Memorial University of Newfoundland

Department of Electrical and Computer Engineering

Electric Load Forecasting Using Deep Neural Networks

Presented by: Zain Ahmed

Supervisors: Dr. Mohsin Jamil and Dr Ashraf Ali Khan

Date: 12 September 2024

Presentation Outline

- > Introduction
- Background
- Literature Review
- Research Objectives
- > Short-Term Campus Load Forecasting using CNN-based Encoder-Decoder Network with Attention
- Data Description
- Network Architecture
- Model Pipeline
- Results and Analysis
- > A Novel Multi-Task Learning Based Approach to Multi-Energy System Load Forecasting
- Introduction
- Data Description
- Proposed training model
- Results and Analysis
- Future Direction
- > Pulications

Background

- Load Forecasting is an important tool for power service provider.
- It aids the daily operation and maintenance activities.
- It helps identify peak hours and prevent load shedding.
- It helps in planning maintenance activities.
- Accurate long term forecasts can affect policies and future direction of the company.
- A one percent increase in forecasting error is associated with a \$10 million increase in operating costs.

• A load forecasting problem can be formulated as a time series forecasting problem and

divided into different categories based on:

1. The Output Horizon Length

2. Nature of the Algorithm Used

٠

3. Number of input variables employed

• Based on the Output Horizon Length the load forecasting can be divided into:

1. Short Term Load Forecasting:

Output Horizon is between one hour to one week

2. Medium-Term Load Forecasting:

Output Horizon is between one week and one year

3. Long-Term Load Forecasting:

Output horizon is between longer than one year

- Based on the nature of algorithm used the load forecasting can be divided into:
 - 1. Statistical Load Forecasting Techniques
 - 2. Artificial Intelligence-based Techniques
 - 3. Hybrid Techniques
- Based on the number of input variables employed load forecasting can be divided into:
 - 1. Univariate Load Forecasting
 - 2. Multivariate Load Forecasting

٠

• Major papers which were instrumental in the research include:

Reviewed Paper	Description
M. Madhukumar et al. (2022)	Regression Model-Based Short-Term Load Forecasting for University Campus Load
M. Aouad et al. (2022)	A CNN-Sequence-to-Sequence network with attention for residential short-term load forecasting
Y. Guo et al. (2022)	BiLSTM Multitask Learning-Based Combined Load Forecasting Considering the Loads Coupling Relationship for Multienergy System

Research Objectives

• The first part of the research is focused on a novel architecture for campus load

forecasting using an attention-based sequence-to-sequence model.

• The second part if focused on a novel multi-task learning based approach for load

forecasting of multi-energy systems.

٠

Short-Term Campus Load Forecasting using CNN-based Encoder-Decoder Network with Attention

Data Description

• MUN Campus Load Data from 2016 to 2020 was used

Parameter	Value		
Data start date	January 2nd 2016		
Data end date	2020st 31March		
Data interval	1 hour		
Total data points	37221		
Features	8		

MUN electric load

Load Data Features

Data Description

MEMORIAL UNIVERSITY

- Seven metrological features were employed
- These include:
- 1. Dry Bulb Temperature
- 2. Dew Point
- 3. Relative Humidity
- 4. Wind Direction
- 5. Wind Speed
- 6. Visibility
- 7. Atmospheric Pressure

Network Architecture

- The proposed network architecture consists of the following major components:
- 1. One Dimensional Convolutional Neural Network to capture relations among different

features

- 2. An Long Short Term Memory based Sequence to Sequence Model to capture temporal features
- 3. Fully Connected Layer to make predictions

Network Architecture

Proposed Network Architecture

Model Pipeline

- The Model Pipeline consists of the following major components:
- 1. Data Cleaning
 - Removal of outliers
 - Removal of NA values from the dataset
- 2. Data Preprocessing:
 - Data standardization
 - Data Windowing
 - Data Division

15

Model Pipeline

- 3. Model Training
 - Data is fed to the network architecture
 - Hyperparamater Optimization

Hyperparameters	Values
Epochs	100
Loss Function	Huber Loss
Batch Size	128
Ontimizer	Adams Optimizer
Early Stanning Pationco	20
Early Stopping Parameter	Validation Loss

- For analyzing the results, we will briefly describe the evaluation metrics
- Mean absolute error (MAE) is obtained by taking the mean of absolute difference

between actual and predicted values. Lower MAE demonstrates better algorithm performance.

• Mean Squared Error (MSE) is the average of the squared difference between the predicted values and ground truth. Lower MSE demonstrates better algorithm

performance.

- It is also referred to as the coefficient of determination. It can have a maximum value
 - of 1 which would indicate that the model has predicted every ground truth value
 - correctly. It can also have negative values with no limit since an estimator can be arbitrarily worse.
- Mean Absolute Percentage Error (MAPE) is an evaluation metric that is defined below.

 G_i here is the ground value while P_i represents the predicted values :

$$MAPE = \frac{100}{n} \sum_{i=1}^{N} \left| \frac{G_i - P_i}{G_i} \right|$$

Algorithm/Metric	MAE (kW)	R2 Score	MSE (kW2)	MAPE (% age)
LSTM	442.94	0.77	340026.33	3.64
GRU	493.72	0.739	386019.62	4.05
1D CNN + Encoder Decoder	423.326	0.8011	294162.21	3.51
RQ-GPR [12]	450.21	0.71	401264.54	4.98
Sequence to Sequence + Luong Attention [14]	410.11	0.795	298765.45	3.40
Proposed Network Architecture	407.308	0.805	287346.33	3.37

Case 1

A Novel Multi-Task Learning Based Approach to Multi-Energy System Load Forecasting

Introduction

• A Multi-Energy System (MES) is an integrated approach to managing and supplying

different types of energy carriers within a single coordinated unit.

- MES utilizes the transfer among different forms of energy to offer flexibly, improved efficiency, environmental performance and sustainability
- The proposed method uses a novel multi-task learning based approach for multi-energy systems.

Introduction

Generic Multi-Energy System

Data Description

- The data is taken from University of Austin Tempe Campus
- It consists of heating, cooling and electric loads

Parameter	Value		
Data start date	1 st January 2016		
Data end date	31 st December 2019		
Data interval	1 hour		
Number of observations	35063		
Number of metrological features	6		
Number of temperal features	21		
Number of temporal features	Ζ1		

Salient Data Features

Data Description

Cooling Load Data from 2019

EMORIAL

UNIVERSITY

Proposed D-TCNet Architecture

- First off, data is divided into four seasons (summer, winter, spring and autumn).
- Distance Correlation Analysis is performed between electric load, heating load and

cooling load for each season.

• Distance Correlation or Distance Covariance is a metric used to measure the degree of

dependence or interrelationships between two random variables or vectors.

• Based on the analysis, the load variables with high interrelationships are used as input metrics while others are discarded.

Clectro 1 Heating Cooling Electric

bosed Training Model

Spring Distance Correlation

Distance Correlation heat maps

MEMORIAL

• Data preprocessing starts with outlier removal using interquartile range (IQR) method.

Any data outside the range [Q1 - 3 * IQR, Q3 + 2 * IQR] was filled using forward filling method.

• Data windowing is done to create proper input-output pairs. Input window size of 168

is employed to provide the algorithm with hourly data profile of the previous week while output window size is set to 1.

• Next data portioning is carried out. The classical 80/10/10 method is used here. It

means that 80% of the dataset is used for training while 10 percent for validation and the remaining 10% as test set.

- Final data preprocessing step is data standardization to ensure fast convergence times.
- Below μ_i is the mean while σ_i is the standard deviation for ith feature while \hat{x}_i is the standardized feature

$$\hat{x}_i = \frac{x_i - \mu_i}{\sigma_i}$$

- Data is then fed to the Deep Temporal Convolutional Network (D-TCN).
- First layer is Multi Perceptron Layer for each of the three data streams (heating, electric and cooling) embed multiple features.
- Next is the Temporal Convolutional Block to find temporal patterns in the data.
- Data from these three streams is concatenated in the feature sharing layer and finally predictions are made from there.

• Temporal Convolutional Network (TCN) are convolutional neural networks used for

handling temporal data.

- TCN mainly consists of casual and dilated convolutions.
- Casual convolutions ensure that model only learns from past time steps.
- Dilated convolutions improve the receptive field of the network.

A complete residual block

Simple TCN block

Parameter	Value	Parameter		Value	
MLP Embedding dimension	8	Max e	Max epochs		
TCN kernel size	8			0.01	
TCN Dropout	0.2	Initial Learning Rate		0.01	
TCN activation function	Leaky ReLU	Learning rate reduction	Reduction Patience	10	
Number of TCN Blocks	3	on plateau	Reduction factor	0.5	

Network Parameters

Training Routine Parameters

Results for Autumn

MEMORIAL UNIVERSITY

Results for Spring

	Load Type	Evaluation Metric		Load Type	Evaluation Metric
Algorithm		MAPE (%)	Algorithm		MAPE (%)
			MIC + Bi-	Electric	2.1
MIC + Bi-LSTM [10]	Electric	2.2	LSTM [10] Single-Task Approach	Heating	3.7
	Heating	4.1		Cooling	35
	Cooling	7.4		Electric	2.2
Single-Task Approach	Electric	2.4			2.2
	Heating	4.4		Heating	3.8
	Cooling	7.9		Cooling	3.5
Multi-Task Approach	Electric	1.9	Multi-Task Approach	Electric	2.1
	Heating	4.2		Heating	3.5
	Cooling	6.9		Cooling	3.1

Results for Summer

Results for Winter

Algorithm	Load Type	Evaluation Metrics	Algorithm	Load Type	Evaluation Metrics	
		MAPE (%)	Aigui iuiiii		MAPE (%) RMSE (KW)	
MIC + Bi- LSTM [10]	Flootric	24	MTL-LSSM Single-Task Approach	Electric	1.9	
		2.4		Heating	3.5	
	Heating	2.1		Cooling	39	
	Cooling	2.2		Electric	3.5	
Single-Task Approach	Electric	2.5		Electric	2.6	
	Heating	2.3		Heating	3.6	
	Cooling	2.1		Cooling	5.2	
Multi-Task Approach	Electric	2.1	Multi-Task Approach	Electric	1.4	
	Heating	1.5		Heating	2.7	
	Cooling	2.0		Cooling	2.1	

• Proposed algorithm shows best performance in all four seasons compared to other state

of the art algorithms

• The multi-task approach performs better than single-task approach which shows that

the feature sharing layer improves model performance.

• Multi-task learning approach also helps improve the training times. This is shown on the next graph.

MEMORIAL UNIVERSITY

Results and Analysis

Training time comparison

Future Direction

• Introduction of bi-directional encoder decoder instead of the standard encoder decoder

to investigate its performance on multiple electric load datasets.

- Performing medium and long term load forecasting instead of short term load forecasting by leveraging long range temporal dependencies of the attention mechanism
- For multi-task learning based approach, investigation of encoder-decoder model instead of TCN block for multi-energy load forecasting

List of Publications

- Z. Ahmed, M. Jamil, A.A. Khan, "Short-Term Campus Load Forecasting Using CNN-Based Encoder– Decoder Network with Attention". *Energies* **2024**, *17*, 4457. <u>https://doi.org/10.3390/en17174457</u>
- Z. Ahmed and M. Jamil, "Campus Electric Load Forecasting Using Recurrent Neural Networks," *IEEE12th International Conference on Smart Grid (icSmartGrid)*, Setubal, Portugal, 2024, pp. 412-417, doi: 10.1109/icSmartGrid61824.2024.10578153.
- Z. Ahmed, M. Jamil, A.A. Khan, "A Novel Multitask Learning-Based Approach to Multi-Energy System Load Forecasting," Revision submitted to IEEE Open Journal of Power and Energy.

