, a 100m x 100m x 100m 

volume of water near a structure like the GBS would need 106 

x 106 x 106 or 1018 grid points if the grid spacing was 0.1mm. 

Also very many time steps would be needed to complete a 

simulation run. No computer currently exists that can handle 

so many grid points and so many time steps. The random 

motions of molecules in a gas diffuse momentum: they give gas 

its viscosity. Small eddies in a turbulent flow also diffuse 

momentum: they make fluid appear more viscous than it really 

is. This apparent increase in viscosity controls overall flow 

patterns and loads on structures. Models which account for 

this apparent increase in viscosity are known as eddy 

viscosity models. They can be obtained from the momentum 

equations by a complex time averaging process. The time 



averaging introduces the so called Reynolds Stresses into the 

momentum equations, and these are modelled using the eddy 

viscosity concept. Models have been developed which can 

estimate how eddy viscosity varies throughout a flow. 

Workable CFD is now possible because one can now use much 

larger grid spacing and time steps: it is no longer necessary 

to follow individual eddies around in a flow. When small 

eddies are accounted for in this way, they no longer show up 

in flow: they are suppressed by eddy viscosity. For the GBS 

case, a grid spacing around 1m would now be adequate. This 

means a 100m x 100m x 100m volume of water near the GBS would 

now need only 102 x 102 x 102 or 106 grid points.  

 

 CONSERVATION LAWS FOR HYDRODYNAMICS FLOWS 

Hydrodynamics flows are often turbulent. Conservation of 

momentum considerations for such flows give: 

 
       ρ ( U/t + UU/x + VU/y + WU/z ) + A = - P/x  

     +  [ /x (μ U/x) + /y (μ U/y) + /z (μ U/z) ] 

 
       ρ ( V/t + UV/x + VV/y + WV/z ) + B = - P/y  

     +  [ /x (μ V/x) + /y (μ V/y) + /z (μ V/z) ] 

 
    ρ ( W/t + UW/x + VW/y + WW/z ) + C = - P/z - ρg  

     +  [ /x (μ W/x) + /y (μ W/y) + /z (μ W/z) ] 



where U V W are respectively the velocity components in the x 

y z directions, P is pressure, ρ is the density of water and 

μ is its effective viscosity. The time averaging process 

introduces source like terms A B C into the momentum 

equations. Each is a complex function of velocity and 

viscosity gradients as indicated below:  

 

A = μ/y V/x - μ/x V/y + μ/z W/x - μ/x W/z 
 

B = μ/x U/y - μ/y U/x + μ/z W/y - μ/y W/z 
 

C = μ/y V/z - μ/z V/y + μ/x U/z - μ/z U/x 
 

Conservation of mass considerations give:  

 
 P/t + ρ c2 ( U/x + V/y + W/z ) = 0  

 
where c is the speed of sound in water. Although water is 

basically incompressible, CFD takes it to be compressible. 

Mass is used to adjust pressure at points in the grid when 

the divergence of the velocity vector is not zero.   

 
A special function F known as the volume of fluid or VOF 

function is used to locate the water surface. For water, F is 

taken to be unity: for air, it is taken to be zero. Regions 

with F between unity and zero must contain the water surface. 

Material volume considerations give:  



 
 F/t +  UF/x + VF/y + WF/z = 0  . 

 

 TURBULENCE MODEL 

Engineers are usually not interested in the details of the 

eddy motion. Instead they need models which account for the 

diffusive character of turbulence. One such model is the k-ε 

model, where k is the local intensity of turbulence and ε is 

its local dissipation rate. Its governing equations are: 

 

            k/t + Uk/x + Vk/y + Wk/z = TP - TD 

  +  [ /x (μ/a k/x) + /y (μ/a k/y) + /z (μ/a k/z) ] 

 
            ε/t + Uε/x + Vε/y + Wε/z = DP - DD  

  +  [ /x (μ/b ε/x) + /y (μ/b ε/y) + /z (μ/b ε/z) ] 

 

where 

 

TP = G μt / ρ       DP = TP C1 ε / k 

                  TD = CD ε         DD = C2 ε2 / k 

                μt = C3 k2 / ε         μ = μt + μl  

where 

 



 

 

G   =  2 [ (U/x)2 +  (V/y)2  +  (W/z)2 ] 

+ [ U/y +V/x ] 2 +  [ U/z +W/x ] 2 

+ [ W/y +V/z ] 2 

 

where CD=1.0  C1=1.44  C2=1.92  C3=0.9  a=1.0  b=1.3 are 

constants based on data from geometrically simple 

experiments, μl is the laminar viscosity, μt is extra 

viscosity due to eddy motion and G is a production function. 

The k-ε equations account for the convection, diffusion, 

production and dissipation of turbulence. Special wall 

functions are used to simplify consideration of the sharp 

normal gradients in velocity and turbulence near walls.    

 

 COMPUTATIONAL FLUID DYNAMICS 

For CFD, the flow field is discretized by a Cartesian or xyz 

system of grid lines. Small volumes or cells surround points 

where grid lines cross. Flow is not allowed in cells occupied 

by fixed bodies. Ways to handle moving bodies are still under 

development. Flow can enter or leave the region of interest 

through its boundaries. For hydrodynamics problems, an 

oscillating pressure over a patch of the water surface could 

be used to generate waves. An oscillating flow at a vertical 



wall could also be used for this. For CFD, each governing 

equation is put into the form: 

 
                           M/t = N   . 

At points within the CFD grid, each governing equation is 

integrated numerically across a time step to get:  

   
                    M(t+Δt) = M(t) + Δt N(t)  

     
where the various derivatives in N are discretized using 

finite difference approximations. The discretization gives 

algebraic equations for the scalars  P F k ε at points where 

grid lines cross and equations for the velocity components at 

staggered positions between the grid points. Central 

differences are used to discretize the viscous terms in the 

momentum and turbulence equations. To ensure numerical 

stability, a combination of central and upwind differences is 

used for the convective terms. Collocation or lumping is used 

for the T and D terms. To march the unknowns forward in time, 

the momentum equations are used to update U V W, the mass 

equation is used to update P and correct U V W, the VOF 

equation is used to update F and the location of the water 

surface and the turbulence equations are used to update k ε.  

 

  



 

 

APPLICATIONS OF FLOW-3D CODE 

FLOW-3D is a CFD software package for hydrodynamics and other 

flows <www.flow3d.com>. It can handle all sorts of complex 

phenomena such as wave breaking and phase changes such as 

vaporization and solidification. No other CFD package can 

handle these phenomena. A new feature known as the General 

Moving Object or GMO can simulate the complex motions of 

floating bodies in steep waves. The motions of the bodies can 

be prescribed or they can be coupled to the motion of the 

fluid. It allows for extremely complicated motions and flows.  

One can think of a GMO as a bubble in a flow where the 

pressure on the inside surface of the bubble is adjusted in 

such a way that its boundary matches the shape of a body. 

FLOW 3D uses a complex interpolation scheme to fit the body 

into the Cartesian grid. The sketch on the next page shows a 

FLOW-3D simulation of an oil rig in waves.  



 

 

 

 

 



 
 

WAVE INTERACTION WITH SMALL STRUCTURES 

 

 

When a wave passes a small structure, there can be two kinds of 

loads on the structure: wake load due to the formation of wakes 

back of the structure and inertia load due to pressures in the 

water caused by acceleration and deceleration of water particles 

in the wave. In deep water, water particles move in circular 

orbits. In finite depth water, the orbits are ellipses. Let the 

orbit dimension normal to the structure be d and let the 

characteristic dimension of the structure be D. When 5D<<d, a well 

defined wake forms behind the structure. When 5D>>d, such a wake 

does not form. When 5D is approximately equal to d, flows are 

extremely complex. Let T be the wave period and let Τ be the time 

it takes a water particle to move pass the structure. It turns out 

that 5Τ<<T corresponds to 5D<<d while 5Τ>>T corresponds to 5D>>d. 

When 5D<<d, wakes form because transit time is short relative to 

wave period. So, water is moving sufficiently long in one 

direction to pass the structure. When 5D>>d, wakes do not form 

because transit time is long relative to wave period. So, before 

water particles can pass the structure, they reverse direction.  

 

 

 

 



 

 

 

 



For a small structure like an underwater vehicle or a cable float, 

the drag load is  

 

                         CD A ρ S.S/2 s   

 

while the inertia load is   

 

                         CM ρ B dS/dt 

                    

where S is the water particle velocity and dS/dt is the water 

particle acceleration. The frontal area of the structure is A and 

its volume is B. The drag and inertia loads can be combined to get 

Morisons equation: 

 

            F  =  CD A ρ S.S/2 s  +  CM ρ B dS/dt  . 

 

The drag and inertia coefficients depend on the shape of the 

structure. For 5D much less than d, the drag coefficient CD for a 

sphere is around 0.5. For 5D much greater than d, the inertia 

coefficient CM for a sphere is around 0.5. In the reverse limits, 

each coefficient for a sphere is approximately zero.  

                     

For a long cylindrical structure like a tether for an underwater 

vehicle or a mooring cable, the drag load is  

   

                    CD D ρ S.S/2 s dc   

 



while the inertia load is   

 

                      CM ρ πD2/4 dS/dt dc 

                    

where in this case S is the normal water particle velocity and

dS/dt is the normal water particle acceleration. Only normal 

components of flow contribute to loads. These are: 

 

          S = M - N      dS/dt = dM/dt - dN/dt   

 

where 

 

                 M = Ui + Wk    N = M.n n   . 

  

where M is the flow velocity due the wave and N is the component 

of M along the structure. Again the loads can be combined to get 

Morisons equation: 

 

     dF  =  CD D ρ S.S/2 s dc  +  CM ρ πD2/4 dS/dt dc  . 

 

For 5D much less than d, the drag coefficient CD in this case is 

around 1 and for 5D much greater than d, the inertia coefficient 

CM is around 1. Again, in the reverse limits, each coefficient is 

approximately zero. An integration of dF along the length of the 

cylinder would give the total load F. 

 



Generally, one would look for the maximum values of S and dS/dt to 

get upper limits on loads. Assume that you know the wave height H 

and the wave period T. At Hibernia following a storm, H would be 

around 5m while T would be around 10s. How do you find maximum 

values of S and dS/dt? How do you get the orbit size d? Wave 

theory gives the water particle velocities: 

 

       U = φ/x =  + H/2 2π/T Cosh[k(z+h)]/Sinh[kh] Sin(kX) 

   

       W = φ/z =  - H/2 2π/T Sinh[k(z+h)]/Sinh[kh] Cos(kX) 

 

and the water particle accelerations: 

 

        dU/dt = - H/2 (2π/T)2 Cosh[k(z+h)]/Sinh[kh] Cos(kX) 

     

        dW/dt = - H/2 (2π/T)2 Sinh[k(z+h)]/Sinh[kh] Sin(kX)  

 

and the water particle positions:  

 

          xp  =  xo  + H/2 Cosh[k(z+h)]/Sinh[kh] Cos(kX) 

     

          Zp  =  zo  + H/2 Sinh[k(z+h)]/Sinh[kh] Sin(kX)  . 

 

Wave theory also gives the dispersion relationships: 

 

           

 



                 CP  =  (g/k Tanh[kh])       

 

                 ω   =  (gk Tanh[kh])   . 

 

These equations allow us to find the wave number k given a wave 

period T. This in turn allows us to find velocities and 

accelerations. The particle position equations allow us to 

determine the orbit size d.  

 

When the structure can move we must use relative velocities and 

accelerations to get loads. For a small structure Morisons 

equation becomes 

 

           F  =  CD A ρ U.U/2 u  +  CM ρ B  dU/dt    . 

 

where U is the relative velocity and dU/dt is the relative 

acceleration. These are 

 

        U = S - V      dU/dt = dS/dt - dV/dt    . 

 

For a long cylindrical structure Morisons equation becomes  

 

      dF  =  CD D ρ U.U/2 u dc  +  CM ρ πD2/4 dU/dt  dc  . 

 

 

 
 



WAVE INTERACTIONS WITH LARGE BODIES 

 

IDEAL FLUID FORMULATION 

 

 

For an ideal fluid formulation, we assume that water is 

incompressible and it has zero viscosity. With these 

assumptions, conservation of mass for water is 

 

                      .v = 0 

 

while conservation of momentum is 

 

         ρv/t + ρ v.v/2 + P + ρgz = 0 

 

where v=Ui+Vj+Wk. For an ideal fluid formulation, we also 

assume that water motion is irrotational. This means that 

water particles do not spin on internal axes: mathematically 

this means that the spin vector Ω is zero. One can show 

that the spin vector Ω is half the vorticity vector  ω. So, 

for an irrotational flow, the vorticity vector is zero. One 

can write this as: 

 

                   ω = 2Ω = xv = 0  

 



For any scalar φ, one can show that  xφ. This suggests 

that for an irrotational flow  v=φ. Substitution into the 

conservation laws gives after some manipulation:  



2φ  = 0    

        φ/t + (φ.φ)/2 + P/ρ + gz = C 

 

For a body in water, the potential φ is made up of two 

components. One is the incident wave potential φW and the 

other is the scattered potential φS generated by the body. 

Both potentials must satisfy the seabed constraint:  

 

                 φ/z = 0      at  z = -h 

 

They must also satisfy the water surface constraints: 

 

     η/t = φ/z      φ/t + gη = 0     at  z = 0 

 

where η is the deflection of the water surface from the 

still water line. These constraints can be combined to get: 

 

             2φ/t2 + g φ/z = 0      at  z = 0   

 

For a fixed body, they must also satisfy the constraint: 



 

           φ/n = φS/n + φw/n = 0       on  S          

 

where S is the body surface. Finally, far from the body, the 

scattered potential must satisfy the radiation condition:  

 

              φS/t + Cp φS/R = 0    at  R = 



where Cp is the phase speed of outgoing waves. This ensures 

that far from the body scattered waves move radially away 

from it. Mathematically, they could move radially inward and 

be absorbed by the body but this is not realistic. 

 

For a differential equation formulation, 2φ must be zero 

everywhere within the water. One can show that in an 

integral formulation the same potential must satisfy the 

following integral at every point on the surface which 

surrounds the water:    

 

     φ(P)  =  1/[2π]    [ 1/r φ(Q)/n - φ(Q) (1/r)/n ] dS 
                          S                        
 
 

where P and Q are points on the surface. Derivation of this 

integral starts with the following integral: 

 

 



            [φ (1/r)/n - 1/r φ/n] dS 
           S                        
 

Manipulation gives:  

 
 
            [φ (1/r) - (1/r)  φ] . ndS 
           S                        
 

We can rewrite this as: 

 
             [φ (1/r) - (1/r)  φ] dV 
           V                        
 

Expansion shows that this is zero. So, the starting surface 

integral must be zero. To evaluate this integral, we start 

by picking two points P and Q on the surface: we then set P 

and let Q move over the surface. Special care is required 

when Q approaches P because (1/r) tends to infinity when Q 

approaches P. We avoid this by indenting the surface with an 

infinitesimal radius hemisphere which makes P external. We 

then let Q move over this hemisphere and evaluate the 

integral. Afterwards we let the radius of the hemisphere 

tend to zero to get the Q equal to P contribution to the 

starting integral. The end result is the equation for φ(P).   

 

The incident wave is known to be:  

 

     φW  =  φo Cosh [ k(z+h)] / Cosh [kh]  Cos (kx-ωt)  

 

 



 

 

 



 

 

At each point on the water surface, this has the form:  

 

            φW = A Sinωt + B Cosωt      

 

We need to find the corresponding scattered potential:  

 

               φS = a Sinωt + b Cosωt     

 

Once, we find the complete or total potential, we can get 

pressure from the unsteady Bernoulli equation: 

  

                   φ/t + P/ρ + gz = 0  

 

Once pressure is known, we can get loads from the following 

integrations over the surface of the body:  

 
 
       F  =  -   P n dS       M  =  -   P (r x n) dS 
               S                       S 

 

Analytical solutions are possible only for simple shapes 

like vertical circular cylinders. For complex shapes, one 

must use CFD. A popular CFD method is the Panel Method. For 

this, one must first discretize the surface surrounding the 

water with a number of facets or panels which do not 

overlap. Then, one uses the constraint equations to get rid 



of the φ(Q)/n terms in the integral leaving only the φ 

terms. Then, one assumes that over each panel the integrand 

is constant. This allows us to replace the integral with 

the following sum: 

 

    φ(P) = 1/[2π]    [ 1/r φ(Q)/n - φ(Q) (1/r)/n ] S 
                    S                        
 

For each panel, we substitute the equations for φW and φS 

into the summation to get an equation of the form:  

 

             I Sinωt + J Cosωt = 0   

 

This equation implies that: 

 

              I = 0       J = 0 

 

Next, we solve the equation system to get the a and b for 

each panel. This gives us the complete potential on the 

water. With it, we can get pressure and loads on the body. 

 

A moving body generates loads on itself. It creates another 

potential besides the incident and scattered potentials. For 

a body with a single degree of freedom, the equation of 

motion is of the form 

 

        X d2R/dt2  +  Y dR/dt  +  Z R  =  W  +  D 



 

where R is the body displacement, X is its inertia, Y is its 

drag, Z is its buoyancy spring, W is the load due to a wave 

field and D is the load due to body motion. The motion of 

the body would be of the form: 

  

                   R = N Sinωt + M Cosωt   

     

We want to find N and M. We can get D by first assuming that 

the motion is R=Sinωt. Differentiation gives dR/dt and thus 

φ/n at points on the surface of the body. Application of 

the Panel Method gives a load of the form: 

 

                G Sinωt + H Cosωt 

 

Next, we assume that the motion is R=Cosωt. Application of 

the Panel Method gives a load of the form:  

 

                E Sinωt + F Cosωt    

 

The load due to an actual motion would be: 

 

   D  =  N (G Sinωt + H Cosωt)  +  M (E Sinωt + F Cosωt) 

 

The load due to the wave would be of the form: 

 



                 W = U Sinωt + V Cosωt 

    

Substitution into the equation of motion gives: 

 

     -  Xω2 (N Sinωt + M Cosωt)  +  Yω (-M Sinωt + N Cosωt) 

        +  Z (N Sinωt + M Cosωt)  =  U Sinωt + V Cosωt 

      +  N (G Sinωt + H Cosωt)  +  M (E Sinωt + F Cosωt) 

 

Manipulation gives an equation of the form: 

 

             i Sinωt + j Cosωt = 0       

 

This equation implies that: 

 

            i = 0       j = 0 

  

These two equations allow us to find the body N and M. For 

each degree of freedom, we could find the N and M for a 

range of wave periods. These could be used to construct 

magnitude ratio or response amplitude operator plots. Such 

plot could be used to determine whether or not the body has 

trouble with resonance. Together with wave spectra they 

could be used to study motions in random waves. 

 

 

 



 



 



 

 

 

Another integral formulation distributes complex oscillation 

sources G(P,Q) over the surface of the body: 

 

             φS(P)  =  1/[4π]     f(Q) G(P,Q) dS 
                                S                        
 

The details of this formulation are beyond the scope of this 

note. The Panel Method in this case adjusts the strengths 

f(Q) so that there is no flow through the surface of the 

body. The boundary condition is: 

 

 

φb/n = dR/dt 
 

 

With this the integral becomes  

 

         φS(P)/n  =  1/[4π]     f(Q) G(P,Q)/n dS 
                               S                        
 

 
The Panel Method replaces the integral the summation:  
 
 
 
         φS(P)/n  =  1/[4π]     f(Q) G(P,Q)/n S 
                               S                        
 
 
 
 



 
 
 
 
One gets for the strengths: 
 
 
             
                      Aij fj  = Bi 
 


The complex oscillating source formulation is good for 

solid bodies. Another integral formulation distributes 

complex oscillating dipoles over the surface of the body. 

This formulation is good for thin wall bodies exposed to 

waves inside and outside.  

 

The formulations described above assume that wave 

amplitudes are small. Recently, formulations have been 

developed that can handle large motions of bodies in steep 

waves. These are beyond the scope of this note. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 



 
 

 


