FLUID STRUCTURE INTERACTIONS

WATER WAVE INTERACTION

WITH STRUCTURES



PREAMBLE

Most water waves are generated by storms at sea. Many waves
are present 1n a storm sea state: each has a different
wavelength and period. Theory shows that the speed of
propagation of a wave or its phase speed 1s a function of
water depth. It travels faster in deeper water. Theory also
shows that the speed of a wave 1is a function of its
wavelength. Long wavelength waves travel faster than short
wavelength waves. This explains why storm generated waves,
which approach shore, are generally a single wavelength.
Because waves travel at different speeds, they tend to
separate or disperse. When waves approach shore, they are
influenced by the seabed by a process known as refraction.
This can focus or spread out wave energy onto a site. Close
to shore water depth is not the same everywhere: so points on
wave crests move at different speeds and crests become bent.
This explains why crests which approach a shore line tend to
line up with it: points in deep water travel faster than
points in shallow water and overtake them. Wave energy
travels at a speed known as the group speed. This 1is
generally not the same as the phase speed. However for
shallow water both speeds are the same and they depend only
on the water depth. A large low pressure system moving over

shallow water would generate an enormous wave 1if the system



speed and the wave energy speed were the same. Basically wave
energy gets trapped in the system frame when the system speed
matches the wave energy speed. Tides are basically shallow
water waves. Here the pull of the Moon mimics a low pressure
system. Theory shows that 1if water depth was 22km everywhere
on Earth the Moon pull would produce gigantic tides. They
would probably drain the oceans and swamp the continents

everyday. Fortunately the average water depth is only 3km.

Water waves can 1interact with structures and cause them to
move or experience loads. For wave structure interaction, an
important parameter is O5D/A where D 1is the characteristic
dimension of the structure and A 1s the wavelength.
Structures are considered large if 5D/A is much greater than
unity: they are considered small if 5D/A is much less than
unity. Small structures are transparent to waves. Large

structures scatter waves.

These notes start with a description of water wave theory. Then
interaction of waves with small structures 1s considered.

Finally interaction with large structures is considered.



WATER WAVES

To calculate wave interactions with structures, one needs a
detailed knowledge of the wave field. Water wave theory
provides this. It will be assumed for much of what is given
below that wave amplitudes are very small. It turns out that
this 1s good even for waves not far from breaking. Water
waves 1n deep water propagate for long distances with little
loss of energy. They lose energy in shallow water due to
interaction with the seabed. They also lose energy when they
move pass small structures and when they break on beaches.
Water wave theory ignores these energy losses. It assumes
that water has zero viscosity and it is incompressible. It
also assumes that its motion is irrotational. This means that
water particles do not spin. With these assumptions, the

conservation laws reduce to potential flow forms.

Conservation of mass considerations give:

The velocity vector V in terms of the potential ¢ is

v = Vo = Ul + V] + Wk






Conservation of momentum considerations give:

o ov/ot + p V v.v/2 + VP + Vopgz = 0

op/ot + Vo.Vo/2 + P/p + gz = C

It turns out that, for water waves, mass 1s the main

governing equation: momentum is used as a boundary condition.

The kinematic or motion constraint at the seabed is:

op/0z = 0 at z = -h

where h 1is the water depth. The kinematic or motion

constraint at the water surface is based on:

Dn/Dt = Dz/Dt

where 1 1is the vertical deflection of the water from the

still water line. The n for a point on the water must follow

the z for that point. The constraint gives:

on/ot + 0¢/0x On/ox = 0¢/0z at z =7

For small amplitude waves, this becomes:

on/ot =  00/0z at z =0



The dynamic or load constraint at the water surface is:

op/0t + Ve.Vo/2 + P/p + gn = 0 at z = 7@

For small amplitude waves, this becomes:

op/0t + gn = 0 at z =0

Manipulation of the water surface constraints allows one to

eliminate n from the formulation. One gets:

o’p/0t? + gop/dz = O at z =0
The Separation of Variables solution procedure gives:

® = @o Cosh[k(z+h)]/Cosh[kh] Cos (kX)

where kX = k(x - Cpt) = kx - ot where X 1is the
horizontal coordinate of a wave fixed frame, x 1is the
horizontal coordinate of an inertial frame, Cp 1is the wave
phase speed, k 1is the wave number and ® 1s the wave
frequency. The wave number k is related to the wave length A
as follows: k = 2m/A.

The wave profile equation has the form:

N = no Sin(kX)



Substitution into the combined water surface constraint gives

the dispersion relationships:

Cr = +V(g/k Tanh[kh])

w = V(gk Tanh[kh])
These show that deep water waves travel faster than shallow
water waves. They also show that 1long wave length waves

travel faster than short wave length waves.

Substitution into the water surface constraints gives the

connection between potential amplitude and wave amplitude:

oo = - gT/[2m] H/2

where T i1s the wave period and H is the wave height.

Differentiation gives the water particle velocities:

U = 09p/0x = - ¢o k Coshlk(z+h)]/Cosh[kh] Sin (kX)

+ H/2 2n/T Coshl[k(z+h)]/Sinh[kh] Sin (kX)

W = 09p/0z = + ¢@o k Sinh[k(z+h)]/Cosh[kh] Cos (kX)

- H/2 21/T Sinh[k(z+h)]/Sinh[kh] Cos (kX)

These can be used to get drag loads on small structures.



More differentiation gives the particle accelerations:

du/dt - H/2 (2n/T)? Cosh[k(z+h)]/Sinh[kh] Cos (kX)

dwWw/dt = - H/2 (2n/T)? Sinh[k(z+h)]/Sinh[kh] Sin (kX)
These can be used to get inertia loads on small structures.

The particle positions are:

Xo + H/2 Coshl[k(z+h)]/Sinh[kh] Cos (kX)

X
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Zo = 2z, + H/2 Sinh[k(z+h)]/Sinh[kh] Sin (kX)

These give the water particle orbit size.

The momentum equation gives the wave pressure

AP = pg n Cosh[k(z+h)]/Cosh[kh]

This can be used to get pressure loads on structures.

For deep water, the solution becomes:

© = @o e ¥ Cos (kX) n = no Sin (kX)

With this, the dispersion relationships become:

Cp = Vg/k 0 = ng



Other wave parameters become:

U=+ H/2 20/T e Sin (kX)

W= - H/2 20/T e Cos (kX)
du/dt = - H/2 (2n/T)? e** Cos (kX)
dw/dt = - H/2 (2n/T)? e** Sin (kX)

X, = X, + H/2 e** Cos (kX)

Zp = 2z, + H/2 e Sin(kX)

AP = pg n e

Wave energy travels at a speed known as the group speed.

is generally not the same as the phase speed of a wave.

can show that the group speed is given by:

Cc = dwo/dk = Cp (1/2 + [kh]/Sinh[2kh])

The wave energy density is:

E =1/8 pg H?

One can show that wave energy flux is:

This

One



Group speed 1is responsible for many important phenomena. Some

of these were mentioned earlier.

Waves at sea after a storm are random. They are made up of an
infinite number of frequencies. A spectrum shows how the
energy 1in a wave field 1s spread out over a range of
frequencies. A popular 2 parameter fit to a wave amplitude

spectrum is the ITTC fit:

S, = A/w® e/t

A=346H%/T* B=691/T*

where H 1s significant wave height and T is significant wave

period. JONSWAP is a popular 3 parameter fit.

A Response Amplitude Operator or RAO can be used to connect a

wave spectrum to a body motion or load response spectrum

Sz = RAO® S,

An RAO 1s basically a Magnitude Ratio. For a specific wave
period, it 1is the amplitude of body response divided by the
wave amplitude. For small structures, Morisons Equation can
be used to get RAOs. For large structures, they can be
obtained using the CFD procedure known as the Panel Method.

One can also get RAOs from experiments.



All sorts of statistical and probabilistic information can be
obtained from spectra. For bodies, the analysis makes use of

the following moments of the spectrum:

M, = 1/2 [ Sg(e) o" do

One can show that the significant response height and period

of a body motion or load are:

2 Rs = 4 M, Ts = 2m My/M;

The probability of a response exceeding a certain level is:

P(R,>R.) = e*% X = RoRe/ [2M)]

The theory assumes that spectra follow a Rayleigh

Distribution. Actual spectra deviate from this and

predictions must often be corrected. A correction factor

based on moments is:

CF = Vl-¢¢ g = [MgMs—M;M,]/ [MoMy]

where ¢ is known as the broadness parameter.



TIME OR DISTANCE
COMPONENT WAVES



WAVE INTERACTION WITH BODIES

REAL FLUID FORMULATION

PREAMBLE
At low speeds, fluid particles move along smooth paths:
motion has a laminar or layered structure. At high speeds,
particles have superimposed onto their Dbasic streamwise
observable motion a random walk or chaotic motion. Particles
move as groups in small spinning bodies known as eddies. The
flow pattern is said to be turbulent. A turbulent wake flow
is one that contains some large eddies together with a lot of
small ones. Such a flow could be found around the GBS on a
stormy day. The large eddies generally stay roughly in one
place. Fluid in them swirls around and around or recirculates
in roughly closed orbits. The smaller eddies are associated
with turbulence and are carried along by the local flow. The
large eddies can usually be found inside wakes. Most of the
smaller ones can be found near wake boundaries. They are
generated in regions where velocity gradients are high 1like
at the edges of wakes or in the boundary layers close to
structures. They are dissipated in regions where gradients
are low like in sheltered areas like corners. Turbulent wake
flows are governed by the basic conservation laws. However,

they are so complex that analytical solutions are impossible.



One could develop computational fluid dynamics or CFD codes
based on the conservation law equations. Unfortunately, the
small eddies are so small that an extremely fine grid spacing
and a very small time step would be needed to follow
individual eddies in a flow. Small eddies are typically
around lmm in diameter. One would need a grid spacing smaller
than 0.1lmm to follow such eddies. CFD converts each governing
equation into a set of algebraic equations or AEs: one AE for
each PDE for each xyz grid point. Workable CFD 1is not
possible because computers cannot handle the extremely large
number of AEs generated. For example, a 100m x 100m x 100m
volume of water near a structure like the GBS would need 10°
x 10° x 10° or 10 grid points if the grid spacing was 0.lmm.
Also very many time steps would be needed to complete a
simulation run. No computer currently exists that can handle
so many grid points and so many time steps. The random
motions of molecules in a gas diffuse momentum: they give gas
its viscosity. Small eddies in a turbulent flow also diffuse
momentum: they make fluid appear more viscous than it really
is. This apparent increase in viscosity controls overall flow
patterns and loads on structures. Models which account for
this apparent increase 1in viscosity are known as eddy
viscosity models. They can be obtained from the momentum

equations by a complex time averaging process. The time



averaging introduces the so called Reynolds Stresses into the
momentum equations, and these are modelled using the eddy
viscosity concept. Models have been developed which can
estimate how eddy viscosity wvaries throughout a flow.
Workable CFD is now possible because one can now use much
larger grid spacing and time steps: it is no longer necessary
to follow individual eddies around in a flow. When small
eddies are accounted for in this way, they no longer show up
in flow: they are suppressed by eddy viscosity. For the GBS
case, a grid spacing around 1lm would now be adequate. This
means a 100m x 100m x 100m volume of water near the GBS would

now need only 10° x 10° x 10 or 10° grid points.

CONSERVATION LAWS FOR HYDRODYNAMICS FLOWS
Hydrodynamics flows are often turbulent. Conservation of

momentum considerations for such flows give:

o ( 0U/ot + UOU/Ox + VOU/Oy + WOU/O0z ) + A = - 0OP/0x

+ [ 8/0x (n dU/dx) + 8/8y (u dU/By) + 8/dz (m 8U/0z) ]

o ( O0V/ot + UOV/Ox + VOV/Oy + Wov/0z ) + B = - 0P/0y

+ [ 0/0x (n ov/0x) + 0/0y (n OV/0y) + 0/0z (n 0V/0z) ]

o ( OW/0t + UOW/0Ox + VOW/Oy + WowWw/0z ) + C = - 0P/0z - pg

+ [ 0/0x (n OW/0x) + 0/0y (u OW/0y) + 0/0z (u OW/0z) ]



where U V W are respectively the velocity components in the x
y z directions, P is pressure, p is the density of water and
u 1is 1its effective viscosity. The time averaging process
introduces source 1like terms A B C into the momentum
equations. Each 1is a complex function of velocity and

viscosity gradients as indicated below:

A = 0Ou/dy 0V/0x - Ou/0x OV/O0y + Ou/0z OW/0x — Ou/0x OW/0z
B = 0u/dx 0U/0y - 0Ou/0y 0U/0x + 0Ou/0z oW/dy - Ou/dy OW/0z
C = 0u/dy 0V/0z - 0u/0z OV/dy + Ou/dx 0U/0z - Ou/dz OU/0x

Conservation of mass considerations give:

OP/0t + o c? ( dU/Ox + OV/Oy + OW/0z ) = O

where ¢ 1is the speed of sound in water. Although water is
basically incompressible, CFD takes it to be compressible.
Mass 1is used to adjust pressure at points in the grid when

the divergence of the velocity vector is not zero.

A special function F known as the volume of fluid or VOF
function is used to locate the water surface. For water, F is
taken to be unity: for air, it is taken to be zero. Regions
with F between unity and zero must contain the water surface.

Material volume considerations give:



OF/0t + UOF/0x + VOF/Oy + WOF/0z = 0

TURBULENCE MODEL
Engineers are usually not interested in the details of the
eddy motion. Instead they need models which account for the
diffusive character of turbulence. One such model is the k-¢
model, where k is the local intensity of turbulence and ¢ 1is

its local dissipation rate. Its governing equations are:

Ok/o0t + UOk/Ox + VOk/Oy + Wok/0z = Tp - Tp

+ [ 0/0x (n/a 0k/0x) + 0/dy (u/a 0k/dy) + 0/0z (n/a 0k/dz) ]

Og/0t + U0e/0Ox + VOe/0y + Woe/0z = Dp — Dp

+ [ 0/0x (u/b 8e/0x) + 8/dy (u/b 0e/dy) + 8/0z (n/b 0e/dz) ]

where

Tp:G}.lt/p Dp:Tpcls/k
Tp = Cp € Dp = C, €2 / k
pe = C3 k% / « no=pe +om

where



G = 2 [ (0u/ox)? + (oV/oy)® + (OW/0z)? ]
+ [ OU/Oy +0V/0x ] > + [ 0U/Oz +0W/0x | *°
+ [ owW/dy +6v/oz | ?

where Cp=1.0 Ci1=1.44 Cy=1.92 C3=0.9 a=1.0 b=1.3 are
constants based on data from geometrically simple
experiments, 13 1is the laminar viscosity, u¢ 1s extra
viscosity due to eddy motion and G is a production function.
The k-g&¢ equations account for the convection, diffusion,
production and dissipation of turbulence. Special wall
functions are used to simplify consideration of the sharp

normal gradients in velocity and turbulence near walls.

COMPUTATIONAL FLUID DYNAMICS
For CFD, the flow field is discretized by a Cartesian or xyz
system of grid lines. Small volumes or cells surround points
where grid lines cross. Flow is not allowed in cells occupied
by fixed bodies. Ways to handle moving bodies are still under
development. Flow can enter or leave the region of interest
through its boundaries. For hydrodynamics problems, an
oscillating pressure over a patch of the water surface could

be used to generate waves. An oscillating flow at a vertical



wall could also be used for this. For CFD, each governing

equation is put into the form:

oM/0t = N

At points within the CFD grid, each governing equation is

integrated numerically across a time step to get:

M(t+At) = M(t) + At N(t)

where the various derivatives in N are discretized using
finite difference approximations. The discretization gives
algebraic equations for the scalars P F k ¢ at points where
grid lines cross and equations for the velocity components at
staggered positions between the grid ©points. Central
differences are used to discretize the viscous terms in the
momentum and turbulence equations. To ensure numerical
stability, a combination of central and upwind differences is
used for the convective terms. Collocation or lumping is used
for the T and D terms. To march the unknowns forward in time,
the momentum equations are used to update U V W, the mass
equation is used to update P and correct U V W, the VOF
equation 1is used to update F and the location of the water

surface and the turbulence equations are used to update k «.



APPLICATIONS OF FLOW-3D CODE
FLOW-3D is a CFD software package for hydrodynamics and other

flows <www.flow3d.com>. It can handle all sorts of complex

phenomena such as wave breaking and phase changes such as
vaporization and solidification. No other CFD package can
handle these phenomena. A new feature known as the General
Moving Object or GMO can simulate the complex motions of
floating bodies in steep waves. The motions of the bodies can
be prescribed or they can be coupled to the motion of the
fluid. It allows for extremely complicated motions and flows.
One can think of a GMO as a bubble in a flow where the
pressure on the inside surface of the bubble is adjusted in
such a way that its boundary matches the shape of a body.
FLOW 3D uses a complex interpolation scheme to fit the body
into the Cartesian grid. The sketch on the next page shows a

FLOW-3D simulation of an oil rig in waves.






WAVE INTERACTION WITH SMALL STRUCTURES

When a wave passes a small structure, there can be two kinds of
loads on the structure: wake load due to the formation of wakes
back of the structure and inertia load due to pressures in the
water caused by acceleration and deceleration of water particles
in the wave. In deep water, water particles move in circular
orbits. In finite depth water, the orbits are ellipses. Let the
orbit dimension normal to the structure be d and let the
characteristic dimension of the structure be D. When 5D<<d, a well
defined wake forms behind the structure. When 5D>>d, such a wake
does not form. When 5D is approximately equal to d, flows are
extremely complex. Let T be the wave period and let T be the time
it takes a water particle to move pass the structure. It turns out
that 5T<<KT corresponds to 5D<<d while 5T>>T corresponds to 5D>>d.
When 5D<<d, wakes form because transit time is short relative to
wave period. So, water 1s moving sufficiently long in one
direction to pass the structure. When 5D>>d, wakes do not form
because transit time is long relative to wave period. So, before

water particles can pass the structure, they reverse direction.






For a small structure like an underwater vehicle or a cable float,

the drag load is

Cp A @] S.S/Z S

while the inertia load is

Cu p B dS/dt

where S 1is the water particle velocity and dS/dt is the water
particle acceleration. The frontal area of the structure is A and
its volume is B. The drag and inertia loads can be combined to get

Morisons equation:

F = ChApS.S/2s + Cyp B dS/dt

The drag and inertia coefficients depend on the shape of the
structure. For 5D much less than d, the drag coefficient Cp for a
sphere is around 0.5. For 5D much greater than d, the inertia
coefficient Cy for a sphere is around 0.5. In the reverse limits,

each coefficient for a sphere is approximately zero.

For a long cylindrical structure like a tether for an underwater

vehicle or a mooring cable, the drag load is

Cb D p S.S/2 s dc



while the inertia load is

Cu p mD?/4 dS/dt dc

where in this case S is the normal water particle velocity and

dS/dt 1is the normal water particle acceleration. Only normal

components of flow contribute to loads. These are:

S=M-N dS/dt = dM/dt - dN/dt

where

M = Ul + Wk N

I
=
S
=

where M is the flow velocity due the wave and N is the component
of M along the structure. Again the loads can be combined to get

Morisons equation:

dF = Cp D p S.S/2 s dc + Cu o mD’/4 dS/dt dc

For 5D much less than d, the drag coefficient Cp in this case 1is
around 1 and for 5D much greater than d, the inertia coefficient
Cuy 1is around 1. Again, in the reverse limits, each coefficient is
approximately zero. An integration of dF along the length of the

cylinder would give the total load F.



Generally, one would look for the maximum values of S and dS/dt to
get upper limits on loads. Assume that you know the wave height H
and the wave period T. At Hibernia following a storm, H would be
around 5m while T would be around 10s. How do you find maximum
values of S and dS/dt? How do you get the orbit size d? Wave

theory gives the water particle velocities:

+ H/2 2u/T Coshl[k(z+h)]/Sinh[kh] Sin (kX)

(@
Il

00 /0%

W = 0p/0z

- H/2 2u/T Sinh[k(z+h)]/Sinh[kh] Cos (kX)

and the water particle accelerations:

du/dt = - H/2 (2n/T)? Cosh[k(z+h)]/Sinh[kh] Cos (kX)

dw/dt = - H/2 (2n/T)? Sinh[k(z+h)]/Sinh[kh] Sin (kX)

and the water particle positions:

Xp = X, + H/2 Coshl[k(z+h)]/Sinh[kh] Cos (kX)

Zp

Zo + H/2 Sinh[k(z+h)]/Sinh[kh] Sin (kX)

Wave theory also gives the dispersion relationships:



C: = “(g/k Tanh[kh])

w = AV(gk Tanh[kh])
These equations allow us to find the wave number k given a wave
period T. This in turn allows wus to find velocities and
accelerations. The particle position equations allow wus to

determine the orbit size d.

When the structure can move we must use relative velocities and
accelerations to get loads. For a small structure Morisons

equation becomes

where U is the relative velocity and dU/dt 1is the relative

acceleration. These are

Uu=S-YV du/dt = dS/dt - dV/dt

For a long cylindrical structure Morisons equation becomes

dF = Cp D p U.U/2 Uudc + Cu o mD’/4 dU/dt dc



WAVE INTERACTIONS WITH LARGE BODIES

IDEAL FLUID FORMULATION

For an ideal fluid formulation, we assume that water is
incompressible and it has =zero wviscosity. With these

assumptions, conservation of mass for water is

while conservation of momentum is

oov/ot + p Vv.v/2 + VP + Vpgz = 0

where Vv=Ul+VjJ+WK. For an ideal fluid formulation, we also

assume that water motion is irrotational. This means that

water particles do not spin on internal axes: mathematically

this means that the spin vector @ 1is zero. One can show
that the spin vector Q is half the vorticity vector ®. So,
for an irrotational flow, the vorticity vector is zero. One

can write this as:



For any scalar ¢, one can show that VxVe. This suggests

that for an irrotational flow Vv=V¢. Substitution into the

conservation laws gives after some manipulation:

Vi =0

op/ot + (Vo.Vo)/2 + P/p + gz = C

For a body in water, the potential ¢ 1is made up of two
components. One 1s the incident wave potential ¢, and the

other is the scattered potential ¢, generated by the body.

Both potentials must satisfy the seabed constraint:

op/0z = 0 at z = -h

They must also satisfy the water surface constraints:

on/ot = 0¢/0z op/ot + gn = 0 at z =0

where m is the deflection of the water surface from the

still water line. These constraints can be combined to get:

o’p/0t* + g 0p/0z = 0 at z = 0

For a fixed body, they must also satisfy the constraint:



op/on = Ops/oOn + 0Op,/0n = 0 on S

where S is the body surface. Finally, far from the body, the

scattered potential must satisfy the radiation condition:

O0ps/0t + Cp Ops/OR = 0 at R = o

where C, 1s the phase speed of outgoing waves. This ensures

that far from the body scattered waves move radially away
from it. Mathematically, they could move radially inward and

be absorbed by the body but this is not realistic.

For a differential equation formulation, V’¢ must be zero
everywhere within the water. One can show that in an
integral formulation the same potential must satisfy the
following integral at every point on the surface which

surrounds the water:

e(P) = 1/[2n] | [ 1/r 69(Q)/dn - ¢(Q) 0(1/r)/én 1 ds
S

where P and Q are points on the surface. Derivation of this

integral starts with the following integral:



| e 0(1/r)/on - 1/r 8¢/on] ds
S

Manipulation gives:

[ [¢ V(1/r) - (1/r) V¢l . nds
S

We can rewrite this as:

[ V le V(1/r) - (1/r) Vol dv

v
Expansion shows that this is zero. So, the starting surface
integral must be zero. To evaluate this integral, we start
by picking two points P and Q on the surface: we then set P
and let Q move over the surface. Special care is required
when Q approaches P because (1/r) tends to infinity when Q
approaches P. We avoid this by indenting the surface with an
infinitesimal radius hemisphere which makes P external. We
then let Q move over this hemisphere and evaluate the
integral. Afterwards we let the radius of the hemisphere
tend to zero to get the Q equal to P contribution to the

starting integral. The end result is the equation for ¢ (P).

The incident wave is known to be:

ow = ©, Cosh [ k(z+h)] / Cosh [kh] Cos (kx-ot)






At each point on the water surface, this has the form:

oy = A Sinot + B Cosot

We need to find the corresponding scattered potential:

¢s = a Sinot + b Cosot

Once, we find the complete or total potential, we can get

pressure from the unsteady Bernoulli equation:

op/ot + P/p + gz = 0

Once pressure is known, we can get loads from the following

integrations over the surface of the body:

F = - I P n ds M = - f P (r x n) dS
S S

Analytical solutions are possible only for simple shapes
like wvertical circular cylinders. For complex shapes, one
must use CFD. A popular CFD method is the Panel Method. For
this, one must first discretize the surface surrounding the
water with a number of facets or panels which do not

overlap. Then, one uses the constraint equations to get rid



of the 0¢p(Q)/0n terms in the integral 1leaving only the ¢
terms. Then, one assumes that over each panel the integrand
is constant. This allows us to replace the integral with

the following sum:

o(P) = 1/[2n] X [ 1/xr 0p(Q)/0on - ¢(Q) A(1l/r)/An ] AS

For each panel, we substitute the equations for ¢, and @,

into the summation to get an equation of the form:

I Sinwt + J Cosowt = 0

This equation implies that:

Next, we solve the equation system to get the a and b for
each panel. This gives us the complete potential on the

water. With it, we can get pressure and loads on the body.

A moving body generates loads on itself. It creates another
potential besides the incident and scattered potentials. For
a body with a single degree of freedom, the equation of

motion 1is of the form

X d°R/dt? + Y drR/dt + Z R = W + D



where R is the body displacement, X is its inertia, Y is its
drag, Z is its buoyancy spring, W is the load due to a wave
field and D is the load due to body motion. The motion of
the body would be of the form:

R = N Sinot + M Coswnt

We want to find N and M. We can get D by first assuming that

the motion is R=Sinot. Differentiation gives dR/dt and thus

0p/0n at points on the surface of the body. Application of

the Panel Method gives a load of the form:

G Sinwt + H Cosot

Next, we assume that the motion is R=Coswt. Application of

the Panel Method gives a load of the form:

E Sinot + F Cosot

The load due to an actual motion would be:

D = N (G Sinwt + H Coswmt) + M (E Sinot + F Cosot)

The load due to the wave would be of the form:



W = U Sinot + V Coswmt

Substitution into the equation of motion gives:

- X’

(N Sinwt + M Cosowt) + Yo (-M Sinwt + N Coswt)
+ Z (N Sinwt + M Coswt) = U Sinwt + V Coswt

+ N (G Sinwt + H Coswt) + M (E Sinwt + F Cosowt)

Manipulation gives an equation of the form:

i Sinot + j Cosmot = 0

This equation implies that:

These two equations allow us to find the body N and M. For
each degree of freedom, we could find the N and M for a
range of wave periods. These could be used to construct
magnitude ratio or response amplitude operator plots. Such
plot could be used to determine whether or not the body has
trouble with resonance. Together with wave spectra they

could be used to study motions in random waves.






4+
bhttdg Ft
+++++++++++.+
+i1f
++t
it +++ m,_w_”
+++++
ma

+++;+
4



Another integral formulation distributes complex oscillation

sources G(P,Q) over the surface of the body:

¢,(P) = 1/[4n] | £(Q) G(P,Q) ds
The details of this formulation are beyond the scope of this
note. The Panel Method in this case adjusts the strengths

f(Q) so that there is no flow through the surface of the

body. The boundary condition is:

dpp/On = dR/dt

With this the integral becomes

dps(P)/on = 1/[4an] | £(Q) 8G(P,Q)/én ds
S

The Panel Method replaces the integral the summation:

Aps(P)/An = 1/[4n] X  £(Q) AG(P,Q)/An AS
S



One gets for the strengths:

The complex oscillating source formulation is good for
solid bodies. Another integral formulation distributes
complex oscillating dipoles over the surface of the body.
This formulation 1is good for thin wall bodies exposed to

waves inside and outside.

The formulations described above assume that wave
amplitudes are small. Recently, formulations have been
developed that can handle large motions of bodies in steep

waves. These are beyond the scope of this note.
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