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Introduction & Background

❑ Electric vehicles (EVs) have emerged as invaluable 

tools in the pursuit of carbon neutrality. 

❑ Growing number of EVs poses a challenge to current 

power grids by introducing additional load.

❑ One solution to manage this increased demand is 

integrating EV batteries into the power grid.

❑  Vehicle-to-grid technologies utilize EV battery storage 

capabilities to balance the grid, supply power when 

necessary and prevent the inefficient and complex grid 

upgrade/gas peaker plant operations.
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Introduction & Background

❑ Different types of charging and discharging 

systems, such as integrated/non-integrated and 

on/off board, etc., which have been used for 

electric vehicle applications.

❑ Common uses such as Tesla Powerwall or Ford 

Charge Station Pro etc. are only beneficial on an 

individual level.

❑ The conventional on-board EV charger 

configuration involves the use of two converters.
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Introduction & Background

❑ The proposed topology leverages EV batteries as 

dynamic energy storage units.

❑ EV charger can accept and deliver energy to and 

from the grid in a bidirectional manner.

❑ Bidirectional onboard chargers can be used to 

charge other vehicle batteries in Vehicle-to-Vehicle 

(V2V) or V2H applications as well.
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Importance Of Clean Energy

❑ Transitioning to clean energy sources is of 

paramount importance in Canada as it 

plays a vital role in reducing carbon 

emissions and combating climate change. 

❑ By shifting away from fossil fuels and 

embracing renewable energy technologies, 

Canada can contribute to global efforts 

aimed at achieving sustainable 

development and meeting international 

climate targets. 

❑ Investing in clean energy not only helps 

protect the environment but also presents 

opportunities for job creation, economic 

growth, and the development of a resilient 

and sustainable energy sector in Canada.

Figure: CO2 Footprint(tonnes) /capita /year
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The Scope of  V2G and NL

It's important to note that while the energy consumption of EVs will 

increase, the overall environmental impact depends on the 

emissions associated with electricity generation. By transitioning to 

cleaner energy sources, such as renewable and low-carbon 

sources, the environmental benefits of widespread EV adoption can 

be maximized, leading to reduced carbon emissions and improved 

air quality.

Figure: Average household energy use per year, NL 
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Comparison of Different Charging 

Topologies

Charging 

Efficiency

EV/Battery 

Degradation

Flexibility/Com

fort

Cost

Level 1-2 

Charging

Low Very Low Low Low

DC Fast Charging Very High Low Medium High

Inductive 

Charging

Very Low Medium Medium High

Battery Exchange - - Very High -

Bidirectional V2G 

(Proposed 

Method)

Very High Medium* High Very 

Low – 

Low*
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The isolated bidirectional DC-DC converter block diagram shown in Figure 1 is 

referred to as a single-stage topology [41]. 

These topologies consist of a minimum number of converter stages. The 

number of required elements is lower compared to other multi-stage topologies. 

Nevertheless, operating across a wide input and output voltage variation range 

can lead to inefficient use of transformers and switch elements. 

Figure: Block diagram of the basic structures in an isolated bidirectional DC/DC converter

Block diagram 
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Single & Two-Stage Converter 

Topologies
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Conventional Design
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Figure: AC-DC Bidirectional Single Stage Converter with V2G Capability
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Figure: Conventional AC-DC On-Board Charger Design
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Potential Implementations

❑ Bidirectional chargers offer higher charging efficiency, 

minimizing energy losses during conversion and transmission. 

This leads to faster charging, improved energy utilization, 

reduced charging time, and better energy economy.

❑ Although bidirectional chargers may have higher upfront 

costs, they offer long-term cost savings. EV owners can 

possibly even generate revenue by providing grid services 

and participating in energy markets, offsetting installation 

costs.  Additionally, the utilization of EV batteries for both 

transportation and grid support reduces the need for 

additional stationary energy storage systems, optimizing 

overall costs.

12



Proposed Topology
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Figure. AC-DC-DC Bidirectional Two-Stage Converter with V2G Capability

❖ Enhanced Efficiency through Soft Switching

❖ High-Frequency DC-Link with Advanced Monitoring

❖ Optimized for High Power and Efficiency

❖ Phase-Locked-Loop Control Methodology
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Modes of Operation

Figure a. Idle/Control Mode of Operation

Figure b. CC Charging Mode of Operation

Figure c. CV Charging Mode of Operation

Figure d. V2G/Reverse Charging Mode of Operation
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Modes of Operation
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Modes of Operation
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Figure. Main circuit diagram of the 5.6 kW DAB converter.
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Operating Phases
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Figure. Operating phases of the DAB converter - Phases 1-6 (a-f)
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Controller and Battery 
Block Chart

❑ PWM signal used for the CC/CV charging is generated 

through the square wave carrier with a constant signal.

❑ This duty cycle signal is dynamically adjusted.

❖ Zero Current/Voltage Switching (ZCS/ZVS)
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Figure. Block Chart for Control Methodology
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G2V/V2G PLL Flow Chart

❑ The operational mode, is 

determined by an input 

that tailors the PWM 

pulse signals for the 

switches accordingly.

❑ In V2G mode, there is a 

synchronization between 

voltage & current signals.

Step 3

3 Level LCL 
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Power Supply

Mode of 

Operation
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Software Simulation

Figure: MATLAB Simulink Simulation
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Software Simulation

Figure: Flow Chart Representation of the Simulation
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Results and Analysis

❑ The OP5707XG RT-Laboratory from OPAL-RT, real-time 

simulator, was employed for this study. The real-time (RT) 

laboratory setup includes two PCs: one serving as the host 

and the other as the target, connected via TCP/IP protocol.

PC with RT-Lab 

Simulation

Opal-RT OP5707XG Kit

Tektronix Oscillator 

with Real-time 

Output

Master Subsystem

Console 

Subsyste

m

Slider Feedback used 

to switch G2V/V2G
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Hardware Validation

To validate the proposed approach's 

efficiency, numerous simulation 

experiments were conducted using 

practical electric vehicle (EV) data 

and a range of potential real-world 

situations. These outcomes were 

then compared against a standard 

charging method. The model 

simulations were executed utilizing 

MATLAB and RT-Lab.

Figure: Oscilloscope Output for Energy Calculations

Figure: Hardware Validation Lab Setup
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Results and Analysis

❑ Soft start control implemented 

for a light electric vehicle's 14 

V battery is demonstrated.

❑  High-value capacitors are 

used to maintain the output 

voltage within a specified 

ripple range.

Figure. Converter voltage and the energy transfer 

inductor current 
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Results and Analysis
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Figure. Real-Time G2V SOC% Outputs
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Results and Analysis
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Switching Losses

❑The calculated switching losses for each switch during conduction and turn-off 

match the simulation results. 

❑Total loss for the switches on the input side of the converter is calculated as 72.8 

W. 

❑The simulation results are shown in Figures, respectively:

Switching Loss During Conduction at 

H-Bridge Silicon Carbide Switches
Switching Loss During Cut-Off at 

H-Bridge Silicon Carbide Switch
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Switching Losses

❑  Converter output voltage and the current waveforms of the energy 

transfer inductor for the soft-start control applied.

❑  14 V vehicle battery of a light electric vehicle are shown;

Soft Start

Primary Current of the Transformer and Converter Output Voltage During Soft Start
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Voltage Switching

❑ Converter is operating in buck mode in the figure, and due to the current 

being positive in the regions marked in green

❑ Both the primary and secondary side switches are performing zero voltage 

switching

Voltage Switching Figure
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Switching Losses

Simulation Result for Switching Loss During 

Conduction for the Output H-Bridge Silicon Switches.

Simulation Result for Switching Loss During 

Turn-Off for the Output H-Bridge Silicon Switches.
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Results and Analysis - LAB

Transformer Primary Voltage, Current, and Inductor Current Waveform

Waveforms of the Converter Operation for Boost Mode
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Conclusion

❑ As seen from the efficiency graph, the converter achieves its maximum 

efficiency of approximately 97% at half-load conditions.

❑ The DAB converter shows versatility by accommodating both heavy and 

light electric loads (11.5 kW & 4 kW outputs)
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Challenges

1. Limited Charging Infrastructure,

   

2. Parking Space Availability,

3. Time and Location Constraints,

4. Cost and Payment Complexity,

   

5. Tripping Hazards and Safety 

Concerns,

6. Unplugging by Unauthorized Users,

   

7. Parking Space Management,

8. Rural Charging Deserts.Figure: Parked EV Being Charged From Top  Floor
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❑ Thermal Management

 

❑ Integration of GaN

❑ More sophisticated Control

❑ Renewable Energy Integration

   

❑ More Modular Design

GaN-Based Design of a 2 kW 48 V/12 V Bi-Directional Power Module for 

48 V Mild Hybrid Electric Vehicles

Future Research
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Future Research

❑ Integrating EV models into the simulation, accounting for their 

charging and discharging behavior, and simulating various 

scenarios to assess the impact on grid stability, voltage 

regulation, and power quality. 

❑ Analyzing the simulation results to understand the effects of 

widespread EV usage, optimizing grid operations, and informing 

decision-making regarding infrastructure upgrades, demand 

response strategies, and implementation of  V2G technologies.
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Thank You

Q & A
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